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1. Introduction

Kock (1970) defined the notion of a commutative monad in a symmetric
monoidal closed category 7~ and in Kock (1971) showed that the algebras for such
a monad had a canonical structure as a closed category and that the monad had a
canonical closed structure. In this paper we are concerned with the relationship
between distributive laws and commutivity. In particular, the following question
arises: given a distributive law between two monads on ¥~ when is the composite
monad commutative? To answer this question we define commutative distributive
laws and show that if the cdmposite is commutative then the distributive law
must be commutative. We also show that if & and .7 are commutative monads
in ¥~ with a commutative distributive law between them then the composite is
commutative. So we get that if % and 4 are commutative then the composite is
commutative if and only if the distributive law is commutative. In addition we
show that if the monads and the distributive law are commutative then the lifting
of the monad % to the category of .7 -algebras has a canonical structure as a closed
monad (closed relative to the canonical closed category structure on the J -
algebras).

2. Commutative distributive laws

We assume throughout that ¥ is a symmetric monoidal closed category
with equalizers (although some of the results below do not need the equalizer
hypothesis). We also assume that the reader is familiar with ¥ -category theory
and the theory of ¥ -monads (see Bunge (1969), Dubuc (1970), or Kock (1970).

Recall that the natural isomorphism p: ¥ (4 ® B,C) —» ¥ (4,¥(B,())
gives rise to the adjunction — @ B+ #(B, — ), Be ¥". Following Kock (1970) we
denote the front adjunction by f:1 — ¥(B, — ® B) and the back adjunction
byev:¥(B,—)® B — 1. ’

Let T be a ¥"-functor on ¥". Kock (1970) defines the natural transformation ¢”
of bifunctors 1} 5:A® TB— T(A® B) by ty p = evrg ra08 " (fa,s" T)® l1p).
He then defines t} y: TA ® B - T(A4 ® B) by 1y = T(c) "tz 4 - ¢ where c is the
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symmetry. If T is the ¥ -functor part of a ¥ ~monad 9 = (T, n, ), he then shows
that if we put Y,  equal to the composite p g5 * T(t] p) * ty rp and §° = 7, then
(T, ¥, ¥°) becomes a monoidal functor ((Kock 1970) Theorem 2.1, page 6). Also if
J/A,B = pu ep T(ty ) 1145 and Y = n, then (T, ¥, f°) is a monoidal functor. If
¥ =  then the monad 7 is called commutative.

If 7 =(T,n,u) and & = (S,n’,p’') are two ¥-monads on a ¥ -category
o a ¥ -distributive law from 9 to ¥ is a ¥"-natural transformation A: TS — ST
such that (1) 2Ty’ =n'T; (2) A-9pS =8n; 3) A-uS=Su-iT-Tl; and
(4) - Ty = p'T - Si-AS. We record here a ¥ -version of a result of Beck [1].
His proof generalizes easily to the ¥ -case.

PrROPOSITION. Let ¥ = (S,n',u') and 7 = (T,n,u) be ¥ -monads on a
¥ -category . Then the following are equivalent.

(1) There exists a ¥ -distributive law 2: TS — ST.

(2) There exists a ¥ "-monad &' = (S, #, i) in &7 which lifts & (i.e., SUT
= UTS; wUT =UTij; p'UT = UTp).

(3) There exists a ¥"-multiplication m: STST — ST such that (a) (T ),
= (ST,n'n, m) is a ¥"-monad in o ; (b) the ¥ '-natural transformation Sn: S - ST
and n'T: T —» ST are ¥ "-monad maps; and (c) the middle unitary law
m:-STSy-STn' = ST holds.

We assume from now on that ¥ and 7 are ¥ -monads on ¥ .

DEerINITION 2.1. A ¥ -distributive law A: TS — ST is called commutative
if the following diagram commutes for all 4, B in ¥".

”

TA ® SB—> S(TA ® B)

]

T(A ® SB) S(t')

T(s") l
P

TS(A ® B)——> ST(4A ® B)

LEMMA 2.2. A: TS — ST is a commutative distributive law if and only
if A-T(s)-1t" = S(t")-s'.

PROOF (=) AT(s')y 1" = A-TS(c)  T(s")- T(c)-t"
“TS(c)  T(s")-t' - ¢
= ST(c) - A-T(s")-t' - ¢
= ST(c)-S(t')-s" ¢
= S(t"):S(e)-s" - ¢
= S(")s".

