
19 Handling JSON Data

Data serialization, i.e., converting data to and from a sequence of bytes that's suitable

for writing to disk or sending across the network, is an important and common pro-

gramming task. You often have to match someone else's data format (such as XML),

sometimes you need a highly e�cient format, and other times you want something that

is easy for humans to edit. To this end, OCaml libraries provide several techniques for

data serialization depending on what your problem is.

We'll start by using the popular and simple JSON data format and then look at other

serialization formats later in the book. This chapter introduces you to a couple of new

techniques that glue together the basic ideas from Part I of the book by using:

• Polymorphic variants to write more extensible libraries and protocols (but still retain

the ability to extend them if needed)

• Functional combinators to compose common operations over data structures in a

type-safe way

• External tools to generate boilerplate OCaml modules and signatures from external

speci�cation �les

19.1 JSON Basics

JSON is a lightweight data-interchange format often used in web services and browsers.

It's described in RFC46271 and is easier to parse and generate than alternatives such

as XML. You'll run into JSON very often when working with modern web APIs, so

we'll cover several di�erent ways to manipulate it in this chapter.

JSON consists of two basic structures: an unordered collection of key/value pairs,

and an ordered list of values. Values can be strings, Booleans, �oats, integers, or null.

Let's see what a JSON record for an example book description looks like:

{
"title": "Real World OCaml",
"tags" : ["functional programming", "ocaml", "algorithms"],
"pages": 450,
"authors": [
{ "name": "Jason Hickey", "affiliation": "Google" },
{ "name": "Anil Madhavapeddy", "affiliation": "Cambridge"},

1 http://www.ietf.org/rfc/rfc4627.txt

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

http://www.ietf.org/rfc/rfc4627.txt
https://doi.org/10.1017/9781009129220.022

346 Handling JSON Data

{ "name": "Yaron Minsky", "affiliation": "Jane Street"}
],
"is_online": true

}

The outermost JSON value is usually a record (delimited by the curly braces) and

contains an unordered set of key/value pairs. The keys must be strings, but values can

be any JSON type. In the preceding example, tags is a string list, while the authors

�eld contains a list of records. Unlike OCaml lists, JSON lists can contain multiple

di�erent JSON types within a single list.

This free-form nature of JSON types is both a blessing and a curse. It's very easy to

generate JSON values, but code that parses them also has to handle subtle variations

in how the values are represented. For example, what if the preceding pages value is

actually represented as a string value of �450� instead of an integer?

Our �rst task is to parse the JSON into a more structured OCaml type so that we

can use static typing more e�ectively. When manipulating JSON in Python or Ruby,

you might write unit tests to check that you have handled unusual inputs. The OCaml

model prefers compile-time static checking as well as unit tests. For example, using

pattern matching can warn you if you've not checked that a value can be Null as well

as contain an actual value.

Installing the Yojson Library

There are several JSON libraries available for OCaml. For this chapter, we've picked

the popular Yojson library, which you can install by running opam install yojson.

Once installed, you can open it in utop as follows:

open Core;;
#require "yojson";;
open Yojson;;

19.2 Parsing JSON with Yojson

The JSON speci�cation has very few data types, and the Yojson.Basic.t type that

follows is su�cient to express any valid JSON structure:

type json = [
| `Assoc of (string * json) list
| `Bool of bool
| `Float of float
| `Int of int
| `List of json list
| `Null
| `String of string

]

Some interesting properties should leap out at you after reading this de�nition:

• The json type is recursive, which is to say that some of the tags refer back to the

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.022

19.2 Parsing JSON with Yojson 347

overall json type. In particular, Assoc and List types can contain references to

further JSON values of di�erent types. This is unlike the OCaml lists, whose

contents must be of a uniform type.

• The de�nition speci�cally includes a Null variant for empty �elds. OCaml doesn't

allow null values by default, so this must be encoded explicitly.

• The type de�nition uses polymorphic variants and not normal variants. This will

become signi�cant later, when we extend it with custom extensions to the JSON

format.

