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Why fast magnetic reconnection is so prevalent
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Evolving magnetic fields are shown to generically reach a state of fast magnetic
reconnection in which magnetic field line connections change and magnetic energy is
released at an Alfvénic rate. This occurs even in plasmas with zero resistivity; only
the finiteness of the mass of the lightest charged particle, an electron, is required.
The speed and prevalence of Alfvénic or fast magnetic reconnection imply that its
cause must be contained within the ideal evolution equation for magnetic fields,
∂B/∂t = ∇ × (u × B), where u(x, t) is the velocity of the magnetic field lines.
For a generic u(x, t), neighbouring magnetic field lines develop a separation that
increases exponentially, as eσ(`,t) with ` the distance along a line. This exponentially
enhances the sensitivity of the evolution to non-ideal effects. An analogous effect, the
importance of stirring to produce a large-scale flow and enhance mixing, has been
recognized by cooks through many millennia, but the importance of the large-scale
flow u to reconnection is customarily ignored. In part this is due to the sixty-year
focus of recognition theory on two-coordinate models, which eliminate the exponential
enhancement that is generic with three coordinates. A simple three-coordinate model
is developed, which could be used to address many unanswered questions.
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1. Introduction
An evolving magnetic field that is embedded in a highly conducting plasma

generically undergoes fast magnetic reconnections, which means with a reconnection
speed determined not by resistive but by Alfvénic effects (Comisso & Bhattacharjee
2016; Loureiro & Uzdensky 2016; Zweibel & Yamada 2016). Reconnection at a
speed of a tenth of the Alfvén speed is common in both observations and experiments
(Comisso & Bhattacharjee 2016). Since fast reconnection is both prevalent and fast
compared to resistive time scales, its cause must be within the ideal evolution of
magnetic fields, and this will be shown to be true. Fast magnetic reconnection is a
quasi-ideal process with a conservation law, helicity conservation, which does not
hold on a resistive time scale (Boozer 2017).

The properties of three-dimensional reconnection presented here are direct
consequences of Maxwell’s equations and standard mathematics. Nevertheless, their
unconventionality makes acceptance difficult. For sixty years, reconnection has been
viewed as essentially a two-dimensional process even in three-dimensional space
(Comisso & Bhattacharjee 2016; Loureiro & Uzdensky 2016; Zweibel & Yamada
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2 A. H. Boozer

2016). The prevalence of fast magnetic reconnection is recognized, but the reason has
not been a focus of research. Two-coordinate models can explain how reconnection
can be fast but not why fast reconnection is so prevalent. The easiest way to avoid
an unconventional conclusion is to not take the time to understand the derivation. To
minimize that reason for avoidance, the most important derivations are placed in §§ 1
and 2 and are self-contained.

Two-coordinate systems do not naturally evolve from smooth to rapidly reconnecting
states. Fast reconnection is possible in two-coordinate systems in which the initial
state is singular – a state that could not naturally arise. A Harris (1962) sheet is a
common example of such a non-realizable state (Boozer 2014). Another is magnetic
flux ropes in which the magnetic field is strong throughout the rope but zero outside,
which violates the requirement that the magnetic field not only be a continuous but
also a differentiable function of position to satisfy Maxwell’s equations.

Three-coordinate models explain why magnetic reconnection is both fast and
generic. Nature is three-dimensional, so two-coordinate models can only be an
approximation. Three-dimensional theory is required to understand the range of
validity of two-coordinate approximations.

Reconnection in this paper is defined as the changing of the connections of
magnetic field lines. Consequently, there is no reconnection when a magnetic field
evolves as if it were embedded in a perfectly conducting fluid moving with a velocity
u. In this definition, the motion of magnetic field lines relative to a plasma in which
they are embedded need not imply reconnection.

Magnetic reconnection is sometimes defined as the breaking of the ideal constraint
between plasma and magnetic field line motions. For example, Eyink (2015) defined
magnetic reconnection by the breaking ‘of magnetic connections between plasma
elements’. With this definition, fluid turbulence can enhance reconnection (Eyink,
Lazarian & Vishniac 2011) in a way that is not possible within the definition used in
this paper. One might note that the Eyink definition implies that a time-independent
magnetic field in a stellarator is reconnecting as the plasma diffuses across it.

Boozer (2004) noted that the evolution of a magnetic field that is embedded in a
perfectly conducting fluid obeys two distinct conservation laws: (i) the ideal evolution
of B, and (ii) the tying of the magnetic field lines to the fluid. Only the breaking of
the first of these two conservation laws is relevant to reconnection as defined in this
paper, and this conservation law holds far more accurately in tokamak experiments
than the second, appendix A. As will be seen, plasma turbulence can enhance the
breaking of magnetic connections, but as explained in § 2.1, the effect is intrinsically
weaker than non-symmetric effects with a long spatial scale across the magnetic field
lines.

The evolution of a magnetic field is determined by the electric field, ∂B/∂t=−∇×
E. The magnetic field evolution is by definition ideal wherever the electric field can
be written in the form

E+ u×B=−∇Φ, (1.1)

with u(x, t), the magnetic field line velocity, and Φ(x, t) well-behaved functions of
position. Newcomb (1958) gave a proof that u is the velocity of the magnetic field
lines; Boozer (2010) gave a much simpler proof. The component of u along B has no
role in reconnection theory and will be assumed to be zero to simplify the discussion.

Equation (1.1) implies an anti-reconnection theorem, which was first recognized by
Newcomb (1958). The proof of the theorem is obvious – any vector E(x, t), can be
represented locally in the form of (1.1). Let Φ be a solution to B · ∇Φ = −B · E,
or equivalently dΦ/d`=−E||, where d` is the differential distance along a magnetic
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Why fast magnetic reconnection is so prevalent 3

field line. Define u so u = (E + ∇Φ) × B/B2. This anti-reconnection theorem led
Greene (1993) to the conclusion that (1.1) ‘is purely geometrical, and has no physical
content’. The magnetic field line velocity u(x, t) is subtle but does have important
physical implications. The subtlety is in the freedom of choice of the variation of Φ
across the magnetic field lines at `= 0 when integrating dΦ/d`=−E||. Magnetic field
lines are given by a Hamiltonian, and the freedom of canonical transformations of the
Hamiltonian is equivalent to the freedom in Φ at `= 0 (Boozer 2004).

The separation of the velocity u of the magnetic field lines from the velocity v of
the plasma and the anti-reconnection theorem remain important in relativistic theory,
appendix B.

Equation (1.1) implies that magnetic reconnection requires Φ or u be ill behaved.
As noted by Greene (1993), this is true at nulls of B. Nevertheless, it is difficult
to understand how magnetic field nulls can explain why natural magnetic fields
generically evolve into states in which fast magnetic reconnection occurs. As shown
in appendix C.2, field nulls are (i) generically spatially rare, and (ii) a magnetic field
line that intercepts one null does not generally intercept other nearby nulls. A field
line intercepting two nulls is a more singular situation than a line intercepting only
a single null. An ideal evolution without a null cannot produce a null, § 2.3. As
shown by Boozer (2010), in a generic evolution nulls can only be produced in pairs
and only at discrete space–time points. Field nulls are clearly not required for a fast
reconnection because fast magnetic reconnections are observed in tokamak plasmas,
which have no magnetic nulls.

Magnetic reconnection can also occur when a well-behaved solution to dΦ/d` =
−E|| does not exist because of boundary conditions on the electric field. This can
occur when the field lines intercept perfect conductors, or essentially equivalently
when Φ must obey periodicity conditions as in toroidal plasmas. Such boundary
or periodicity conditions are trivially satisfied when E|| = 0, so a non-zero E|| is a
necessary condition for reconnection.

A remarkable feature of three-coordinate models is that as a magnetic field
undergoes an ideal evolution, which means (1.1) is satisfied exactly, the sensitivity
of field line connections to E|| increases exponentially, as eσ . This is due to the
exponentially increasing separation of neighbouring field lines, as eσ(`,t), with distance
` along a line. An arbitrarily small E|| can produce an Alfvén speed reconnection
on the overall scale of the system. This has an analogy in the mixing of fluids.
Exponential separation of fluid elements in time explains the effectiveness of stirring
for the intermixing of fluids, such as the stirring of cream in coffee. As explained
in § 2.1, exponentiation in fluid mixing requires only two spatial coordinates but in
magnetic reconnection requires three spatial coordinates.

