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Abstract

We consider a queueing loss system with heterogeneous skill based servers with arbitrary
service distributions. We assume Poisson arrivals, with each arrival having a vector
indicating which of the servers are eligible to serve it. An arrival can only be assigned to
a server that is both idle and eligible. Assuming exchangeable eligibility vectors and an
idle time ordering assignment policy, the limiting distribution of the system is derived.
It is shown that the limiting probabilities of the set of idle servers depend on the service
time distributions only through their means. Moreover, conditional on the set of idle
servers, the remaining service times of the busy servers are independent and have their
respective equilibrium service distributions.
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1. Introduction

The model we consider in this paper supposes that arrivals come to an n server system in
accordance with a Poisson process with rate λ, and that each arrival has a vector of binary
values (x1, . . . , xn), with the interpretation that server i is eligible to serve that arrival if xi = 1
and is ineligible if xi = 0, i = 1, . . . , n. The binary vectors of successive arrivals are assumed
to be independent and identically distributed having a specified distribution. An arrival can be
assigned to any of the servers that are both currently idle and eligible to serve that arrival; if
there are no such servers, the arrival is lost. The time it takes server i to serve a customer has a
general distribution Gi, i = 1, . . . , n.

The preceding model, under the assumption that the assigning rule used is to assign an
arrival to the idle/eligible server that has been idle the longest since its last service completion,
was introduced by Adan and Weiss [1]. (Although Adan and Weiss used different terminology
by classifying arrivals according to their eligibility vectors, the models are mathematically
equivalent.) Using a supplementary variable approach to make their system Markovian, they
derived the limiting distribution for this model, and in doing so showed that the limiting
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270 B. HAJI AND S. M. ROSS

distribution of the ordered set of idle servers depends on the service distributions only through
their means.

In this paper we assume that a random eligibility vector (X1, . . . , Xn) is exchangeable,
meaning that the joint probability mass function of Xi1 , . . . , Xin is the same for all permutations
i1, . . . , in of 1, . . . , n. Because the Xi are binary, this is equivalent to the statement that for
any k ≤ n, conditional on

∑n
i=1 Xi = k, all

(
n
k

)
possible values of the vector (X1, . . . , Xn) are

equally likely. (Although the distribution of
∑n

i=1 Xi can be arbitrary, the most common case
of exchangeability is when it is binomial, and so X1, . . . , Xn are independent and identically
distributed Bernoulli random variables.) Although our exchangeability assumption is restric-
tive, we do allow for a general class of operating policies. Letting the ‘idle servers vector’ be 0
if there are currently no idle servers, or i1, . . . , ik if there are currently k idle servers, with i1
having been idle the longest, i2 the second longest, and so on, we define an idle time ordering
rule as one whose assignment decisions are based solely on the number of idle servers and the
positions in the idle servers vector of those servers that are eligible to be assigned. Examples
of such policies would be to assign to a randomly chosen idle and eligible server, or to assign
to the idle eligible server that has been idle the longest, or that has been idle the shortest.
Our analysis uses the method of stages, which starts by assuming that the service distributions
are all general Erlang. Doing so enables us to analyze the model as a continuous-time Markov
chain. Using a conjecture concerning the reverse chain enables us to find, up to a multiplicative
constant, the limiting probabilities for this model, which surprisingly are the same no matter
which idle time ordering policy is employed. We show that the limiting distribution of the
vector for the idle servers depends on the service distributions only through their means, and
that given the set of idle servers (a) all possible idle server vectors are equally likely, and (b) the
remaining service times (as well as the amounts of service time each has so far provided) of the
busy servers are independent and distributed according to their respective equilibrium service
distributions. Application of a continuity argument then establishes these results for arbitrary
service distributions. Because the determination of the multiplicative constant by summing all
the probabilities is computationally intractable for large n, we show how the Gibbs sampler can
be used to simulate a Markov chain whose stationary probabilities enable us to determine the
desired quantities of interest for our model.

In Section 2 we introduce the model and provide some further notation. In Section 3 we
review general Erlang distributions and the method of stages. In Section 4 we derive the
stationary probabilities, and in Section 5 we present the Gibbs sampler simulation approach.