Let's parse the earlier JSON example into this type now. The �rst stop is the

Yojson.Basic documentation, where we �nd these helpful functions:

val from_string : ?buf:Bi_outbuf.t -> ?fname:string -> ?lnum:int ->
string -> json

(* Read a JSON value from a string.
[buf] : use this buffer at will during parsing instead of

creating a new one.
[fname] : data file name to be used in error messages. It does not

have to be a real file.
[lnum] : number of the first line of input. Default is 1. *)

val from_file : ?buf:Bi_outbuf.t -> ?fname:string -> ?lnum:int ->
string -> json

(* Read a JSON value from a file. See [from_string] for the meaning
of the optional
arguments. *)

val from_channel : ?buf:Bi_outbuf.t -> ?fname:string -> ?lnum:int ->
in_channel -> json
(** Read a JSON value from a channel.

See [from_string] for the meaning of the optional arguments. *)

When �rst reading these interfaces, you can generally ignore the optional arguments

(which have the question marks in the type signature), since they should have sensible

defaults. In the preceding signature, the optional arguments o�er �ner control over the

memory bu�er allocation and error messages from parsing incorrect JSON.

The type signature for these functions with the optional elements removed makes

their purpose much clearer. The three ways of parsing JSON are either directly from a

string, from a �le on a �lesystem, or via a bu�ered input channel:

val from_string : string -> json
val from_file : string -> json
val from_channel : in_channel -> json

The next example shows both the string and file functions in action, assuming

the JSON record is stored in a �le called book.json:

open Core

let () =
(* Read JSON file into an OCaml string *)
let buf = In_channel.read_all "book.json" in
(* Use the string JSON constructor *)
let json1 = Yojson.Basic.from_string buf in

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.022

348 Handling JSON Data

(* Use the file JSON constructor *)
let json2 = Yojson.Basic.from_file "book.json" in
(* Test that the two values are the same *)
print_endline (if Yojson.Basic.equal json1 json2 then "OK" else
"FAIL")

You can build this by running dune:

$ dune exec -- ./read_json.exe
OK

The from_file function accepts an input �lename and takes care of opening and

closing it for you. It's far more common to use from_string to construct JSON values

though, since these strings come in via a network connection (we'll see more of this

in Chapter 17 (Concurrent Programming with Async)) or a database. Finally, the

example checks that the two input mechanisms actually resulted in the same OCaml

data structure.

19.3 Selecting Values from JSON Structures

Now that we've �gured out how to parse the example JSON into an OCaml value, let's

manipulate it from OCaml code and extract speci�c �elds:

open Core

let () =
(* Read the JSON file *)
let json = Yojson.Basic.from_file "book.json" in

(* Locally open the JSON manipulation functions *)
let open Yojson.Basic.Util in
let title = json |> member "title" |> to_string in
let tags = json |> member "tags" |> to_list |> filter_string in
let pages = json |> member "pages" |> to_int in
let is_online = json |> member "is_online" |> to_bool_option in
let is_translated = json |> member "is_translated" |>
to_bool_option in

let authors = json |> member "authors" |> to_list in
let names = List.map authors ~f:(fun json -> member "name" json |>
to_string) in

(* Print the results of the parsing *)
printf "Title: %s (%d)\n" title pages;
printf "Authors: %s\n" (String.concat ~sep:", " names);
printf "Tags: %s\n" (String.concat ~sep:", " tags);
let string_of_bool_option =
function
| None -> "<unknown>"
| Some true -> "yes"
| Some false -> "no" in

printf "Online: %s\n" (string_of_bool_option is_online);
printf "Translated: %s\n" (string_of_bool_option is_translated)

Now build and run this in the same way as the previous example:

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.022

19.3 Selecting Values from JSON Structures 349

(executable
(name parse_book)
(libraries core yojson))

$ dune build parse_book.exe
$./_build/default/parse_book.exe
Title: Real World OCaml (450)
Authors: Jason Hickey, Anil Madhavapeddy, Yaron Minsky
Tags: functional programming, ocaml, algorithms
Online: yes
Translated: <unknown>

This code introduces the Yojson.Basic.Util module, which contains combinator

functions that let you easily map a JSON object into a more strongly typed OCaml

value.

Functional Combinators

Combinators are a design pattern that crops up quite often in functional programming.

John Hughes de�nes them as �a function which builds program fragments from pro-

gram fragments.� In a functional language, this generally means higher-order functions

that combine other functions to apply useful transformations over values.