The time required for an initial magnetic field to arrive at adequate exponential
sensitivity defines the trigger time for a fast reconnection. Once reconnection occurs,
an Alfvénic relaxation is required before the system can re-establish a quasi-static
force balance no matter how slow or weak the external drive for the magnetic field
evolution may be, § 2.5. The anti-reconnection theorem, which follows from (1.1),
implies the specific location of the reconnection event does not generally have a
unique definition. The analogy to the trigger time in the mixing of cream into coffee
is the time required for the streamers of cream to become sufficiently thin that
molecular diffusion can intermix the cream and coffee on a molecular level.

No matter how slow the external forcing of an ideally evolving magnetic field
may be, energy can be accumulated in the magnetic field. Much of that energy
is released on a Alfvénic time scale when the exponentiation becomes sufficiently
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great to trigger a fast magnetic reconnection. As discussed in Boozer (2017), a fast
magnetic reconnection conserves magnetic helicity, which implies the full energy
stored in the field cannot be released – only that associated with |∇( j||/B)| (Woltjer
1958). Equation (3.34) shows that when magnetic field lines with different j||/B are
connected, a Lorentz force f = j × B is exerted on the plasma. When dissipation is
small, this force is balanced by the plasma inertia, ρ dv/dt and the energy released
by the relaxation of |∇( j||/B)| goes into Alfvén waves. The damping of these waves
transfers the energy to the plasma. This process is discussed in §§ 3 and 4.

In three dimensions, unlike in two, the magnetic energy density B2/2µ0 need not
become large to obtain an arbitrarily large exponential increase when neighbouring
magnetic field lines separate exponentially. Consequently, there is no natural tendency
for the back reaction of the system to suppress this exponentiation. This is unlike
the situation discussed by Cattaneo & Hughes (1996) in connection with the theory
of dynamos. This is like the stirring of cream into coffee in which there is no back
reaction that impedes the formation of narrow streamers of cream.

Section 3.8 shows the computational difficulty of studying reconnection in three
spatial dimensions increases as e5σ . This appears to limit direct simulations to σmax≈

10, which is consistent with a σ ≈ 8 required to understand fast reconnection in fusion
plasmas but much smaller than σ ≈20 required to understand reconnection in the solar
corona. Simulations using modest values of σ must be sufficiently well understood to
devise extrapolations or reliable approximations.

The computational difficulty of studying fast reconnection is sufficiently great
that simplified models are required. Because exponentiation is an effect of critical
importance and dominant, a simplified model, such as the one given in § 3, can
answer many of the most important questions, § 4.

Models related to the model of § 3 could be used to directly study reconnection in
the solar corona, § C.3, although the required number of exponentiations σ ≈ 20 is too
large for complete realism in a simulation. Such models would predict the energy of
electrons in the corona and the height of the transition region to the corona. The short
scale height of the plasma density below the transition region, ∼100 km, implies that
there are too few electrons to carry the current required by a quasi-ideal magnetic
evolution even at a height far below the scale of magnetic phenomena on the Sun,
∼104 km. Without a corona, the electron density would drop over 1043 times over
a radial scale of 104 km. Electrons runaway to whatever energy is required to carry
the current, which gives a corona. This occurs where the mean free path of electrons,
λmfp, times parallel electric field becomes comparable to the local electron temperature,
λmfpeE|| ∼ Te, where E|| = ηj||. The requirement for a corona was shown in Boozer
(1999) and discussed on page 1092 of Boozer (2004).

The fast-reconnection mechanism explained in this paper is a clear implication of
Maxwell’s equations. A different mechanism could break the ideal evolution before
the exponential sensitivity to E|| does. Having a definite three-coordinate model, such
as the one presented in § 3, allows one to explore under what conditions the standard
two-coordinate models are an adequate approximation.

2. Ideal magnetic evolution
2.1. Exponentiation and reconnection

Magnetic field lines are defined by dx/d`= b̂(x), where b̂≡ B/|B| is the unit vector
and ` is the distance along the magnetic field. The position of a second field line
is x+ δ. By definition a neighbouring line satisfies |δ|→ 0. For a neighbouring line,
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dδ/d`= (δ · ∇)b̂. This linear equation for δ holds as long as |δ|<< ac, where ac is
the characteristic spatial scale within which the linear term in a Taylor expansion of
b̂ dominates over the higher-order terms.

A plasma cannot respond to maintain magnetic connectivity on a smaller spatial
scale than c/ωpe set by the inertia of the lightest charged particle, an electron. A non-
ideal parallel electric field is required E|| = (me/e2)d( j||/ne)/dt to accelerate electrons
of number density ne to carry the required current j|| along the magnetic field lines;
(c/ωpe)

2
≡me/(µ0nee2). In a force-free magnetic field, ∇×B=µ0 j

||
, so when electron

inertia is the only correction to the ideal evolution,

∂

∂t

(
B−

(
c
ωpe

)2

∇
2B

)
=∇× (u×B). (2.1)

The ∇2B term smears out the location of the magnetic field over a scale c/ωpe. This
smearing effect is seen when the right-hand side of (2.1) is replaced by resistive
diffusion (η/µ0)∇

2B, and the equation solved with B= B(t) sin(kx)ẑ. The solution is
B(t)= B0e−νt with ν = (η/µ0)k2/(1+ (c/ωpe)

2k2). Magnetic field lines that are within
a distance of c/ωpe of each other at one location along their trajectories can reconnect
freely even if they are separated by a distance up to ac at some other trajectory
location.

When the initial magnetic field is a constant, B0ẑ0, a flux tube of circular
cross-section contains flux πB0δ

2
0 , which remains fixed during an ideal evolution.

In the limit δ0→ 0, the tube evolves into an elliptical cross-section with major and
minor radii δmaj and δmin but with the same flux, πBδmajδmin = πB0δ

2
0 . The major

radius grows as δmaj = δ0eσ(`,t) with time and distance along the tube, where σ is a
Lyapunov exponent associated with the flow u. A precise definition of σ is given in
§ 2.3. The minor radius must shrink as δmin= (B0/B)δ0e−σ(`,t). When the initial radius
δ0 is made finite, the major radius can become larger than the characteristic spatial
scale ac. When δmaj becomes greater than ac, the flux tube deforms into an extremely
complicated shape and the maximum distance between points in a cross-section of the
flux tube increases only as ` to a power, which is the case considered by Rechester &
Rosenbluth (1978). For this reason, short wavelength plasma turbulence intrinsically
produces a less dramatic increase in the reconnection rate than the exponential
increase caused by variations in the field of longer wavelength. For spatial scales
a< ac, fast magnetic reconnection can occur over the scale a when the change in the
exponentiation along a magnetic field line δσ satisfies δσ ∼ ln(a/(c/ωpe)).

The transition in the form of the separation of magnetic field lines from exponential
when δmaj<ac to a power-law, `α, is complicated. Analogous issues arise in the mixing
of fluids and its practical applications – even stirring cream in coffee. Two articles
in the Reviews of Modern Physics help clarify the issues. The limit corresponding
to δmaj < ac is the advective or stirring limit for fluids and the opposite limit is the
mixing or turbulent limit. Both reviews consider the two limits. The earlier review
of Falkovich, Gawdcezki & Vergassola (2001) emphasized the turbulent limit and
a recent review by Aref et al. (2017) emphasized the advective limit. Separations
between fluid elements typically increase exponentially with time in the advective
limit but as time to a power in turbulent limit. Different powers of time arise
depending on assumptions. Numerical studies of the field line motion in models
of turbulent magnetic fields were given in Zimbardo et al. (1995). The separation
between neighbouring magnetic field lines were observed to increase as a power law,
`α, with the power depending on the assumptions of the model.
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An important distinction exists between mixing in a two-coordinate model of an
incompressible flow, such as v=∇φ(x, y, t)× ẑ, and reconnection in a two-coordinate
model of the magnetic field, such as B = Bg(ẑ + ∇H(x, y, t) × ẑ), where Bg
is a strong and constant guide field. Both streamlines and magnetic field lines
obey Hamilton’s equations. For streamlines, dx/dt = ∂φ/∂y and dy/dt = −∂φ/∂x.
For magnetic field lines, dx/dz = ∂H/∂y and dy/dz = −∂H/∂x, so dH/dz =
(∂H/∂x)(dx/dz) + (∂H/∂y)(dy/dz) = 0. With only two coordinates, a magnetic field
line must follow a constant-H contour. No such constraint applies to streamlines in a
time-dependent flow. Although a rapid mixing of fluids can occur with time-dependent
stirring in a two-coordinate model, a three-coordinate model is required for the
analogous effect to enhance magnetic reconnection.