N Mo

The converse is clear.
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PROPOSITION 2.3. If 1 is a commutative distributive law then Ygp = Syr - Vg
and §sr = S¥r- ¥s.
Proor. Consider the following diagram:

STA ® STB—> > S(STA ® TB)is'-)) SHTA ® TB)—’L> S(TA ® TB)
S(t")
ST(STA ® B) SAr) S(t")
l ST(s")
\Jr L 4
STS(TA ®B)—i> S’T(TA ® B)—“:L ST(TA® B)
STS(t') ! ST(¢) l ST(t')
STST(A ® B)§£> STHA ® B)#—/T—-> ST*A ® B)
Sp
ST(A ® B)

This commutes since 1. commutes by commutativity of A and the rest commutes
by the naturality of the maps involved. But the clockwise direction about the
diagram is Sy * Y5 and the counterclockwise direction is Ygr. So Ygr = SYr-¥s.
Similarly Yy = S¥r - ¥s.

COROLLARY 2.4. If & and T are commutative ¥ -monads and A is a com-
mutative distributive law then .7 is a commutative ¥ -monad.

PROPOSITION 2.5. If .7 is a commutative monad then /7 is a commutative
distributive law.

Proor. Consider the following diagram.

s4 @ TBACTTE o4 @sTp —SMOSTE | i@ sTB
t”l 1 l (st)” 4 l (st)"
T(SA ® B) — L sT(54 ® B) —LOM4A®STE) ors14 & B)
l ST(s')
STS(A ® B)
2 l S >
T(s') S'T(4A ® B) ST(st)
3 i wT ¢ {
TS(4 ® B) ST(4 ® B) - STST(A® B)
n' TS STSy
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1 commutes by Lemma 1.1 of Kock (1970); 2 commutes by naturality of n’;
3 commutes since #'ST*A = SA-n'TS and p'T-n’'ST = ST. 4 commutes by
naturality of (st)"; 5 commutes by Lemma 1.1 of Kock (1970); 6 commutes since

uST-STSy = p'T-S*u-SAT - STy = w'T - S*u- S*Tn - SA
= u'T.SA - Soh-T(s')*t" = u°T - ST(st') - (st)" - SnA ® STB- SA Q@ n'TB

Now consider the following diagram:

TB STA® n'T
sa @18 MBI, sr4 g1 ARTT, sr4@sTB

s’ l ! l (st)’ 2 l (st)’

S(A ® TB) Sn ST(4 @ TB) S1A®nT) ST(4 ® STB)
l ST(st")
3 4
s | - ST(1") STST(A ® B)
’ J l SAT

ST(A ® B) «———— ST 4 ® B) «————5——S’T*4 ® B)
Su w'T

1 commutes by Lemma 1.1 of Kock (1970); 2 commutes by naturality of t'; 3
commutes since Sy - ST(t")- Sn = Su- SpT-(t") = S(t). 4 commutes since
wT?  SAT - ST(st") ST(A® n'T) = w'T?- SAT - STy'T - ST(t")
=u'T? Sy’'T?- ST(t") = ST(").
So S(t")-s" = Su-p'T?- SAT - ST(st") - (st) * STA® n'TB- Sy, ® TB.

Now since 7 is commutative we have

ioT(s')y 1" = ST ST(st')-(st)" - SnA @ STB-SA ® n'TB

= uT- ST(st") - st' - SnA ® STB-SA ® n'TB
= S(t") 5.

Hence A is commutative.

THEOREM 2.6. If &% and  are commutative ¥ -monads in ¥ then ST
is commutative if and only if 1 is a commutative distributive law.
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3. The closed lifting

The main purpose of this section is to show that the adjunction FF U:
¥'T = ¥°5T which generates .% in ¥"7 is closed, i.e., F and U are closed functors
and &: FU — 1 and 5: 1 - UF = § are closed natural transformations if %, 7
and A are commutative.