You've already run across several of these in the List module:

val map : 'a list -> f:('a -> 'b) -> 'b list
val fold : 'a list -> init:'accum -> f:('accum -> 'a -> 'accum) ->

'accum

map and fold are extremely common combinators that transform an input list by

applying a function to each value of the list. The map combinator is simplest, with the

resulting list being output directly. fold applies each value in the input list to a function

that accumulates a single result, and returns that instead:

val iter : 'a list -> f:('a -> unit) -> unit

iter is a more specialized combinator that is only useful when writing imperative

code. The input function is applied to every value, but no result is supplied. The

function must instead apply some side e�ect such as changing a mutable record �eld

or printing to the standard output.

Yojson provides several combinators in the Yojson.Basic.Utilmodule to manipu-

late values:

• val member : string -> json -> json selects a named �eld from a JSON record.

• val to_string : json -> string converts a JSON value into an OCaml string.

It raises an exception if this is impossible.

• val to_int : json -> int converts a JSONvalue into an int. It raises an exception

if this is impossible.

• val filter_string : json list -> string list �lters valid strings from a list

of JSON �elds, and return them as an OCaml string list.

We'll go through each of these uses one by one now. The following examples also use

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.022

350 Handling JSON Data

the |> pipe-forward operator that we explained in Chapter 3 (Variables and Functions).

This lets us chain together multiple JSON selection functions and feed the output from

one into the next one, without having to create separate let bindings for each one.

Let's start with selecting a single title �eld from the record:

open Yojson.Basic.Util;;
let title = json |> member "title" |> to_string;;
val title : string = "Real World OCaml"

The member function accepts a JSON object and named key and returns the JSON

�eld associated with that key, or Null. Since we know that the title value is always

a string in our example schema, we want to convert it to an OCaml string. The

to_string function performs this conversion and raises an exception if there is an

unexpected JSON type. The |> operator provides a convenient way to chain these

operations together:

let tags = json |> member "tags" |> to_list |> filter_string;;
val tags : string list = ["functional programming"; "ocaml";

"algorithms"]

let pages = json |> member "pages" |> to_int;;
val pages : int = 450

The tags �eld is similar to title, but the �eld is a list of strings instead of a single

one. Converting this to an OCaml string list is a two-stage process. First, we convert

the JSON List to an OCaml list of JSON values and then �lter out the String values

as an OCaml string list. Remember that OCaml lists must contain values of the

same type, so any JSON values that cannot be converted to a string will be skipped

from the output of filter_string:

let is_online = json |> member "is_online" |> to_bool_option;;
val is_online : bool option = Some true

let is_translated = json |> member "is_translated" |>
to_bool_option;;

val is_translated : bool option = None

The is_online and is_translated �elds are optional in our JSON schema, so

no error should be raised if they are not present. The OCaml type is a bool option

to re�ect this and can be extracted via to_bool_option. In our example JSON, only

is_online is present and is_translated will be None:

let authors = json |> member "authors" |> to_list;;
val authors : Yojson.Basic.t list =

[`Assoc
[("name", `String "Jason Hickey"); ("affiliation", `String
"Google")];

`Assoc
[("name", `String "Anil Madhavapeddy");

("affiliation", `String "Cambridge")];

`Assoc
[("name", `String "Yaron Minsky");

("affiliation", `String "Jane Street")]]

The �nal use of JSON combinators is to extract all the name �elds from the list of

authors. We �rst construct the author list, and then map it into a string list. Notice

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.022

19.4 Constructing JSON Values 351

that the example explicitly binds authors to a variable name. It can also be written

more succinctly using the pipe-forward operator:

let names =
json |> member "authors" |> to_list

|> List.map ~f:(fun json -> member "name" json |> to_string);;
val names : string list =

["Jason Hickey"; "Anil Madhavapeddy"; "Yaron Minsky"]

This style of programming, which omits variable names and chains functions to-

gether, is known as point-free programming. It's a succinct style but shouldn't be

overused due to the increased di�culty of debugging intermediate values. If an ex-

plicit name is assigned to each stage of the transformations, debuggers in particular

have an easier time making the program �ow simpler to represent to the programmer.

This technique of using statically typed parsing functions is very powerful in com-

bination with the OCaml type system. Many errors that don't make sense at runtime

(for example, mixing up lists and objects) will be caught statically via a type error.

19.4 Constructing JSON Values

Building and printing JSON values is pretty straightforward given the Yojson.Basic.t

type. You can just construct values of type t and call the to_string function on them.