In the solar corona, c/ωpe∼ 10 cm, and the radius of the Sun is approximately ten
orders of magnitude greater, R� ≈ 7 × 105 km, so an exponentiation σ ∼ 23 could
be responsible for all observed reconnection events. An even larger σ may arise in
astrophysical reconnection. A much smaller σ is required to explain fast reconnections
in fusion experiments. The minor radius of ITER is a = 2.0 m, and the standard
operating density is 1020 electrons m−3, which makes a/(c/ωpe)= e8.2.

2.2. Ideal form for B(x, t)
A magnetic field B(x, t) maintains a special form, equation (2.8), when it is
undergoing an arbitrary ideal evolution from an initial state B0(x0). This form is
based on the transformation to Lagrangian coordinates, x(x0, t),

dx
dt
≡ u(x, t), (2.2)

with the initial condition x(x0, t0) = x0 and with u(x, t) the velocity in (1.1). When
f (x, t) is an arbitrary function, df /dt≡ ∂f /∂t+ u · ∇f . Since x0 is not changed by the
flow, df /dt= (∂f /∂t)x0 .

The Jacobian matrix of the coordinate transformation x(x0, t) is

J ≡
∂x
∂x0
≡



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂z
∂x0

∂z
∂y0

∂z
∂z0

 . (2.3)

The Jacobian J is the determinant of the Jacobian matrix, J ≡ |J|.
The time derivative of the Jacobian can be derived using an arbitrary volume

moving with the flow, V ≡
∫
J d3x0. This volume changes as dV/dt =

∮
u · da =∫

∇ · ud3x =
∫
∇ · uJ d3x0. Since dV/dt =

∫
(dJ /dt)d3x0 holds for an arbitrary

volume,
dJ
dt
=J∇ · u. (2.4)

In an ideal evolution, ∂B/∂t=∇× (u×B)=−B∇ · u+B · ∇u− u · ∇B, so

d(JB)
dt
= (JB) · ∇u. (2.5)
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The general expression for B · ∇f is apparent from its two-coordinate form

B · ∇f = Bx

(
∂x0

∂x
∂

∂x0
+
∂y0

∂x
∂

∂y0

)
fBy

(
∂x0

∂y
∂

∂x0
+
∂y0

∂y
∂

∂y0

)
f

=
∂f
∂x0
·
∂x0

∂x
·B (2.6)

as is J−1
= ∂x0/∂x. Since u≡ ∂x(x0, t)/∂t, the derivative (∂u/∂x0)t= dJ/dt. Therefore,

equation (2.5) is equivalent to

d(JB)
dt
=

dJ

dt
· J−1
· (JB), (2.7)

which is solved by

B(x, t)=
J

J
·B0(x0), (2.8)

where B0(x0) is the initial, t= t0, magnetic field. Equation (2.8) is given in the review
of reconnection by Zweibel & Yamada (2016). The long history of this equation was
discussed by Stern (1966). Zweibel (1998) used (2.8) to study magnetic reconnection
when there is a stagnation point in the plasma flow. Her analysis is related to that
given in § 2.3 for the effect on reconnection of a generic magnetic field line velocity.

2.3. Ideal B(x, t) and exponentiation
The Jacobian matrix can be written using a singular value decomposition (SVD), as
can any three-by-three matrix with real coefficients,

J = U ·

eσ1 0 0
0 eσ2 0
0 0 eσ3

 · V †, (2.9)

where U and V are orthogonal matrices, U† ·U= 1. Orthogonal matrices give rotations.
This is obvious for a two-by-two orthogonal matrix, which has the general form

U =

(
cos α sin α
−sinα cos α

)
(2.10)

when U goes to the identity matrix as the rotation angle α goes to zero. In an SVD
analysis, the coefficients eσ1 , eσ2 and eσ3 are called singular values and are positive
real numbers. In the theory of dynamical systems, the real numbers σ1−3 are known
as Lyapunov exponents, or more precisely as finite-time Lyapunov exponents.

The dot product of the magnetic field with itself implies

(
J B
B0

)2

= b̂†
0 · V ·

e2σ1 0 0
0 e2σ2 0
0 0 e2σ3

 · V †
· b̂0, (2.11)

where b̂0 =B0/B0 is the unit vector along the initial magnetic field.
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The component of u that is parallel to the magnetic field does not appear in (1.1)
for an ideal evolution and is taken to be zero, which simplifies the analysis, especially
in relativistic theory. With u · B= 0, magnetic flux conservation during the evolution
then implies J B= B0.

Define the transformed unit vector b̂t ≡ V † · b̂0, then

(
J B
B0

)2

= b̂†
t ·

e2σ1 0 0
0 e2σ2 0
0 0 e2σ3

 · b̂t = 1. (2.12)

One of the singular values, which will be taken to be eσ3 , must be unity, and b̂t is
the associated eigenvector. Consequently,

J = U ·

eσ1 0 0
0 eσ2 0
0 0 1

 · V †
; (2.13)

B = U ·

e−σ2 0 0
0 e−σ1 0
0 0 e−(σ1+σ2)

 · V †
·B0; (2.14)

B =
B0

J
= B0e−(σ1+σ2). (2.15)

The magnetic field strength can change in an ideal evolution, but only exponentially,
which is not consistent with the formation of a null where none existed before.

2.4. Ideal evolution of the current density
The parallel-current density, which is the component that is directly involved in
reconnection, generally increases as the magnetic field evolves. The current density
j=∇× (Bb̂)/µ0 = (∇B/µ0)× b̂+ (B/µ0)∇× b̂, so

K ≡
µ0j||

B
(2.16)

= b̂ · ∇× b̂. (2.17)

The unit vector along the evolved magnetic field is b̂ = W · b̂0, where W = U · V †

is also an orthogonal matrix. If the initial magnetic field is B0 = B0ẑ0 in (x0, y0, z0)

Cartesian coordinates then, b̂= sinα cosβ x̂0+ sinα sinβ ŷ0+ cosαẑ0. It is the gradients
of the angles α and β across the magnetic field lines that determine the evolution of
the parallel-current density in an ideal evolution.

In the model for an ideal magnetic evolution, § 3.5, dK/dt= dΩ/d`, where d/dt is
the time derivative in the frame of the magnetic field lines and d/d` is the derivative
along a magnetic field line. Ω is the component of the flow vorticity aligned with
the magnetic field. The evolution in this model is driven by a flow in a perfectly
conducting boundary with Ω (s)

w (t) the flow vorticity at fixed fluid points in the flow
of the boundary. When Ω (s)

w (t) evolves slowly compared to the Alfvén transit time
from one boundary to the other, τA ≡ L/VA, then K(t) = tΩ̄ (s)

w /L, where the time-
averaged vorticity is Ω̄ (s)

w ≡
(∫ t

0 Ω
(s)
w (t

′)dt′
)
/t. Within this model, it is difficult to see
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Why fast magnetic reconnection is so prevalent 9

how a singular current density can be created. Although K characteristically increases
linearly in time, the exponentiation in distance between trajectories σ can become
large. Boozer (2012) found that the maximum possible σ is proportional to K. The
characteristic increase in the exponentiation σ is linear in time in an ideal evolution.

A singular parallel current, called a sheet or delta-function current, can occur in an
ideal evolution on the rational surfaces of topologically toroidal plasmas (Boozer &
Pomphrey 2010). These surfaces on which the magnetic field lines close on themselves
are spatially isolated. It is difficult to imagine an analogue of a surface of perfectly
closed field lines in a naturally occurring magnetic field.

The role of current sheets in fast magnetic reconnection has limitations related to
magnetic field nulls. Both are difficult to produce, both are spatially isolated and
neither is required in order to obtain reconnection at an Alfvénic speed.

2.5. Initiation of reconnection
When a magnetic evolution can be accurately approximated as ideal, both the
sensitivity to the breaking of the ideal constraints and the magnitude of the breaking
increase exponentially until a fast reconnection occurs. The time required to initiate
a fast reconnection is called the trigger time.

Once the fast reconnection starts, the system is taken out of static force balance,
and inertial or viscous forces are required. When force balance is maintained by
inertia, the relaxation is by Alfvén waves. The relaxation can be complicated since
the exponentiation σ can change over the entire system during a relaxation, whichever
is dominant inertia or viscosity. The relaxation can be studied in a simplified model
such as that of § 3.