There have been a variety of papers whose authors have analyzed queueing loss models
that allow an arrival to go to any idle server. For instance, Fakinos [4] studied the equi-
librium behavior of an M/G/k loss system with heterogeneous servers under the policy that
assigns arrival customers to the idle servers uniformly at random. By utilizing the method of
supplementary variables, he gave a generalization of the Erlang B-formula and showed that
the Erlang B-formula holds under the assumption of heterogeneous servers with equal mean
service times. In another paper Fakinos [5] considered the same model but this time with
balking customers. That is, customers will immediately depart the system upon their arrival
with a certain probability, otherwise they will be served by one of the idle servers at random.
Assuming equal means for the service time distributions, Fakinos showed that the Erlang
B-formula is valid for the new model and proved that in equilibrium the customer (served, balk-
ing, or rejected) departures from the system form a Poisson process. Cooper and Palakurthi [3]
studied a loss system with Poisson arrivals and heterogeneous servers with general service
distributions. Assuming a priority ordering rule, which is a fixed permutation of the servers
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which is employed by always choosing the idle server that is earliest on that list, Cooper and
Palakurthi showed by a counterexample that the loss probability does not depend on the service
time distributions only through their means.

There have also been a variety of papers concerned with finding the policy that minimizes
the rate of lost arrivals. One recent paper by Ross [9] which, like our model, considers an n

server loss system in which each arrival comes with a realization of an exchangeable eligibility
vector that indicates which of the idle servers it can use. Letting Ii be the indicator variable
for whether arrival i is served or not, Ross showed, under the assumption of heterogeneous
exponential service distributions, that for any arrival process that is independent of the service
times and any value of r , the vector (I1, . . . , Ir ) is stochastically maximized when each arrival
is assigned to the idle eligible server with the largest service rate. Other references concerning
the optimization problem can be found in [7].

It has also recently been brought to our attention that results having some similarity to ours
have been obtained by Gopalakrishnan et al. [6]. The model in [6] is similar but less general
than our model in that it assumes exponential service distributions and that all servers are always
eligible (that is, P(Xi = 1) = 1, i = 1, . . . , n); it does, however, allow for a queue. They show
for their model that the limiting probabilities are the same no matter which idle time ordering
policy is employed.

2. Model and preliminaries

Arrivals come to an n server system in accordance with a Poisson process with rate λ. Each
arrival has a vector of binary values (x1, . . . , xn) with the interpretation that server i is eligible
to serve that arrival if xi = 1 and is ineligible if xi = 0, i = 1, . . . , n. The binary vectors
of successive arrivals are independent and identically distributed having the distribution of
(X1, . . . , Xn), where X1, . . . , Xn are assumed to be exchangeable. An arrival that finds all of
its eligible servers busy is lost; otherwise an arrival can be assigned to any one of its eligible
servers. The time it takes server i to serve a customer has a general distribution Gi, i = 1, . . . , n.

Set β0 = 0 and, for k > 0, let βk = P(
∑k

i=1 Xi > 0); thus, by the exchangeability
assumption, βk is the probability that at least one of any specified set of k servers is eligible for
the next job. Note that

P

(k−1∑
i=1

Xi = 0, Xk = 1

)
= βk − βk−1, k ≥ 1.

Let the ‘idle servers vector’ be 0 if there are currently no idle servers, or i1, . . . , ik if there
are currently k idle servers, with i1 having been idle the longest, i2 the second longest, and so
on. Define an idle time ordering rule as one whose assignment decisions are based solely on
the number of idle servers and the positions in the idle servers vector of those that are eligible
to be assigned. Each idle time ordering rule results in a set of probabilities Pj,k, j ≤ k ≤ n,

where Pj,k is the probability that a job arrival when the idle servers vector is i1, . . . , ik will be
assigned to server ij . Note that

∑k
j=1 Pj,k = βk .

Examples. (a) If the idle time ordering rule in use is to give an incoming job to the idle
eligible server that has been idle the longest, then Pj,k = βj − βj−1.

(b) If the idle time ordering rule in use is to give an incoming job to the idle eligible server that
has been idle the shortest, then Pj,k = βk+1−j − βk−j .