Let's remind ourselves of the Yojson.Basic.t type again:

type json = [
| `Assoc of (string * json) list
| `Bool of bool
| `Float of float
| `Int of int
| `List of json list
| `Null
| `String of string

]

We can directly build a JSON value against this type and use the pretty-printing

functions in the Yojson.Basic module to display JSON output:

let person = `Assoc [("name", `String "Anil")];;
val person : [> `Assoc of (string * [> `String of string]) list] =

`Assoc [("name", `String "Anil")]

In the preceding example, we've constructed a simple JSON object that represents

a single person. We haven't actually de�ned the type of person explicitly, as we're

relying on the magic of polymorphic variants to make this all work.

The OCaml type system infers a type for person based on how you construct its

value. In this case, only the Assoc and String variants are used to de�ne the record, and

so the inferred type only contains these �elds without knowledge of the other possible

allowed variants in JSON records that you haven't used yet (e.g. Int or Null):

Yojson.Basic.pretty_to_string;;
- : ?std:bool -> Yojson.Basic.t -> string = <fun>

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.022

352 Handling JSON Data

The pretty_to_string function has a more explicit signature that requires an

argument of type Yojson.Basic.t. When person is applied to pretty_to_string, the

inferred type of person is statically checked against the structure of the json type to

ensure that they're compatible:

Yojson.Basic.pretty_to_string person;;
- : string = "{ \"name\": \"Anil\" }"

Yojson.Basic.pretty_to_channel stdout person;;
{ "name": "Anil" }

- : unit = ()

In this case, there are no problems. Our person value has an inferred type that is

a valid subtype of json, and so the conversion to a string just works without us ever

having to explicitly specify a type for person. Type inference lets you write more

succinct code without sacri�cing runtime reliability, as all the uses of polymorphic

variants are still checked at compile time.

Polymorphic Variants and Easier Type Checking

One di�culty you will encounter is that type errors involving polymorphic variants

can be quite verbose. For example, suppose you build an Assoc and mistakenly include

a single value instead of a list of keys:

let person = `Assoc ("name", `String "Anil");;
val person : [> `Assoc of string * [> `String of string]] =

`Assoc ("name", `String "Anil")

Yojson.Basic.pretty_to_string person;;
Line 1, characters 31-37:

Error: This expression has type

[> `Assoc of string * [> `String of string]]

but an expression was expected of type Yojson.Basic.t

Types for tag `Assoc are incompatible

The type error is more verbose than it needs to be, which can be inconvenient to

wade through for larger values. You can help the compiler to narrow down this error

to a shorter form by adding explicit type annotations as a hint about your intentions:

let (person : Yojson.Basic.t) =
`Assoc ("name", `String "Anil");;

Line 2, characters 10-34:

Error: This expression has type 'a * 'b
but an expression was expected of type (string *

Yojson.Basic.t) list

We've annotated person as being of type Yojson.Basic.t, and as a result, the

compiler spots that the argument to the Assoc variant has the incorrect type. This

illustrates the strengths and weaknesses of polymorphic variants: they're lightweight

and �exible, but the error messages can be quite confusing. However, a bit of careful

manual type annotation makes tracking down such issues much easier.

We'll discuss more techniques like this that help you interpret type errors more

easily in Chapter 26 (The Compiler Frontend: Parsing and Type Checking).

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.022

19.5 Using Nonstandard JSON Extensions 353

19.5 Using Nonstandard JSON Extensions

The standard JSON types are really basic, and OCaml types are far more expressive.

Yojson supports an extended JSON format for those times when you're not interoper-

ating with external systems and just want a convenient human-readable, local format.

The Yojson.Safe.json type is a superset of the Basic polymorphic variant and looks

like this:

type json = [
| `Assoc of (string * json) list
| `Bool of bool
| `Float of float
| `Floatlit of string
| `Int of int
| `Intlit of string
| `List of json list
| `Null
| `String of string
| `Stringlit of string
| `Tuple of json list
| `Variant of string * json option

]

The Safe.json type includes all of the variants from Basic.json and extends it

with a few more useful ones. A standard JSON type such as a String will type-check

against both the Basic module and also the nonstandard Safe module. If you use the

extended values with the Basic module, however, the compiler will reject your code

until you make it compliant with the portable subset of JSON.