3. Simple reconnection model
3.1. Model definition

Features of reconnection that arise in magnetic field structures that depend on all three
spatial coordinates can be studied in highly simplified models since many features are
generic. A model will be developed based on reduced magnetohydrodynamics (MHD)
(Kadomtsev & Pogutse 1974; Strauss 1976) in which the magnetic field has the form
(van Ballegooijen 1985; Ng, Lin & Bhattacharjee 2012)

B= Bg(ẑ+∇⊥H × ẑ) (3.1)

in Cartesian coordinates, where Bg is a constant guide field and ∇⊥= x̂∂/∂x+ ŷ∂/∂y.
Van Ballegooijen used the magnetic field of (3.1) to study whether current

singularities would develop but did not directly study magnetic reconnection.
The model system extends from a wall at z = 0 to a wall at z = L with L|∇⊥H|

remaining finite as L→∞. The z= 0 wall is a rigid perfect conductor, but the z= L
wall is a flowing perfect conductor that has a velocity vw=∇⊥φw× ẑ. The guide field
Bg is too strong to be compressed, so the velocity of the plasma that lies in the region
0< z< L can be assumed to have the velocity

v =∇⊥φ × ẑ, (3.2)

where φ(x, y, z = L, t) = φw(x, y, t), which is the streamfunction in the flowing wall.
Energy is put into the system by the moving wall and in steady state must be removed
by dissipation.

https://doi.org/10.1017/S0022377818000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000028


10 A. H. Boozer

In addition to BgH being the ẑ component of the vector potential, H(x, y, z, t) is the
Hamiltonian for the magnetic field lines with t a parameter,

dx
dz
=
∂H
∂y

(3.3)

dy
dz
= −

∂H
∂x
. (3.4)

Magnetic field line trajectories are given by a Hamiltonian of the same type as
H(x, y, z, t) in far more general representations of the magnetic field than that of (3.1).
The magnetic field in a stellarator or tokamak can always be represented as (Boozer
1983, 2015)

2πB=∇ψt ×∇θ +∇ϕ ×∇ψp(ψt, θ, ϕ, t), (3.5)

where the poloidal flux ψp is the field line Hamiltonian: dθ/dϕ = ∂ψp/∂ψt and
dψt/dϕ=−∂ψp/∂θ . The toroidal magnetic flux is ψt, the poloidal angle is θ and the
toroidal angle is ϕ.

The streamfunction φ(x, y, z, t) is the Hamiltonian that describes the motion of
plasma points in a constant-z plane,

dx
dt
=
∂φ

∂y
(3.6)

dy
dt
= −

∂φ

∂x
. (3.7)

That is, z is a parameter in the Hamiltonian φ(x, y, z, t) and not one of the canonical
variables.

3.2. Dimensionality and exponentiation
The fundamental difference in magnetic reconnection in two- versus three-coordinate
systems is contained in the Hamiltonian description of magnetic field line trajectories.
At each point in time, the Hamiltonian for magnetic field line trajectories, equations
(3.3) and (3.4), depends on the same number of coordinates as the magnetic field.
In the literature, a Hamiltonian H(x, y) is said to be a one-degree-of-freedom
Hamiltonian. A Hamiltonian H(x, y, z) is said to be a one-and-a-half-degree-of-
freedom Hamiltonian. The qualitative differences between the trajectories given by
these two types of Hamiltonians was so exciting to Lighthill (1986) that he titled an
article in the Proceedings of the Royal Society ‘The Recently Recognized Failure of
Predictability in Newtonian Dynamics’.

3.2.1. Two-coordinate Hamiltonians
When the magnetic field line Hamiltonian has the form H(x, y) at a given point in

time, equation (3.1) implies H is constant along the magnetic field lines, B · ∇H = 0.
Neighbouring trajectories can separate as eσ for a Hamiltonian H(x, y) but only in an
≈ e−2σ fraction of the area of the (x, y) plane.

The only places at which magnetic field lines can exponentiate apart are at saddle
points, where H(x, y) has the Taylor expansion H = Hsp + (∂

2H/∂x∂y)sp(x − xsp)
(y− ysp)+ · · ·. When ac is the characteristic spatial scale of the function H(x, y).
Lines started within a radius ace−σ of the point (xsp, ysp) can exponentiate σ times
before being too far from the saddle point to be influenced by it. The fraction of
the area in the (x, y) plane in which σ exponentiations can take place is therefore
≈ e−2σ .
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3.2.2. Three-coordinate Hamiltonians
As will be shown, when the magnetic field line Hamiltonian has the form H(x, y, z)

at a given point in time, the fraction of the area in a constant-z plane occupied by
lines that exponentiate apart is generically of order unity.

The trajectory of a magnetic field line can be written as x(xs, ys, `), where (xs, ys)

is the starting point of the trajectory. The distance along the line is `, which in the
reduced MHD model is indistinguishable from z. That is,

x(xs, ys, `)= x⊥(xs, ys, `)+ `ẑ, (3.8)
where x⊥(xs, ys, `)≡ x(xs, ys, `)x̂+ y(xs, ys, `)ŷ, (3.9)
x(xs, ys, `= 0)= xs, and y(xs, ys, `= 0)= ys. (3.10a,b)

It is convenient to use ` to indicate the use of (xs, ys, `) as spatial coordinates rather
than Cartesian coordinates (x, y, z). The position vector x(xs, ys, `) defines a coordinate
system in which the magnetic field lines are trivial.

Three notations can be used for the derivative of a function along a magnetic field
line: (

∂f
∂z

)
xsys

=
df
dz
=
∂f
∂`
=

df
d`
. (3.11)

The total derivative of a function with respect to z means along a magnetic field line
as does either the partial or the total derivative with respect to `.

The separation between neighbouring trajectories is

δ⊥ ≡
∂x⊥
∂xs

δxs +
∂x⊥
∂ys

δys, (3.12)

so
(
δx
δy

)
=


∂x
∂xs

∂x
∂ys

∂y
∂xs

∂y
∂ys

(δxs
δys

)
, (3.13)

where δ⊥ = δxx̂+ δyŷ. The Jacobian matrix of x⊥(xs, ys, `) is

J⊥ ≡


∂x
∂xs

∂x
∂ys

∂y
∂xs

∂y
∂ys

 , (3.14)

and the determinant of the Jacobian matrix is the Jacobian J⊥ of the (xs, ys)

coordinates. Since the area element in the ẑ direction is da = ẑJ⊥dxsdys, magnetic
flux conservation implies J⊥ = 1. The mathematical implication of a unit Jacobian is
that the singular value decomposition of the Jacobian matrix has the form

J⊥(xs, ys, `)= U⊥ ·

(
eσ⊥ 0
0 e−σ⊥

)
· V †
⊥, (3.15)

where U⊥ and V⊥ are orthogonal matrices. There is a direction in which the magnetic
field lines approach each other exponentially, but when integrating lines, numerical
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12 A. H. Boozer

errors will quickly cause the exponential separation to overwhelm the exponential
convergence.

The distance squared between neighbouring magnetic field lines is

δ
†
⊥ · δ⊥ = δ2

x + δ
2
y = (δxs δys) · g ·

(
δxs
δys

)
(3.16)

g ≡ J†
⊥ · J⊥

= V⊥ ·

(
e2σ 0
0 e−2σ

)
· V †
⊥, (3.17)

where g is the metric tensor.
Equations (3.16) and (3.17) demonstrate that neighbouring magnetic field lines have

a separation that depends exponentially on σ⊥(xs, ys, `). Neighbouring magnetic fields
lines characteristically exponentiate apart with the distance ` along a line unless there
is a constraint that prevents the exponentiation, as when the magnetic field depends
on only two spatial coordinates.

Section 2.2 studied the exponentially increasing separation of streamlines x(x0, t) of
the magnetic field line velocity. In the reduced MHD model being considered here, the
Jacobian of the streamlines is unity, and the Lyapunov exponents of the streamlines
stated as σ(`, t) and the σ⊥ of the field lines at a given time can and will be identified.

3.3. Magnetic field evolution
The evolution equations for a magnetic field have two parts: (i) the evolution equations
for B when the plasma flow velocity v is known and (ii) the evolution equation for
the plasma velocity, which will be obtained from force balance in the next section.
This section will assume v is known and derive four equations: (i) equation (3.23)
relating the time derivative of the Hamiltonian to the streamfunction of the flow, (ii)
equation (3.24) relating the Hamiltonian H to the parallel-current function K≡µ0j||/B,
(iii) equation (3.26) relating the streamfunction of the flow φ to the flow vorticity Ω
and (iv) equation (3.27) relating the time derivative of K moving with the flow to the
derivative of the vorticity Ω along a field line.