We recall some notation and definitions from Kock (1971). In that paper
Kock showed that the algebras for a commutative monad -7 = (T, 5, ) had a
canonical structure as a closed monad. He defines the map 6,: T¥ (A, B) »¥ (A, T
(called 4 in Kock (1971). This map turns out to be the map corresponding to

t T(ev)
TY (A, B)®A—> T(¥(A,B) ® A)——>TB
under the adjunction — ® A+ ¥ (A4, — ). Using this he constructs the closed
structure on ¥ 7 as follows:

To give the internal hom functor of ¥ 7, let A = (4,a) and B = (B,b)
be objects of ¥ 7. Then an object (¥"7(4, B),{a.b}) is constructed as follows.
Let the following diagram be a chosen equalizer in ¥~

ur T . ¥(TA,b)
_—

¥ (4, B) — #7(A,B) = (TA;/T(f)B) — ¥(TA,B).

Define the structure {a, b) by commutativity of the diagram

T
T (A, By " (v (4, By

o

{a, b ¥ (A, TB)

] | 7
¥ T(A, B) —U-> ¥(A4, B)

If B: B— B’ and «: A" — A are morphisms in ¥'7, we define ¥ *(«, #) by com-
mutativity of the diagram

R
¥ 1(4, B)——> ¥ (A, B)
¥ o, p) l i ¥ a, f)
¥ 1A, B)—)“/(A B

For base object /in ¥" take [ = (T, ). The isomorphism i, is constructed by
commutivity of
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; T
A—A ¥ A)—=> ¥(T1,TA)

iAl lf"(l.a)

.
¥ (I A) U > ¥ (TI, A)

The morphism j is constructed by commutivity of

T(j o7 .
S DAL LA (4, TA)

Ja l l ¥ (1, a)

)
YT A) v > ¥ (4, A)

Finally L4z is constructed by commutivity of

T

185

A ~

L ac l L l ¥ (U, 1)

. o o uT oyt
¥ 1(¥ T(4,B), 7"’(A,C))g——> ¥ (Y (A, B),¥ "(A,C))—(-—g

¥4 (4, B),¥ (A, C)

We also follow Kock in the following convention. When we want to show
that two expressions are equal we shall write down a string of equations giving
the result; the equality signs carry explanations: a 6 on top of the equality sign
means: ‘‘by naturality of 6.”> A ‘T’ means ‘‘by naturality of T,”" a ‘d’ means

by properties of distributive laws,”* a ‘D’ means ‘‘by definition,”” and a ‘U™’

means “‘by the equalizing property of UT.”” A number (3.2) refers to that lemma

and a * means “‘will be explained after the equation.”’

ProPOSITION 3.1. If ¢: -7 — & is a ¥"-monad map between commutative

monads then ¥?: ¥ 5 » ¥ Uis a closed functor.

Proof. Define V¢: V(7 5(4.B)) - ¥ T(V*(4).V*B)) by UT- V¢ = US>,

This is well-defined since
Ya-¢,B) US = ¥(¢$,B) ¥ (a,B) US L ¥ (§,B) ¥ (S4,b)- S U’

LY (TA,b)-¥($,SB)-S-US L ¥ (TA,b)- ¥ (TA,¢)- T - US.

That V? is an T-algebra map follows from:
UT- P (a, b5 ¢ 2 US-(a,bdS o 2 ¥(4,b)- 65 ¢ TU®

]

2 UT (VP4 VOB - TV
Here * follows from 1.4 of Kock (1971).
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Now define V¢: (T1,pu,) » V*(S1,u,) by V% = ¢,. This is clearly a T-

algebra map.

Axiom CF1 says that the diagram

V(i _
VoSt u) LB yecrs i, y

V0¢ T l [74’
(T1, ) —I=s ¥ T(VOA), V()

should commute. Now UT- V*-V9(j)- V¢ 2 US-j- ¢, = ¥(1,a)- 65~ Sj- ¢,

4 Y (La)-0%-¢-T(j) 2 v(,a)- ¥ (A, $)- 07 - T(j) = UT-j. Here * follows
from 1.4 of Kock (1971). So we get CF1.

Axiom CF2 says that the diagram

- ¢ . -
VO S(Sy, 1), A) —> #TVHST, ) VO A)
T Vo) l VI(VE Vg d)

Vé(A, a) ————3 ¥ T(T1, p), Vd(A, a))

should commute. Now U” - ¥ T(Vg Ve(A)) - V- Vo) 2 ¥(p1,A4) - US- 7 2
Y(Pl, A) - ¥(S1, a)- S+ i £ ¥(T1, a) - V(pl, SA) - S - i & ¥(T1,a) -
= ¥ ($p1,A) - ¥(St,a)- S - i Y(Tl,a) - V($1,S4) - S-i & ¥(TlLa
AT, ¢A)- T-i 2 UT-i. So we get CF2.