Yojson supports the following JSON extensions:

The lit su�x Denotes that the value is stored as a JSON string. For example, a

Floatlit will be stored as "1.234" instead of 1.234.

The Tuple type Stored as ("abc", 123) instead of a list.

The Variant type Encodes OCaml variants more explicitly, as <"Foo"> or

<"Bar":123> for a variant with parameters.

The only purpose of these extensions is to have greater control over how OCaml

values are represented in JSON (for instance, storing a �oating-point number as a JSON

string). The output still obeys the same standard format that can be easily exchanged

with other languages.

You can convert a Safe.json to a Basic.json type by using the to_basic function

as follows:

val to_basic : json -> Yojson.Basic.t
(** Tuples are converted to JSON arrays, Variants are converted to

JSON strings or arrays of a string (constructor) and a json value
(argument). Long integers are converted to JSON strings.
Examples:

`Tuple [`Int 1; `Float 2.3] -> `List [`Int 1; `Float 2.3]
`Variant ("A", None) -> `String "A"
`Variant ("B", Some x) -> `List [`String "B", x]

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.022

354 Handling JSON Data

`Intlit "12345678901234567890" -> `String
"12345678901234567890"

*)

19.6 Automatically Mapping JSON to OCaml Types

The combinators described previously make it easy to write functions that extract

�elds from JSON records, but the process is still pretty manual. When you implement

larger speci�cations, it's much easier to generate the mappings from JSON schemas to

OCaml values more mechanically than writing conversion functions individually.

We'll cover an alternative JSON processing method that is better for larger-scale

JSON handling now, using ATD2 , which provides a domain speci�c language, or

DSL, that compiles JSON speci�cations into OCaml modules, which are then used

throughout your application.

You can install the atdgen executable by calling opam install atdgen.

$ opam install atdgen
$ atdgen -version
2.2.1

You may need to run eval $(opam env) in your shell if you don't �nd atdgen in

your path.

19.6.1 ATD Basics

The idea behind ATD is to specify the format of the JSON in a separate �le and then

run a compiler (atdgen) that outputs OCaml code to construct and parse JSON values.

This means that you don't need to write any OCaml parsing code at all, as it will all be

autogenerated for you.

Let's go straight into looking at an example of how this works, by using a small

portion of the GitHub API. GitHub is a popular code hosting and sharing website that

provides a JSON-based web API3 . The following ATD code fragment describes the

GitHub authorization API (which is based on a pseudostandard web protocol known

as OAuth):

type scope = [
User <json name="user">

| Public_repo <json name="public_repo">
| Repo <json name="repo">
| Repo_status <json name="repo_status">
| Delete_repo <json name="delete_repo">
| Gist <json name="gist">

]

type app = {

2 https://github.com/ahrefs/atd
3 http://developer.github.com

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://github.com/ahrefs/atd
http://developer.github.com
https://doi.org/10.1017/9781009129220.022

19.6 Compiling ATD Speci�cations to OCaml 355

name: string;
url: string;

} <ocaml field_prefix="app_">

type authorization_request = {
scopes: scope list;
note: string;

} <ocaml field_prefix="auth_req_">

type authorization_response = {
scopes: scope list;
token: string;
app: app;
url: string;
id: int;
?note: string option;
?note_url: string option;

}

TheATD speci�cation syntax is deliberately quite similar to OCaml type de�nitions.

Every JSON record is assigned a type name (e.g., app in the preceding example). You

can also de�ne variants that are similar to OCaml's variant types (e.g., scope in the

example).

19.6.2 ATD Annotations

ATD does deviate from OCaml syntax due to its support for annotations within the

speci�cation. The annotations can customize the code that is generated for a particular

target (of which the OCaml backend is of most interest to us).

For example, the preceding GitHub scope �eld is de�ned as a variant type, with

each option starting with an uppercase letter as is conventional for OCaml variants.

However, the JSON values that come back from GitHub are actually lowercase and so

aren't exactly the same as the option name.

The annotation <json name="user"> signals that the JSON value of the �eld is

user, but that the variable name of the parsed variant in OCaml should be User. These

annotations are often useful to map JSON values to reserved keywords in OCaml (e.g.,

type).