(c) If the idle time ordering rule in use is to give an incoming job to a randomly chosen idle
eligible server, then Pj,k = βk/k.
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3. General Erlang random variables and the method of stages

A random variable X is called a general Erlang GE(N, μ) random variable if it can be
expressed as

X =
N∑

i=1

Wi,

where Wi, i ≥ 1, are independent exponential random variables with rate μ, and N is a positive
integer valued random variable that is independent of Wi, i ≥ 1.

Let G be the distribution function of a GE(N, μ) random variable X, and let Ge be the
equilibrium distribution of G. That is,

Ge(x) = μ

E[N ]
∫ x

0
(1 − G(y)) dy,

where E signifies expectation. This leads to the following lemma.

Lemma 1. Let Ge be the distribution function of a GE(Ne, μ) random variable, where

P(Ne = j) = P(N ≥ j)

E[N ] .

Proof. Let Ge be the limiting distribution of the excess of a renewal process having interar-
rival distribution G. Because G is a GE(N, μ) distribution, we can interpret Ge as the limiting
distribution of the time until the next visit to state 1 of a continuous-time Markov chain which
spends an exponential time with rate μ in each state, and which when leaving state i goes to
state j with probability Pi,j , where

Pi,i−1 = 1, i > 1, P1,j = P(N = j), j ≥ 1.

It is well known (and quite easy to verify) that the limiting probabilities of the preceding
embedded Markov chain are πi = P(N ≥ i)/E[N ]. Because the time spent in each state has
the same distribution, πi, i ≥ 1, is also the limiting probability distribution for the state of the
continuous-time Markov chain. But if the state of the continuous-time chain is i then the time
until the next visit to state 1 is distributed as the sum of i independent exponentials with rate μ,

which proves the lemma.

For every nonnegative random variable Z there is a sequence of general Erlang variables
that converges in distribution to Z; see, for instance, [13]. Because of this, our approach
will be to first assume that all service distributions are general Erlang. By imagining that
a service time of server i consists of Ni exponential stages, with the times of these stages
being independent exponentials with rate μi , we are able to analyze the resulting model as a
continuous-time Markov chain. This method of approximating any arbitrary distributed positive
random variable by a general Erlang distribution and then analyzing the resultant model as a
Markov chain is called the method of stages and has been used to analyze various models with
general distributions (see, for instance, [10]–[12] and [7]).

To show that the results we obtain under the assumption that all service distributions are
general Erlang remain valid when the service distributions are arbitrary requires that our
quantities of interest are continuous functions of the service distributions. Barbour [2] and
Whitt [13] have shown that such a continuity exists.
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4. Stationary probabilities for no-memory rules with general service time distribution

To start the process, we will suppose that the service distribution of server i is general Erlang
GE(Ni, μi), i = 1, . . . , n and we will analyze the model as a continuous-time Markov chain.
To do so, we define the state vector as (0 : r) with r = (r1, . . . , rn), if there are currently no
idle servers and server i has ri remaining exponential stages with rate μi in order to complete
its service; or as (i1, . . . , ik : r), if i1, . . . , ik are the idle servers, with i1 having been idle the
longest, i2 the second longest, and so on, and each server i has ri exponential stages to complete,
where ri = 0 for all i ∈ {i1, . . . , ik}.
Proposition 1. For general Erlang service times, GE(Ni, μi) i = 1, . . . , n, where Ni is a
random variable with pi(s) = P(Ni = s), all idle time ordering policies have the same
stationary probabilities. Namely,

P(i1, . . . , ik : r) = μi1 · · · μik

λkβ1 · · · βk

P(0 : 1)
∏

m/∈{i1,...,ik}
P(Nm ≥ rm),

where P(0 : 1) is such that

P(0 : 1)(1 +
∑

(i1,...,ik,r)

μi1 · · · μik

λkβ1 · · · βk

∏
m/∈{i1,...,ik}

P(Nm ≥ rm)) = 1.

Proof. Suppose that an arbitrary idle time ordering policy is being used, and let Pj,k be the
probability, under that policy, that an arrival goes to server ij when the state is (i1, . . . , ik : r).
For states

x = (i1, . . . , ik : r1, . . . , rn),

xo = (i1, . . . , ik : r1, . . . , rj − 1, . . . , rn),

x+ = (i1, . . . , ik, ik+1 : r1, . . . , rik+1−1, 0, rik+1+1, . . . , rn),

x− = (i1, . . . , ij−1, ij+1, . . . , ik : r1, . . . , rij −1, s, rij +1, . . . , rn),

the infinitesimal rates of the resultant continuous-time Markov chain are

qx,xo = μj , for rj > 1,

qx,x+ = μik+1 , for rik+1 = 1,

qx,x− = λPj,kpij (s) for rij = 0.