3.3.1. Relation between ∂H/∂t and dφ/d`
The time derivative of the magnetic field line Hamiltonian is related to the

streamfunction of the flow φ by Ohm’s law and Faraday’s law.
The electric field is given by Ohm’s law, which will be written as

E+ v×B = NBBgẑ, (3.18)

where NB ≡

(
c
ωpe

)2 (
∂

∂t
+ νc

)
K. (3.19)

NB represents the non-ideal effects in Ohm’s law and hence in the magnetic
evolution. The resistivity η is related to the electron collision frequency νc by
η/µ0 = (c/ωpe)

2νc. The term involving the time derivative of the parallel-current
density, where K ≡µ0j||/Bg, is due to the electron inertia and is always present since
the electron is the lightest charged particle.
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Faraday’s law implies E = −∂A/∂t − ∇Φ, where the potential Φ depends on the
gauge used to represent the vector potential. When the velocity v=∇φ × ẑ, equation
(3.2), the clever choice of gauge gives

E=
(
−
∂H
∂t

ẑ+∇φ
)

Bg. (3.20)

Ohm’s law implies, using

v×B = (∇φ × ẑ)×B (3.21)
= ẑB · ∇φ − Bg∇φ, (3.22)

that
∂H
∂t
=

dφ
d`
−NB. (3.23)

3.3.2. Relation between H and K
The relation between the Hamiltonian and the parallel-current function follows

simply from Ampere’s law, ∇×B=µ0 j,

∇
2
⊥

H =−K. (3.24)

3.3.3. Relation between φ and Ω
The vorticity of the flow is

Ω ≡ ẑ · ∇× v (3.25)
= −∇

2
⊥
φ, (3.26)

where φ is the streamfunction.

3.3.4. Relation between dK/dt and dΩ/d`
Two equations from the appendix, equations (D 1) relating the total time derivative

to the velocity potential and (D 4) for the commutator of d/dt and d/d`, then imply

dK
dt
=

dΩ
d`
+∇

2
⊥
NB. (3.27)

The dissipative term ∇2
⊥
NB acts to flatten K across the magnetic field lines.

In an ideal magnetic evolution, NB = 0 and v is the velocity of the magnetic field
lines. The twisting of the field lines around themselves, given by dΩ/d`, gives the
time rate of change of the current K required to be consistent with both Faraday’s
and Ampere’s law.

3.3.5. Discussion of B evolution
The current function K need not be become large to produce a fast magnetic

reconnection. As the exponentiation σ of neighbouring trajectories becomes larger, K
need only increase in proportion to σ (Boozer 2012).

The operator ∇2
⊥
NB becomes very large when magnetic field lines exponentiate

apart. The theory of general coordinates (see the appendix of Boozer 2004) implies

∇
2
⊥
NB =

1
J⊥

∂

∂xs
·

(
J⊥g−1

·
∂NB

∂xs

)
; (3.28)
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14 A. H. Boozer

g−1
= V⊥ ·

(
e−2σ 0

0 e2σ

)
· V †
⊥. (3.29)

Although the operator ∇2
⊥

can be calculated in the field line coordinates (xs, ys, `),
equation (3.28), this operator is easier to calculate and to invert in ordinary Cartesian
coordinates (x, y, z).

To determine the evolution of the magnetic field lines x⊥(xs, ys, z, t), the Hamiltonian
H(x, y, z, t) is required at each time t. H(x, y, z, t) can be obtained from K(xs, ys, z, t)
by use of the Green’s function for a two-dimensional Laplacian:

H =
∫

K
ln
(
(x− x′)2 + (y− y′)2

)
4π

dxs dys, (3.30)

where K, x′, and y′ are written as functions of (xs, ys, z, t). The Jacobian between
(xs, ys) and (x, y) coordinates is unity, so dx′ dy′ = dxs dys. H(x, y, z, t) can also be
obtained by Fourier decomposition:

H =
∫

K̃(kx, ky, z, t)
k2

x + k2
y

ei(kxx+kyy) dkx dky; (3.31)

K̃ =
1

(2π)2

∫
Ke−i(kxx+kyy) dx dy, (3.32)

=
1

(2π)2

∫
Ke−i(kxx+kyy) dxs dys, (3.33)

where K, x, and y in the last integral are written as functions of (xs, ys, z, t). A
simple version of the reduced MHD model is periodic in the x and y directions with
a periodicity length 2πa, so kx =m/(2πa) and ky = n/(2πa) with m and n integers.

Equation (3.31) implies the smallest wavenumbers k⊥ = kxx̂+ kyŷ largely determine
H(x, y, z, t). As discussed in § 2.1, the smallest wavenumber terms in H produce
the largest separations between magnetic field lines and, therefore, have the largest
effect on magnetic reconnection. There is nothing in the model that rules out short
wavelength turbulence. Indeed, wavelengths of order ace−σ are strongly driven, and
their effect on reconnection is an important question.

3.4. Force balance
General features of magnetic reconnection can be studied by considering the generic
properties of a flow. This was done in §§ 1 and 2 and could be done using the
equations derived in § 3.3. To actually know the flow and the evolution of the
magnetic field, an additional equation is required, which is given by force balance.
The required (3.40), which relates dΩ/dt to dK/d` will be derived in this section.

The smallness of the Debye length implies the current must be divergence free
(Boozer 2015). That and the expression for the electromagnetic or Lorentz force f =
j×B implies

B · ∇
j||
B
= B · ∇×

f
B2
, (3.34)

or
dK
d`
=

1
V2

A
ẑ · ∇×

f
ρ0
; (3.35)
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V2
A ≡

B2
g

µ0ρ0
, (3.36)

where ρ0 is the plasma density, which is assumed to be a constant, and VA is the
Alfvén velocity.

The force exerted by the plasma consists of inertial and viscosity terms,

f
ρ0
=
∂v

∂t
+ v · ∇v − νv∇

2
⊥
v, (3.37)

and v · ∇v = ∇(v2/2)− v×∇× v, (3.38)

so ẑ · ∇×
f
ρ0
=

dΩ
dt
− νv∇

2
⊥
Ω. (3.39)

Consequently, force balance implies

dK
d`
=

1
V2

A

(
dΩ
dt
−Nv

)
, (3.40)

where Nv ≡ νv∇
2
⊥
Ω (3.41)

gives the non-ideality of the plasma flow.

3.5. Ideal evolution

The evolution in the absence of dissipation, NB= 0 and Nv= 0, is given by an Alfvén
wave equation, equation (3.45). The ideal equations are

∇
2
⊥

H = −K (3.42)
dK
dt
=

dΩ
d`

(3.43)

dK
d`
=

1
V2

A

dΩ
dt
. (3.44)

When the evolution is ideal, d/d` and d/dt commute, see equation (D 8). In the
ideal case, being fixed to a fluid point, as in a d/dt derivative, or fixed on a magnetic
field line, as in a d/d` derivative, is the same. The implication is

d2Ω

dt2
= V2

A
d2Ω

d`2
. (3.45)

Equation (3.45) is an equation for Alfvén waves along a magnetic field line that is
defined by its position (xs, ys) at `= 0. Since the field lines do not break, (xs, ys) is
also the position of a fluid point in the upper boundary z=L, which means a solution
x(xs, ys, t), y(xs, ys, t) to the equations dx/dt = ∂φw/∂y and dy/dt = −∂φw/∂x with
the initial condition x(xs, ys, t = 0) = xs and y(xs, ys, t = 0) = ys. Conventionally, a
wave equation is written using partial rather than total derivatives. This can be done
by noting d/dt= (∂/∂t)xs,ys and d/d`= (∂/∂`)xs,ys .
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16 A. H. Boozer

3.5.1. General Alfvén wave solution
Along each magnetic field line, which means for each (xs, ys), the general solution

to equation (3.45) is a sum of two functions of one variable

Ω(`, t)=Ωd

(
t+

`− L
VA

)
+Ωu

(
t−

`

VA

)
, (3.46)

where Ωd represents a downward going and Ωu an upward going Alfvén wave. The
two boundary conditions that determine Ωd and Ωu are Ω(z= 0, t)= 0 and Ω(L, t)=
Ω (s)

w (t), where Ω (s)
w (t) is the vorticity of the flow in the wall at the location given by

(xs, ys) at `= 0. The vorticity of the flow in the wall is Ωw(x, y, t)=−∇2φw(x, y, t),
and Ω (s)

w (t)=Ωw (x(xs, ys, t), y(xs, ys, t), t).
The solution assuming the flow in the wall is zero for t< 0 is

Ωd(t) = Ω (s)
w (t) for t<

2L
VA

(3.47)

Ωd(t) = Ω (s)
w (t)+Ωd

(
t−

2L
VA

)
for t>

2L
VA

(3.48)

Ωu(t) = −Ωd

(
t−

L
VA

)
for t>

L
VA
. (3.49)

When the vorticity of the wall flow evolves slowly compared to the Alfvén transit
time, τA ≡ L/VA:

dΩd(t)
dt

=
Ω (s)

w (t)
2τA

(3.50)

Ωu(t) = −Ωd(t)+
Ω (s)

w (t)
2

(3.51)

Ω(`, t) = Ω (s)
w (t)

`

L
(3.52)

dK
dt
=
Ω (s)

w (t)
L

. (3.53)

3.5.2. Discussion of ideal solution and its breaking
The function Ω (s)

w (t) is purely determined by the properties of the flow in the
perfectly conducting wall at z= L. Once Ω (s)

w (t) is known, a solution for K(xs, ys, `, t)
is determined, essentially analytically, by (3.46) to (3.49). The solution for the
magnetic field lines x⊥(xs, ys, z, t) in the region 0 < z < L requires the Hamiltonian
H(x, y, z, t). The direct solution for Hamiltonian Hd(x, y, z), which can be obtained
from K(xs, ys, `) using (3.30) to (3.33), will not be exact and small adjustments
will generally be required for the field lines started at (xs, ys) to reach the required
positions at z = L. One way to do this is to let H(x, y, z) = Hd(x, y, z) + δH(x, y).
The function δH has sufficient freedom to achieve an exact match of the field lines
between their starting and ending position. K is modified by δH, but presumably the
modification is small when a solution is accurately calculated.