19.6.3 Compiling ATD Speci�cations to OCaml

The ATD speci�cation we de�ned can be compiled to OCaml code using the atdgen

command-line tool. Let's run the compiler twice to generate some OCaml type de�ni-

tions and a JSON serializing module that converts between input data and those type

de�nitions.

The atdgen command will generate some new �les in your current directory.

github_t.ml and github_t.mli will contain an OCaml module with types de�ned

that correspond to the ATD �le:

$ atdgen -t github.atd

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.022

356 Handling JSON Data

$ atdgen -j github.atd
$ ocamlfind ocamlc -package atd -i github_t.mli
type scope =

[`Delete_repo | `Gist | `Public_repo | `Repo | `Repo_status |
`User]

type app = { app_name : string; app_url : string; }
type authorization_response = {
scopes : scope list;
token : string;
app : app;
url : string;
id : int;
note : string option;
note_url : string option;

}
type authorization_request = {
auth_req_scopes : scope list;
auth_req_note : string;

}

There is an obvious correspondence to the ATD de�nition. Note that �eld names

in OCaml records in the same module cannot shadow one another, and so we instruct

ATDgen to pre�x every �eld with a name that distinguishes it from other records

in the same module. For example, <ocaml field_prefix="auth_req_"> in the ATD

spec pre�xes every �eld name in the generated authorization_request record with

auth_req.

The Github_t module only contains the type de�nitions, while Github_j provides

serialization functions to and from JSON. You can read the github_j.mli to see the

full interface, but the important functions for most uses are the conversion functions

to and from a string. For our preceding example, this looks like:

val string_of_authorization_request :
?len:int -> authorization_request -> string
(** Serialize a value of type {!authorization_request}

into a JSON string.
@param len specifies the initial length

of the buffer used internally.
Default: 1024. *)

val string_of_authorization_response :
?len:int -> authorization_response -> string
(** Serialize a value of type {!authorization_response}

into a JSON string.
@param len specifies the initial length

of the buffer used internally.
Default: 1024. *)

This is pretty convenient! We've now written a single ATD �le, and all the OCaml

boilerplate to convert between JSON and a strongly typed record has been generated

for us. You can control various aspects of the serializer by passing �ags to atdgen. The

important ones for JSON are:

-j-std Converts tuples and variants into standard JSON and refuses to print NaN and

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.022

19.6 Example: Querying GitHub Organization Information 357

in�nities. You should specify this if you intend to interoperate with services

that aren't using ATD.

-j-custom-fields FUNCTION Calls a custom function for every unknown �eld

encountered, instead of raising a parsing exception.

-j-defaults Always explicitly outputs a JSON value if possible. This requires the

default value for that �eld to be de�ned in the ATD speci�cation.

The full ATD speci�cation4 is quite sophisticated and documented online. The ATD

compiler can also target formats other than JSON and outputs code for other languages

(such as Java) if you need more interoperability.

There are also several similar projects that automate the code generation process.

Piqi5 supports conversions between XML, JSON, and the Google protobuf format; and

Thrift6 supports many other programming languages and includes OCaml bindings.

19.6.4 Example: Querying GitHub Organization Information

Let's �nish up with an example of some live JSON parsing from GitHub and build

a tool to query organization information via their API. Start by looking at the online

API documentation7 for GitHub to see what the JSON schema for retrieving the

organization information looks like.

Now create an ATD �le that covers the �elds we need. Any extra �elds present in the

response will be ignored by the ATD parser, so we don't need a completely exhaustive

speci�cation of every �eld that GitHub might send back:

type org = {
login: string;
id: int;
url: string;
?name: string option;
?blog: string option;
?email: string option;
public_repos: int

}

Let's build theOCaml type declaration �rst by callingatdgen -t on the speci�cation

�le:

$ dune build github_org_t.mli
$ cat _build/default/github_org_t.mli
(* Auto-generated from "github_org.atd" *)

[@@@ocaml.warning "-27-32-35-39"]

type org = {
login: string;
id: int;
url: string;

4 https://atd.readthedocs.io/en/latest/
5 http://piqi.org
6 http://thrift.apache.org
7 http://developer.github.com/v3/orgs/

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://atd.readthedocs.io/en/latest/
http://piqi.org
http://thrift.apache.org
http://developer.github.com/v3/orgs/
https://doi.org/10.1017/9781009129220.022