Axiom CF3 says that the diagram
_ . Vo(L)
v(rs(8,0n 2

— V(¥
% |

“S(¥75(A, B),? 5(4, C)) Ve

O

¥ T(Vey S(4, B), V¥

y/'T(
L . PN Bl 248 )
FTWOB,VHC) 5 ¥ T TV A, VO B), Y T(VO 4, Vo B

¥ IV S(4, B), v T(V?.

should commute. Now ¥°(1,UT).- UT- ¥ T(V*,1)- L- V* £ ¥ (V?,V(4, )
cy (L, UTY-UT-L- V* 29 (V?,V(4,0))- ¥ (UT,V(4,C)) - I* - UT- P?

Ly Us, ¥4, 0L USZy (L, US - US-vo(D) 2 »(L,LUS) - UT- P?- v¥(I)
2 yT-¥T(1, P?)- P* - v¥(T). So we get CF3.

Hence V¢ is a closed functor.
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LEMMA 3.2. If Ais commutative then (a) ¥ (TA,2) - T: Hf’,, = B}SA,TB - S(T)
and (b) ¥(SA,2) - 05455 T(S) = S 0 5.

Proor. (a) Under the adjunction between — ® T4 and ¥(TA4, —) the
left hand side of the equation correspond to the counterlockwise direction around
the diagram below:

S¥(4,B)® T4 ~ S(Y(4,B) ® TA)

\t"
3
6 ® 1 { T(SY(A,B) ® A) 4 S(1")
T(0 ® 1)1‘ 3 T(s")
¥(4,5B)® TA 5 T(V(4,5B)® 4) TS(¥(4,B) ® A)5 ST(*(4,B) ® 4)
T®1 2 T(ev) l l ST(ev)
TS(ev) . 5
v ev : A
¥(TA,TSB)® TA - TSB — STB

| and 5 commute by naturality; 2 commutes since both legs correspond to T
under adjunction (see Kock (1970); 3 commutes by Lemma 1.2 of Kock (1971);
and 4 commutes by commutativity of 1.

Now ST(ev): S(t')-s” = S(ev) S(T® 1) s’ (see 2 above)

= S(ev) - s' - S(Typ) ® TA (naturality)

et 0®1-S(Typ) ® TA(Lemma 1.2 of Kock (1971)).

Hence A ev Ty ® 1 - 0@ 1 =ev-0@1-S(T,s) ®1. So by the ad-
junction we get the result.

(b) By the adjunction of — ® SA4 with ¥ (SA4, — ) we get that the left hand

side of the equation corresponds to ev- ¥(S4,45) ® 16" ® 1-T(S,5) ® 1
= ig- T(ev) - T(S4p ® 1) t'. Now consider the following diagram.

YA @ s4) LS8N

Il

T¥(A.B) ® SA

T(¥(SA, SB) ® SA)

") l 3 T(ev)

S(TY(A,B) ® A) TS(¥(A4,B) ® A) T S(ev) TSB

l I
07T ® 1 S(0T ® 1)1 w‘) l ; 4 l 2
> ST(ev)

S(* (A, TBY® A) ST(¥(A,B) ® A) STB

6 Stev) ev

"

N

S®1

Y (A, TB) ® SA) ¥ (SA,STB) ® SA
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1 and 4 commute by naturality; 2 commutes since A is commutative; 6 commutes
since both legs corresponds to S under the adjunction; 3 is just T applied to 6;
finally 5 commutes since it is S applied to a commutative diagram (the diagram
commutes by Lemma 1.2 of Kock (1971). So we get the desired result.

THEOREM 3.3. Suppose £, 7 and A are all commutative, then F+ U:
¥ T o 5T i closed.