This slowly evolving solution need not be the only solution. Indeed it is not unique
when the system has an ideal instability (Huang, Bhattacharjee & Boozer 2014), which
allows for a change in the magnetic configuration on a time scale set by the Alfvén
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transit time L/VA. The importance of ideal instabilities in fast magnetic reconnection
needs to be better understood.

As discussed in §§ 1 and 2, the properties of the ideal solution determine a large
part of the theory of fast magnetic reconnection – even when non-ideal effects
become important. The ideality of the magnetic evolution, when expressed by the
relation dK/dt = dΩ/d`+∇2

⊥
NB, is broken when the diffusive term ∇2

⊥
NB becomes

comparable to dK/dt for terms in K that have a small k⊥. Alfvén speed relaxation
is modified by viscosity when the diffusive term for the vorticity νv∇

2
⊥
Ω has a

similar relation to small k⊥ terms in Ω . The complexity of the geometry when σ
is large implies the ∇2

⊥
operator becomes large indeed, equation (3.28), even when

the streamlines in the flowing boundary do not themselves exponentiate apart, as
when φw is independent of time. The complexity is even greater when the streamlines
do exponentiate apart, and it is important to understand the effect of streamline
exponentiation on reconnection.

3.6. Dimensionless ratios
The drive for reconnection in the simple model of § 3 is the flow vw = ∇φw × ẑ in
the wall, which is often assumed to be very slow

Meff ≡
vwL
VAac
� 1, (3.54)

where ac is the characteristic spatial scale for variations in φw.
By definition, an ideal magnetic evolution can move the magnetic field lines but

cannot break them. The expression for the electric field has two terms that break
the ideal evolution of the magnetic field. The dimensionless coefficients that give the
strength of this breaking are the magnetic Reynolds number,

Rm ≡
acvw

η/µ0
, (3.55)

and
ac

c/ωpe
. (3.56)

Both dimensionless coefficients must be very large compared to unity to have a non-
trivial reconnection problem.

The viscosity νv breaks the ideal equation for the plasma flow and has the Reynolds
number as its dimensionless coefficient,

Re ≡
acvw

νv
. (3.57)

A non-trivial problem in magnetic reconnection exists for any value of Re. The
strength of the viscosity is sometimes given by the magnetic Prandtl number
Pm ≡ µ0νv/η, which can be very large compared to unity in plasmas. A more
important parameter in measuring the relative importance of viscous to resistive
dissipation will be found to be the Alfvén-weighted Prandtl number,

PA ≡ M2
eff Pm

=

(
vwL
acVA

)2
µ0νv

η
. (3.58)
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3.7. Alfvén waves with dissipation

When the magnetic field evolution is non-ideal, there is a slippage between the
magnetic field lines and the plasma, so d/d` and d/dt no longer commute. Equation
(D 8) implies

d
dt

dK
d`
=

d
d`

dK
dt
− ẑ · (∇⊥K ×∇⊥NB). (3.59)

Equations (3.27) and (3.40) then give the equation for Alfvén waves with dissipation

∂2Ω

∂`2
=

1
V2

A

d2Ω

dt2
+NA (3.60)

NA ≡ −
νv

V2
A

d
dt
∇

2
⊥
Ω −

d∇2
⊥
NB

d`
+ ẑ · (∇⊥K ×∇⊥NB). (3.61)

The two dissipative terms, one proportional to νv and the other proportional to η/µ0,
have a ratio of the Alfvén-weighted Prandtl number PA, equation (3.58), which follows
from H ∼ a2

c/L and Ω ∼ vw/ac. The term d2Ω/dt2 has a relative size comparable to
the viscosity term of the Reynold number Re.

When the viscosity dominates over resistivity in the damping of Alfveń waves,
equation (3.60) can be written in a particularly simple form

d
dt

(
dΩ
dt
−Nv

)
= V2

A
∂2Ω

∂`2
. (3.62)

3.8. Difficulty of obtaining solutions

The evolution of the model for a driven magnetic field can be obtained by integration
until the number of exponentiations σ in the separation between neighbouring
magnetic field lines becomes large. Unfortunately, the difficulty of following the
evolution increases as e5σ , so a hard cutoff exists in the maximum value of σ

that can be resolved. To follow the evolution, high numerical precision is required;
numerical errors blur the evolution of magnetic field lines as does c/ωpe.

A petascale computer can perform 1015 operations a second or ≈ 1026 per day.
When σ = 10, the number of operations is increased by approximately 1022 times over
the case when σ .1, so σ ≈10 appears to be an upper limit on what can be computed.
Increasing the computer power by a thousand increases the maximum computable σ
from σ ≈ 10 to σ ≈ 11.4.

Reaching values of σ ≈ 8 for studying magnetic reconnection in fusion devices
is credible, but σ ≈ 20, which is required to understand reconnection in the corona,
appears impossible. Simulations using modest values of σ must be sufficiently well
understood to devise extrapolations or reliable approximations.

Once σ becomes large, distances in the (x, y) plane of order ace−σ must be resolved
as must distances of order Le−σ in the z direction. The speed with which the magnetic
field lines move is of order vweσ , so the time required for a field line to move over
a spatial scale ace−σ is (ac/vw)e−2σ . Assuming the computational difficulty scales as
the number of spatial grid cells times the number of time steps, the difficulty scales
as e5σ .
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4. Discussion

When dissipation is low, Alfvénic reconnection is so prevalent that it must be a
natural consequence of an ideal evolution. The most important result of the paper is
the proof that this is indeed the case, § 2.

The sixty-year focus on two-coordinate models to represent magnetic reconnection
in three-dimensional space has obscured physics. The generic tendency for evolving
magnetic fields to reach states with Alfvén speed reconnection is eliminated by
restricting the evolution to a two-coordinate space. Two-coordinate models of magnetic
reconnection may be adequate to describe some features of reconnection, but are
obviously only an approximation in three-dimensional space. The range of validity
of two-dimensional models can only be established by derivations that begin with all
three spatial dimensions.

The most important effect eliminated by a two-dimensional approximation is the
exponentially large distortion of infinitesimal magnetic flux tubes with distance along
the tube. As shown in § 2.1, the exponential enhancement of reconnection in three
spatial dimensions is analogous to the increase in mixing of incompressible fluids
produced by time depending stirring in two-dimensional models.

The absence of studies of how ideally evolving magnetic fields go from smooth
initial to Alfvénic reconnecting states makes simple models of profound importance.
Even heuristic arguments, such as those given in the introduction and § C.3, show that
any star with evolving magnetic fields in the photosphere on a much longer spatial
scale than a gravitational scale height must have a corona. Calculations could clarify
whether this explains the height of the transition region and the electron energy in the
corona of the Sun.

Many questions on driven reconnection that remain unanswered could be answered
in the driven reconnection model derived in § 3. This model is based on a paper by
van Ballegooijen (1985). The equations have been studied by a number of authors,
notably Ng et al. (2012) and Huang et al. (2014). The study by Huang et al
is closely related to the model discussed here but was limited to exponentiations
σ . 6. Daughton et al. (2014) have done extensive kinetic calculations of magnetic
reconnection in a more complete magnetic field model retaining all three spatial
coordinates, but a Harris sheet was used as an initial condition, and the number of
exponentiations was σ . 8. No studies have been done that follow a smooth initial
into a rapidly reconnecting state – even the ideal part of that evolution has not been
followed, which as shown in § 3.5, can be greatly simplified by analytic methods.

A number of questions need to be addressed and many could be within the model
given in § 3.