We now make the following conjecture about the reverse process.

(a) It is a queueing model with n servers all of whom are eligible to serve any arriving
customer.

(b) The state is x = (i1, . . . , ik : r1, . . . , rn) if (i1, . . . , ik) is the current ordered list of idle
servers; rj is the current stage of server j if that server is busy (meaning that rj −1 stages
have already been completed), and rj = 0 if j is idle.

(c) An arrival to server j begins in stage 1; and the time it takes server j to complete a stage
is exponential with rate μj , j = 1, . . . , n.

(d) Upon completion of stage m, a customer at server j leaves the system with probability
λj (m) = pj (m)/

∑
k≥m pj (k); otherwise it goes to stage m+1 with probability λ̄j (m) =

1 − λj (m).
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(e) The arrival rate of customers when the ordered list of idle servers is i1, . . . , ik is λβk , and
the arriving customer is assigned to server ik.

(f) If server r becomes idle when the ordered list of idle servers is i1, . . . , ik then the new ord-
ered list of idle servers becomes i1, . . . , ij−1, r, ij , . . . , ik with probability Pj,k+1/βk+1.

Under our conjecture, with x, xo, x+, and x− as previously defined, the infinitesimal rates
of the reversed chain are

q∗
xo,x = μj λ̄j (rj − 1), q∗

x+,x = λβk+1, q∗
x−,x = μij λij (s)

Pj,k

βk

.

Because it is clear that when in state (i1, . . . , ik : r) the rates at which the forward and the
conjectured reverse process leave that state are both equal to λβk + ∑

i /∈{i1,...,ik} μi, it follows
from Theorem 1.13 of [8] that the conjecture will be verified if we can find probabilities P(x)

such that
∑

x P(x) = 1, and

P(x)qx,xo = P(xo)q∗
xo,x for rj > 1,

P(x)qx,x+ = P(x+)q∗
x+,x for rik+1 = 1,

P(x)qx,x− = P(x−)q∗
x−,x for rij = 0.

Thus, we must find probabilities that satisfy

P(x)μj = P(xo)λ̄j (rj − 1)μj for rj > 1, (1)

P(x)μik+1 = P(x+)λβk+1 for rik+1 = 1, (2)

P(x)λPj,kpij (s) = P(x−)μij λij (s)
Pj,k

βk

for rij = 0. (3)

Using the fact that P(Nj ≥ m)λ̄j (m) = P(Nj ≥ m + 1) and, analogously, that
P(Nj ≥ m)λj (m) = pj (m), it is easily checked that

P(i1, . . . , ik : r) = μi1 · · · μik

λkβ1 · · · βk

P(0, 1)
∏

m/∈{i1,...,ik}
P(Nm ≥ rm)

satisfy (1), (2), and (3). Hence, with P(0, 1) chosen to make the probabilities sum to 1, the
proposition is proven.

Theorem 1. Suppose that the service distributions G1, . . . , Gn are arbitrary, and let E[Sj ] be
the mean of the distribution Gj . If I is the set of idle servers in steady state then

P(I = {i1, . . . , ik}) = k! 1

λkβ1 · · · βkE(Si1) · · · E(Sik )
P(0),

where P(0) is the probability that all servers are busy. Furthermore, given thatI = {i1, . . . , ik} :
(a) all k! possible orderings of the idle servers are equally likely;

(b) the remaining service times of the busy servers are independent and are distributed
according to their respective equilibrium service distributions;

(c) the amounts of service time already provided on their current customers by the busy
servers are independent and are distributed according to their respective equilibrium
service distributions.
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Proof. Suppose that the service distribution of server i is general Erlang GE(Ni, μi), i =
1, . . . , n. Let P(i1, . . . , ik) be the steady state probability that i1, . . . , ik is the idle servers
vector. Using Proposition 1 and summing P(i1, . . . , ik : r) over all the consistent vectors r (that
is, all r such that rj = 0, j ∈ {i1, . . . , ik}) yields

P(i1, . . . , ik) = μi1 · · · μik

λkβ1 · · · βk

P(0 : 1)
∑

r

∏
m/∈{i1,...,ik}

P(Nm ≥ rm).