PrOOF. Let A = (4,a) B = (B,b) be 7 -algebras. Then F(A4,a) = (SA, Sa
“ Wy 4+ SA). We must show that there exists a natural transformation F:F¥"7(4, B)
- ¥"SY(FA, FB) and a map F,: (ST1,u;T) ~ F(T1,u,) which satisfy CF1, CF2,
CF3 of Eilenberg and Kelly (1966). To define F it suffices to find a map
F:SYT(4,B) —» ¥ ST(FA,FB) which is an ¥7 -algebra map. But to define a
map into ¥ ST(F 4, F B) it suffices to define a map into #(SA4, SB) which equalize
the following diagram.
ST yv(sTs4,sTSB)~
¥(Sa - tr, SEH—)

(—,8b-prg-SA)
S 7 (STSA, SB)

¥(SA, SB)

Now define F = ¥(—,u')-S-0% SUT. To show that F equalizes the above
diagram consider diagram 1. Each subdiagram commutes either by Lemma 3.2,
¥ -naturality, or the definition of the maps involved. Using a similar diagram
one can show that V(Sa - pjy- S, — ) F=¥(—, 1) S-¥ (% —) ¥ (—,u)
-§-0-S:¥(a,B). Hence there exists a unique £: S¥'7(4, B) —» ¥ ST(FA,FB)
such that UST- F = ¥ (—,u')-S-0%-SU".

To show that £ is an .#.7 -algebra map it suffices to show that UST- £
- S(a, bdT) - uyp - S = UST - (F(a), F(b))ST - ST(F). Consider diagram 2.

1 and 2 commute by Lemmas 1.4 and 1.5 of Kock (1971); 3 commutes by
Lemma 3.2 above; 4 commutes since .¥ is commutative monad (Kock (1971));
5 commutes since / is a distributive law; 6 and 7 commute by properties of monads;
everything else commutes by naturality. So diagram 2 commutes. Hence F is a
ST-algebra map.

It is clear that F is natural. Now define F, = id. To verify CF1, CF2, CF3
we proceed as follows: For CF1 we need to show that j= = F+ F(j). To do this it
suffices to show that UST - j = UST - £ F(j). But

USTj 2 % (—,Sa-pj,- SA)- 05T~ ST(j) and UST- F- F(j)
Doy, ) S-65-SUT-F() 2 ¥ (=, 1)-5-05-S¥(—, a)- SO+ ST(j)
2 Y(SA,u')- 65 S(S) - S¥(A,a)- SOT - STj = ¥ (S4, 1) - 6°

- S¥(SA,Sa) - S(S)- SOT - STj ¥? ¥ (SA4,1’) - 65 - S¥(SA, Sa)
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K%

- SY(SA,4)- SO0+ ST(S)- STj = ¥ (SA,Sa)- ¥ (SA, i},
- ¥(SA,S2) - 05 SOT- STj 2 UST],

Here * follows from the commutativity of " and ** follows easily from Lemma 1.4

of Kock (1971) and naturality.
CF2 says that the diagram

F(7 (1. A)) LR ¥ ST(FI, FA)

v

i
F(A,a)
should commute. We have

UST- B Fi 2 9y (ST L)) S+ 0% S+ (T1,a)- S(T)- Siy = ¥ (ST, 1)
S/ (T1,Sa)-05-S(T) - Siy 2 ¥ (ST1,Sa)- ¥ (ST1, yiy,)
§-0%- S(T)- S(i) 2* Y(ST1,Sa) ¥ (ST1, 1}, S
¥ (T1,/) T 05-Si =7(STI, Sa- uy,)
AT, Siy) S Trige 2 UST- |,
So we have CF2.
CF3 says that the diagram:

O 2N Ey 1 T, By, v A, 0)) > YSTFyT(d, B), F¥'T(4,C))

l ¥, F)

oot

oL YTSTE o
3,FC) > v5T(y SN(FA,FB), v ”(FA,FC))—{—)> ¥ SNV (A, B),¥ ST (FA, FC))

commutes. We have

P~ USTY-UST -y ST ) L F2 Y (F 1) (LUSTY - L F

le

Y(ED - WS -2 UST- PR SUST (S, 1) P4 S SUST
FASUAT), 1y -7 (1,8)- $-SL-SUST 2 v(1,8) - v (1,1)- S - 05

il »

CSY (=, UST) - S(UST) - S(L) 2 771, UST) - UST -y ST(1, £) - £+ F(L)
vhere equation * follows from Lemma 3.2 of Kock (1971)and S = V(1,u’)- S 65.

That U is a closed functor follows from Proposition 3.1 since it arises from
he monad map n'T: T — ST.
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To show #: | — UF is a closed natural transformation we must verify
CN1 and CN2 of Eilenberg and Kelly (1966). CN1 says that #, = (UF)°.
But (UF)° = U(F°) - U2 U(id) - 93y = #,.