358 Handling JSON Data

name: string option;
blog: string option;
email: string option;
public_repos: int

}

The OCaml type has an obvious mapping to the ATD spec, but we still need the

logic to convert JSON bu�ers to and from this type. Calling atdgen -j will generate

this serialization code for us in a new �le called github_org_j.ml:

$ dune build github_org_j.mli
$ cat _build/default/github_org_j.mli
(* Auto-generated from "github_org.atd" *)
[@@@ocaml.warning "-27-32-35-39"]

type org = Github_org_t.org = {
login: string;
id: int;
url: string;
name: string option;
blog: string option;
email: string option;
public_repos: int

}

val write_org :
Bi_outbuf.t -> org -> unit
(** Output a JSON value of type {!org}. *)

val string_of_org :
?len:int -> org -> string
(** Serialize a value of type {!org}

into a JSON string.
@param len specifies the initial length

of the buffer used internally.
Default: 1024. *)

val read_org :
Yojson.Safe.lexer_state -> Lexing.lexbuf -> org
(** Input JSON data of type {!org}. *)

val org_of_string :
string -> org
(** Deserialize JSON data of type {!org}. *)

The Github_org_j serializer interface contains everything we need to map to and

from the OCaml types and JSON. The easiest way to use this interface is by using

the string_of_org and org_of_string functions, but there are also more advanced

low-level bu�er functions available if you need higher performance (but we won't go

into that in this tutorial).

All we need to complete our example is an OCaml program that fetches the JSON

and uses these modules to output a one-line summary. Our following example does

just that.

The following code calls the cURLcommand-line utility by using the Shell interface

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.022

19.6 Example: Querying GitHub Organization Information 359

to run an external command and capture its output. You'll need to ensure that you have

cURL installed on your system before running the example. You might also need to

opam install shell if you haven't installed it previously:

open Core

let print_org file () =
let url = sprintf "https://api.github.com/orgs/%s" file in
Shell.run_full "curl" [url]
|> Github_org_j.org_of_string
|> fun org ->
let open Github_org_t in
let name = Option.value ~default:"???" org.name in
printf "%s (%d) with %d public repos\n"
name org.id org.public_repos

let () =
Command.basic_spec ~summary:"Print Github organization information"
Command.Spec.(empty +> anon ("organization" %: string))
print_org

|> Command.run

The following is a short shell script that generates all of the OCaml code and also

builds the �nal executable:

(rule
(targets github_org_j.ml github_org_j.mli)
(deps github_org.atd)
(mode fallback)
(action (run atdgen -j %{deps})))

(rule
(targets github_org_t.ml github_org_t.mli)
(deps github_org.atd)
(mode fallback)
(action (run atdgen -t %{deps})))

(executable
(name github_org_info)
(libraries core yojson atdgen shell)
(flags :standard -w -32)
(modules github_org_info github_org_t github_org_j))

$ dune build github_org_info.exe

You can now run the command-line tool with a single argument to specify the name

of the organization, and it will dynamically fetch the JSON from the web, parse it, and

render the summary to your console:

$ dune exec -- ./github_org_info.exe mirage
MirageOS (131943) with 125 public repos
$ dune exec -- ./github_org_info.exe janestreet
??? (3384712) with 145 public repos

The JSON returned from the janestreet query is missing an organization name,

but this is explicitly re�ected in the OCaml type, since the ATD spec marked name

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.022

360 Handling JSON Data

as an optional �eld. Our OCaml code explicitly handles this case and doesn't have to

worry about null-pointer exceptions. Similarly, the JSON integer for the id is mapped

into a native OCaml integer via the ATD conversion.

While this tool is obviously quite simple, the ability to specify optional and default

�elds is very powerful. Take a look at the full ATD speci�cation for the GitHub API

in the ocaml-github8 repository online, which has lots of quirks typical in real-world

web APIs.

Our example shells out to curl on the command line to obtain the JSON, which

is rather ine�cient. You could integrate an Async-based HTTP fetch directly into

your OCaml application, as described in Chapter 17 (Concurrent Programming with

Async).

8 http://github.com/avsm/ocaml-github

https://doi.org/10.1017/9781009129220.022 Published online by Cambridge University Press

http://github.com/avsm/ocaml-github
https://doi.org/10.1017/9781009129220.022