(i) How does the parallel-current density increase as the system evolves?
The parallel-current density is the part that directly affects reconnection and its

increase is determined by (3.27). Although reconnection generally reaches an Alfvénic
rate within the reconnection model of this paper, it appears difficult to produce a
singular current density.

(ii) How does the reconnection depend on the three dimensionless parameters Rm,
PA and Meff ?

Reconnection is trivial unless the magnetic Reynolds number Rm is very large
compared to unity, but the complexity of the behaviour as Rm → ∞ is poorly
understood. Unless the plasma has significant dissipation, the energy released by
the reconnection will drive strong Alfvén waves. These waves propagate along the
magnetic field lines and develop an extremely complicated spatial dependence and

https://doi.org/10.1017/S0022377818000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000028


20 A. H. Boozer

enhanced dissipation from exponentially increasing separation of the lines (Similon &
Sudan 1989).

Significant dissipation with a very large magnetic Reynolds number requires the
Alfvén-weighted Prandtl number PA be large. The dependence of reconnection
phenomena on PA is not understood. Although the Alfvénic Mach number Meff is
generally assumed to be small compared to unity, the actual plasma flow can become
large due to the large spatial excursions made by magnetic field lines. Indeed, the
plasma may become unstable (Huang et al. 2014) and make a transition to a different
state on an Alfvénic time scale.

(iii) How does the reconnection depend on the complexity of the drive φw(x, y, t)?
An important but poorly understood question is, when the drive φw continues for a

long time, does the reconnection settle into a quasi-steady state or is it episodic? A
finite time, the trigger time, is clearly required to obtain the first reconnection event
when the initial condition is H= 0. The dependence of the trigger time on either the
dimensionless parameters or the complexity of φw is essentially unknown.

Is the reconnection behaviour qualitatively similar for all functions φw(x, y, t) that
have a similar characteristic spatial scale ac? When φw(x, y, t) depends on time,
neighbouring points in the flowing wall generically separate exponentially in time;
when φw has no time dependence neighbouring wall points do not exponentiate apart.
Does this produce a qualitative difference in the reconnection?

When the dominant spatial scale ac of φw is small compared to the size a of the
reconnecting region, which may be a periodicity length 2πa, the reconnection has a
relatively slow diffusive nature, but this is not well understood.

(iv) Do the short wavelength structures that are driven by fast reconnection in three
dimensions play an important role by modifying the timing and the nature of the
breaking of the ideal constraints?

When neighbouring field lines exponentiate apart by a factor eσ , structures are
strongly driven on the scale ace−σ .

(v) How quickly do plasma elements that originally lay along one field line spread
across the reconnecting volume?

The rapid spreading of impurities across a tokamak plasma during a disruption is
poorly understood but may be a by-product of the fast magnetic reconnection that is
associated with the current spike (Boozer 2017).

(vi) Under what conditions does c/ωpe dominate the resistivity η in causing
magnetic field line breaking?

The large magnetic field line excursions that occur when σ is large can give large
flow velocities and make the time derivative term involving c/ωpe far more important
than it appears to be.

(vii) When φw has a form that gives episodic rather than quasi-steady-state
reconnection, how quickly is equilibrium, dK/d`= 0, re-established?

This question is of particular interest in tokamak disruptions because it presumably
determines the duration of the current spike (Boozer 2017).

(viii) How is the plasma heating spread over the plasma?
When the magnetic Reynolds number Rm is very large, reconnection can occur with

little dissipation of energy; most of the energy goes first into Alfvén waves. The
rapidity with which the Alfvén waves are damped is a complicated issue (Similon
& Sudan 1989; Boozer 2014) but determines both the spatial region and the plasma
species that is heated. The results of this paper imply the development of current
sheets as described in Boozer (2014) is incorrect, but the damping of Alfvén waves
in nonetheless strong because of the large increase in ∇2

⊥
Ω due to magnetic field line

exponentiation.
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Appendix A. Plasma versus magnetic field line velocity
The small gyroradius Ohm’s law, E+v×B=η⊥ j

⊥
+η|| j||, illustrates the importance

of distinguishing between the plasma velocity v and the magnetic field line velocity
u. This Ohm’s law can be written as E + u × B = η|| j|| with u = v + η⊥ j

⊥
× B/B2.

The velocity of the plasma v is the sum of the velocity of the magnetic field lines
and the velocity of the plasma across the lines −η⊥ j

⊥
× B/B2. Letting j × B = ∇p

and ignoring the temperature gradient, the plasma velocity across the magnetic
field lines is v − u = −Dcl∇n. The classical diffusion coefficient Dcl ≡ η⊥nT/B2

can be written as Dcl = (me/mi)ρ
2
i νc, where ρi is the ion gyroradius and νc is

the electron collision frequency in η⊥. In large tokamaks, microturbulence causes
particle transport that is of order gyro-Bohm diffusion DgB = (ρi/R0)(T/eB), where
R0 is the major radius. The ratio of the observed to the classical particle transport,
DgB/Dcl= (vi/R0)/(meτe/mi)≈ 105, where vi is the ion thermal speed, so the effective
η⊥ is enhanced by a factor ≈ 105 over its classical value. Boozer (2004) has shown
slippage of the poloidal compared to the toroidal magnetic flux in tokamaks, which
is given by the magnetic field line velocity u or equivalently the loop voltage, is
determined by η||j||. The observed parallel resistivity, when corrected by approximately
a factor of two for trapped particle effects, is consistent with the classical value of
η||. In other words, in large tokamak experiments η⊥/η|| ≈ 105.

Appendix B. Relativistic extensions
The Lorentz transformation for the electric and magnetic fields demonstrates that

both the concept of a magnetic field line velocity u and the anti-reconnection theorem
remain valid and important in relativistic theory. Jackson (1998) in his equation
(11.149) gave this Lorentz transformation. When the velocity u is perpendicular to
both E and B, Jackson’s equation implies

Eu = γ (E+ u×B); (B 1)

Bu = γ

(
B−

1
c2

u×E
)
. (B 2)

Let E(x, t) and B(x, t) be the electric and magnetic fields in the frame of reference
that is the basis of the analysis. The evolution of the magnetic field in that frame,
∂B/∂t =−∇ × E, is identical to that in a plasma in which the electric field is E =
E+∇Φ. The electric field E will be the basis of the analysis, and the freedom of Φ
will be used to make E ·B= 0, at least locally. Since E ·B is a Lorentz invariant, the
transformed quantity Eu · Bu = 0. In the frame moving with a velocity u= E × B/B2

relative to the first, the perpendicular electric field is zero, Eu × Bu = 0, so in that
frame Eu= 0, and the magnetic field Bu does not evolve. Letting β ≡ |u|/c, one finds
that the requirement to make Eu ×Bu = 0 is β/(1+ β2)= cEB/(E2

+ c2B2). A frame
in which there is no electric field is only possible when β = E/cB< 1. When E/cB>
1 with E · B = 0, there is no magnetic field in a frame moving with velocity u =
c2E × B/E2. The Lorentz invariant B2

− E2/c2 ensures distinct behaviour depending
on whether E/cB is greater or less than unity.
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Appendix C. Spherical geometry
C.1. Curl-free magnetic fields

The sphere is the only smooth and bounded shape that has simple solutions to
Laplace’s equation, ∇2φ = 0. In spherical geometry a curl-free magnetic field has the
form

B = ∇g; (C 1)

g =
∑
`n

aBn
`

`

( r
a

)`
Yn
` (θ, ϕ), r< a (C 2)

= −

∑
`n

aBn
`

`+ 1

(a
r

)`+1
Yn
` (θ, ϕ), r> a, (C 3)

where the Yn
` are the spherical harmonics. The coefficient Bn

` is uniquely determined
by the n` normal component Bn(θ, ϕ) of the magnetic field on the r = a surface of
the sphere,

Bn(θ, ϕ)=
∑
`n

Bn
`Y

n
` (θ, ϕ). (C 4)

When the magnetic field is symmetric about the axis of the sphere, ϕ symmetry,
only n= 0 spherical harmonics appear and the vector potential for the magnetic field
is

A = ψ∇
ϕ

2π
; (C 5)

∇
ϕ

2π
=

ϕ̂

2πr sin θ
; (C 6)

B = ∇ψ ×∇
ϕ

2π
. (C 7)

The magnetic field lines lie in a constant ψ and constant ϕ plane. The magnetic flux
is ψ =

∮
A · (∂x/∂ϕ) dϕ. Letting Y`(θ)≡ Yn=0

` and B`≡B0
`, then one finds by equating

the magnetic field derived from g and from ψ ,

ψ =
∑
`

ψ`

( r
a

)`+1
G`(θ); (C 8)

ψ` = 2πa2B`; (C 9)

G`(θ) = −
sin θ

`(`+ 1)
dY`
dθ
; (C 10)

dG`

dθ
= sin θY`. (C 11)

C.2. Magnetic nulls

This section will show that magnetic field lines from one magnetic field null, B2
= 0

need not strike another null in a short distance even when a second null lies nearby
and that magnetic nulls are generically rare in space.