CN2 says that the following diagram should commute

AT ~
¥ T(4, B) Y Ry T

] l T ¥ (5. 1)

. - UF R . .
UFy'1(4, B) _(_3) U¥ ST(FA,FB) —0-> ¥ WUFA.UFB)

But this follows easily from the fact that n': 1 — S is a closed natural transfor-
mation (see Kock 1971).

To show that &: FU — | is a closed natural transformation we first of all
verify CN1 which says ¢, - (FU)° = (ST1, u,). But ¢, - (FU) 2 g - F(U%) "+ F°
2 ST . SuST-w'ST=p'T- S*u+ SAT- SyST - n’'ST L 'T- S*u - S*qT- n'ST
L W'T-w'ST L (ST1,1,). So CN1 holds.

CN2 says that

- = F(U r _ F -
i‘Ui/'ST(A,B)-—(—-)> F¥ "(UA,UB) —> ¥"(FUA, FUB)
£ lV *T(1,¢)
¥ S1(4, B) > ¥ *I(FUA, B)

1/‘ST(8, 1)

should commute. Now

UST - y73T(1, ) F- F(O) 2 ¥'(SA, b) - ¥ (SA, Sng) - ¥ (SA, 1) - S - 05 - S(UST)
¥'(SA,b) - ¥ (SA, tipg) - ¥(SA,S2n) - S - 65 - S(UST)

¥ (SA,b) - ¥ (SA, tg) - S ¥ (A, Sng) - 65 - S(UST)

¥(SA,b) - ¥ (SA, ilyg) - ¥ (SA, S*pp) - ¥ (SA, SATB) - ¥(SA, SySTB)

ltm  {i=

I+

S ¥(A4,Sny) - 05 S(USTY ¥ »7(SA4,b) - ¥(SA, u5T) * ¥ (Sn,, STSTB)
ST - ¥(A, Sng) - 05 - S(UST) & ¥°(SA,b) - ¥ (Sn, STB) - ¥ (STA, ui°")
. ST - ¥(A, Snp) - 05 S(UST) "2° ¥'(Sn,, B) - V(STA, b) - ¥(STA, u°T)
ST - 057 Snyam  S(UST) = ¥ (Sn,, B) - ¥(STA,b) - ¥(STA, ST(b))
ST 057 Snyiap S(UST) & ¥(Sn,,B)- ¥(STA,b)- ST

¥ (A4, 6) 05T - Snyq gy S(UST) 2 UST- #75T(g, 1) - e.
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Here * follows from the fact that S’ug- SATB - SySTB = S%uz- S*nTB =1,
and ** follows from the fact that b is an %7 -algebra structure and so b - u5T
= b - ST(b). So CN2 holds. Therefore ¢ is a closed natural transformation.

COROLLARY 3.4. S, the lifted monad in ¥, has a canonical closed monad
structure if &, 7 and A are commutative.

4. Two examples

1. A monoid in ¥ "is an object M of ¥~ together with maps e: I - M and
mMRM-o-M satisfying (1) m M@m=m-mOM Q) m M @Pe
=m-e®M =M. If M is a monoid in ¥~ then we can form a ¥ -monad
M =(— ® M,n, 1) where n and p are obvious. If & = (S,n’,u’) is any ¥"-
monad in ¥~ then the map s': SA @ M — S(4 ® M) form the components of a
/ -distributive law. By Proposition 1.5 of Kock (1970) this distributive law is
always commutative.

2. A comonoid in ¥~ is an object C of ¥~ together with the maps e: C — I
and 0:C>C®C suchthat 0® C-d=C®d-dand eRC-d=CR®¢e-6=C.
It is clear that the ¥ -functor ¥ (C, —): ¥" — ¥  can be given the structure of a
/ -monad in an obvious way using ¢ and 8. Now if T = (T, 5, p) is any ¥"-monad
in ¥°, then the map 67 _: T¥(C, ) - ¥(C,T( )) can be easily shown to be
a Y/ -distributive law using Lemmas 1.4, 1.6 and 1.7 of Kock (1971). We claim
that this ¥ -distributive law is always commutative.

LEMMA 41 1 ®@ev-a=ev's"®C: (ARY(C,B))®C » A® B where
st A® Y(C,B) > 7(C,A ® B) is the canonical map.

Proof. Consider the following diagram:

(fR)®I
,B)HeC — (Y (B,A®B) 7 (C,BH®C
a L)l
! 4
V(B,A® B)® (¥ (C,B) ® () [ ((C,B),Y (C,LA®B)® Y (C,B)]®C
M®I1
I ® ev , w® 1
f(BLA®B)® B /(C,LA® B)® C
/U or
) ev
(C,B®0) oo A®B

https://doi.org/10.1017/51446788700029487 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700029487

192 Harvey Wolff [13]

1 commutes by naturality; 2 commutes since f @ 1 | Qev=1Q ev-f®
(1 ®1) and evg 408 f4 ® B= A ® B; 3 commutes by Lemma 1.3 of Kock
(1970) page 3; 4 commutes by definition of M (M is the composition of ¥7),

PROPOSITION 4.2. 0 is a commutative distributive law.

Proor. Consider the following diagram:

TA® ev

[TARY(C,B]®C STA® (Y(C,B)® C) »yTA® B
’ 'l
rel 1 2
(4 ® (V(C,B)® ()
\ . T(a)
A 7 - Y '
[T(A® Y(C,BY]® C TUA® Y (C,B) ® ) T(1 ® ev) t
T(s") ® 1| 4 e b J( 3
v T (Y (C,LA® B)® () T(ev)
. el . ev J
T/ (CLA®B®C ——7(C,TA®B)®C » T(A ® B)

1 commutes by Proposition 1.5 of Kock (1970); 2 and 4 commute by naturality
of t’; 3 commutes by the lemma; and 5 commutes by Lemma 1.2 of Kock (1971).)
Note that the counterclock way around the diagram corresponds to 8- T(s )-t’
under the usual adjunction.

Now consider the following diagram.

, . s"®C Gy
[TA® ¥(C,B)]® C———— ¥ (C,TA® B ® C ————>5 ¥(C,T(4® B)

S

TA® (Y (C,B) ® C) > TA® B > T(A ® B)
1 ® er t

| commutes by the lemma and 2 commutes by naturality of ev. Since the clockwise
direction corresponds to ¥ (C,t') - s” we get that § is commutative.
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{14]

@s‘—)«

@S VSLS) A «——== (GLS‘VSIS) A <—"— (gL,S‘VSLS).A

1 wesdeiq

A\l $ = V\X\

A L.
U8 DA o rsvsISIA

\ \
A\ln - v.\k\ \AﬁNm. - v\ﬁ\
(.S ‘VSLS).A
\ S S
S
. (v - . .
@S ‘VSL) A <— @S % (4LS‘VSI)A <L TA )£ (4SL‘VSL)A A|||F (84S °'¥S) .~
A ”
(— VA (— VA
(L7 =) A (ML =)A ("
. ‘ (SY* = )A . ‘
@s v.LS)A _— @SLS VSL) A < (E,SLVSL)A < (€5 VS)4
i é — )4 S A
(-4 (g.LS VIS)A (gL, SVSL)A (=4 S
(= A
(ESLSVLS)Ap < ([ESLVLL4 < @SV«
(G,SVLIS)A i A
\ s -z ¥ VLA
S ’
@Esvi). S#m,ﬁmv\\rﬂll (LIS VI)A - 0
S — /
] gs” — )4 ]
(g VI)AS< @V 4S (gL Ev\»wglﬁ V) AS
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7 weideiq

M~ ) 4

(S ‘VS).A G A (g.SvS). R (gS‘v) % m (g V) «S

.
(9.8 =)« (98" — (g =) 2§
9s‘ -
: (=) . ‘ .

(918 ww:AINI» A wm:AIw] (LS V). # V) 4S

(=) & (MS*—) ¢ (=) 108
9 2
(S, — ) ¢ . ] L
FL S VA2 2F (4.L:S meAlmlat SV« (V) sLS =z
Cre—)« % <0 I w
. (1S = )4 , 0 h , .2
FLSVSOIAN<SE— L SVS)t<—"(91,S wmimA@mI (LS V). BAﬂas Ervﬂ (V) sL:S  §
\ s & 3
<0 (vS* = )48 £
(dLS ‘VS).AS (GS.LS ‘¥S). AS (v* = )48 2
S (s)s w
—)AS (SY*—).£8 l 7S S
) : ( VS).A (GSLV). 2
(gSLVS).AS TL =) AS 4.S.LVS)AS i gS.L‘V).AS :
208 108 108 =
(@s‘vS).ALS (T )VALS (E:SVS)ALS vy @S V)ALS VIS (dV)ASLS w
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