First, consider the rarity of nulls in space. Using Cartesian coordinates, a magnetic
null implies the solution of three equations with three unknowns: Bx(x, y, z) = 0,
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By(x, y, z) = 0 and Bz(x, y, z) = 0. Three equations with three unknowns are well
known to generically have solutions that are discrete if any solutions exist at all.
The standard counterexample is a field with perfect symmetry, such a z-symmetry,
which means Bx, By and Bz are independent of z. When all three components vanish
at x0, y0, then there is a line null at (x0, y0) for all z. The addition of an arbitrarily
small z-dependent field will break the line null into discrete point nulls. For example,
δBx ∝ sin z will break the line null into point nulls, one at (x0, y0, z= 0) and another
at (x0, y0, z=π), no matter how small the amplitude of δBx.

Second, consider the existence of field lines that connect nulls. When a null exists
in a locally curl-free magnetic field, then one can locate a sphere about the null
and obtain an isolated null by the magnetic potential g= (aB2)/2 (r/a)2 Y2(θ), where
Y2 ∝ cos2 θ − 1/3, the magnetic field has a single null at r = 0 and the flux ψ = 0.
Note Br ∝ r(cos2 θ − 1/3) and Bθ ∝ r sin 2θ . One could include Yn

2 harmonic terms as
well, for example Y2

2 ∝ sin2 θ sin(2ϕ), but when they are small they introduce no new
nulls in the region r< a in which the magnetic field is curl free and would make ψ
conservation not rigorously valid.

A field with one additional null can be produced, preserving symmetry in ϕ, by
adding a term to the magnetic potential ∝ r3Y3(θ), where Y3 ∝ cos3 θ − (3/5) cos θ .
That is,

g =
aB2

2

( r
a

)2
(

cos2 θ −
1
3

)
+

aB3

3

( r
a

)3
(

cos3 θ −
3
5

cos θ
)
; (C 12)

ψ = 2πa2B2

( r
a

)3 cos3 θ − cos θ
3

+ 2πa2B3

( r
a

)4 cos4 θ − 3
5 cos2 θ + 1

5

4
. (C 13)

The first null is at r= 0 and a second null is at r/a= c0B2/B3, where c0= 2.357 · · · ,
and θ =π/4. The flux at the first null is ψ = 0; the flux at the second null is non-zero
since

cos3 θ − cos θ
3

+ c0
cos4 θ − 3

5 cos2 θ + 1
5

4
=−0.02946 · · · (C 14)

when evaluated at that null. Because ψ is conserved along a magnetic field line, no
line that passes through the first null reaches the second. The second null is a line null
and would be broken into a few point nulls if an arbitrarily small term proportional to
Yn

3 with n 6= 0 were added. But, an arbitrarily small magnetic field perturbation cannot
change the trajectory of a field line of length ∼a by a sufficient amount to cause field
lines that passed through the first null to strike one the nulls associated with Y3 term
in the magnetic potential.

C.3. Model of the solar corona
This section will show the solar corona could be modelled in a way analogous to
the simple model presented in § 3. Reconnection can be driven by the motion of the
surface of the Sun with a velocity vs=∇φs× r̂. The normal, or radial, magnetic field
to the surface of the Sun is denoted by Ba(θ, ϕ, t). Assuming the surface of the Sun to
be a perfect conductor ∂Ba/∂t+ vs · ∇Ba= 0. When the region outside the surface of
the Sun is assumed to be a highly conducting and low viscosity plasma, fast magnetic
reconnection will occur no matter how simple the initial normal field, even a dipole
field Ba(θ, ϕ, t= 0)∝ cos θ , for any ϕ-dependent streamfunction φs(θ, ϕ, t).
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The exterior of a sphere gives a more physical model of a corona, than the interior
of a sphere. But calculating fast reconnection in the interior of a sphere is numerically
simpler because the problem is bounded and every magnetic field line that enters the
sphere must leave it somewhere. In an external solution, the magnetic flux leaving the
sphere must equal the flux entering the sphere, but the flux need not consist of the
same field lines. A major advantage of either spherical problem over a straight field
model, such as that of § 3, is that the magnetic field lines will be curved and hence
currents that propagate along those lines will be subject to a hoop stress.

Appendix D. Derivatives
D.1. Definition of df /dt

The total derivative with respect to time df /dt means moving with the plasma,

df
dt
≡

(
∂f
∂t

)
(x,y,z)

+ v · ∇f

=
∂f
∂t
+ ẑ · (∇⊥f ×∇⊥φ). (D 1)

D.2. Definition of df /d`
The derivative with respect to distance along the magnetic field lines df /d` is defined
by

df
d`
≡

B
Bg
· ∇f (D 2)

=
∂f
∂z
+ ẑ · (∇⊥f ×∇⊥H). (D 3)

D.3. Commutator of ∇2
⊥

with df /d`

∇
2
⊥

df
d`
= ∇

2
⊥

(
∂f
∂z
+ ẑ · (∇⊥f ×∇⊥H)

)
=
∂∇2
⊥

f
∂z
+ ẑ · (∇⊥∇2

⊥
f ×∇⊥H)+ ẑ · (∇⊥f ×∇∇2

⊥
H)

=
d
d`
∇

2
⊥

f + ẑ · (∇⊥K ×∇⊥f ). (D 4)

D.4. Commutator of ∇2
⊥

with df /dt

∇
2
⊥

df
dt
= ∇

2
⊥

(
∂f
∂t
+ ẑ · (∇⊥f ×∇⊥φ)

)
=
∂∇2
⊥

f
∂z
+ ẑ · (∇⊥∇2

⊥
f ×∇⊥φ)+ ẑ · (∇⊥f ×∇⊥∇2

⊥
φ)

=
d
dt
∇

2
⊥

f + ẑ · (∇⊥Ω ×∇⊥f ). (D 5)
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D.5. Commutator of d/d` and ∂/∂t

∂

∂t
df
d`
=

∂

∂z
∂f
∂t
+ ẑ ·

(
∇⊥

∂f
∂t
×∇⊥H

)
+ ẑ ·

(
∇⊥f ×∇⊥

∂H
∂t

)
=

d
d`
∂f
∂t
+ ẑ ·

(
∇⊥f ×∇⊥

∂H
∂t

)
. (D 6)

D.6. Commutator of d/d` and d/dt

This derivation uses

dẑ · (∇⊥f ×∇⊥g)
d`

= ẑ ·
(
∇⊥

df
d`
×∇⊥g

)
+ ẑ ·

(
∇⊥f ×∇⊥

dg
d`

)
, (D 7)

which follows from the coordinate invariance of ẑ · (∇⊥f ×∇⊥g), equation (D 10).

d
d`

df
dt
=

d
d`

(
∂f
∂t
+ ẑ · (∇⊥f ×∇⊥φ)

)
=

(
∂

∂t
df
d`
− ẑ ·

(
∇⊥f ×∇⊥

∂H
∂t

))
+

d
d`

ẑ · (∇⊥f ×∇⊥φ)

=
d
dt

df
d`
− ẑ ·

(
∇⊥f ×∇⊥

(
∂H
∂t
−

dφ
d`

))
=

d
dt

df
d`
+ ẑ · (∇⊥f ×∇⊥NB). (D 8)

D.7. Form of ẑ · (∇⊥f ×∇⊥g)

ẑ · (∇⊥f ×∇⊥g)=
∂

∂x

(
f
∂g
∂y

)
−
∂

∂y

(
f
∂g
∂x

)
. (D 9)

D.8. Coordinate invariance of ẑ · (∇⊥f ×∇⊥g)

In arbitrary coordinates xa(x, y) and ya(x, y), the gradient ∇⊥f = (∂f /∂xa)∇xa +

(∂f /∂ya)∇ya, which implies

ẑ · (∇⊥f ×∇⊥g) =
∂f
∂x
∂g
∂y
−
∂f
∂y
∂g
∂x

=

(
∂f
∂xa

∂g
∂ya
−
∂f
∂ya

∂g
∂xa

)
Ja; (D 10)

Ja ≡ ẑ · (∇xa ×∇ya). (D 11)

The Jacobian of the (xa, yb) coordinates Ja is unity when the coordinates are the
starting points (xs, ys) of magnetic field line trajectories.
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