Letting {b1 . . . , bn−k} be the complement of the set {i1, . . . , ik}, the preceding equation yields

P(i1, . . . , ik) = μi1 · · · μik

λkβ1 · · · βk

P(0 : 1)
∑
rb1

· · ·
∑
rbn−k

P(Nb1 ≥ rb1) · · · P(Nbn−k
≥ rbn−k

)

= μi1 · · · μik

λkβ1 · · · βk

P(0 : 1)
∏

m/∈{i1,...,ik}
E(Nm). (4)

With P(0) equal to the probability that all servers are busy, from Proposition 1 it follows that

P(0) =
∑

r

P(0 : r) =
∑

r

P(0 : 1)

n∏
i=1

P(Ni ≥ ri) = P(0 : 1)

n∏
i=1

E(Ni).

Using the preceding equation, along with E(Si) = E(Ni)/μi , i = 1, . . . , n, allows us to
rewrite (4) as

P(i1, . . . , ik) = 1

λkβ1 · · · βkE(Si1) · · · E(Sik )
P(0),

which yields

P(I = {i1, . . . , ik}) = k! 1

λkβ1 · · · βkE(Si1) · · · E(Sik )
P(0),

as well as showing that, conditional on I = {i1, . . . , ik}, all k! possible orderings of idle servers
are equally likely.

Moreover, it follows from Proposition 1 and (4) that

P(i1, . . . , ik; r)
P(i1, . . . , ik)

=
∏

m/∈{i1,...,ik}

P(Nm ≥ rm)

E(Nm)
,

which, using Lemma 1, proves that conditional on the set of busy servers their remaining service
times are independent and are distributed according to their respective equilibrium service
distributions. In addition, because the reverse chain has the same stationary probabilities as does
the forward chain, and as the interpretation of ri for the reverse chain is that server i is currently
at stage ri , part (c) also follows. Hence, the theorem is proven when all service distributions are
of general Erlang type. Because any service distribution is the limit of a sequence of general
Erlang distributions, the approach of Barbour [2] can now be used to establish the necessary
continuity. Thus, the theorem is proven for arbitrary service distributions.
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5. Utilizing a Markov chain Monte Carlo simulation method

When n is large the determination of the constant P(0) is computationally intractable.
Indeed, even if it were known, the derivations of other quantities of interest, such as average
waiting time in the system, rate at which customers are lost, etc., remain computationally
intractable. However, these quantities can be determined by using the Gibbs sampler Markov
chain Monte Carlo method to generate a Markov chain whose limiting distribution is the
stationary distribution of the set of idle servers. That is, interpreting Yi as the indicator of
whether server i is idle, we want to generate a Markov chain whose stationary distribution is

p(x1, . . . , xn) = P(Yi = xi, i = 1, . . . , n) = C
k!

λkβ1 · · · βk

∏n
i=1 xiE[Si] ,

where xi = 0, 1, k = ∑n
i=1 xi .

When the current state of the Markov chain is x = (x1, . . . , xn), the Gibbs sampler method
chooses a coordinate that is equally likely to be any of 1, . . . , n. If coordinate j is chosen then
the next state will be (x1, . . . , xj−1, 0, xj+1, . . . , xn) with probability

α = p(x1, . . . , xj−1, 0, xj+1, . . . , xn)

p(x1, . . . , xj−1, 1, xj+1, . . . , xn) + p(x1, . . . , xj−1, 0, xj+1, . . . , xn)

= λE(Sj )βr+1

r + 1 + λE(Sj )βr+1
,

where r = ∑
i �=j xi, or it will be (x1, . . . , xj−1, 1, xj+1, . . . , xn) with probability 1 − α.

The stationary distribution of the successive values of a Markov chain generated by the
preceding equation is the limiting distribution of the set of idle servers. Consequently, we can
approximate the steady state probability that there are exactly k idle servers, call it P(k), by
the proportion of states (x1, . . . , xn) such that

∑n
i=1 xi =k. We can then use our estimates of

P(k), k = 0, . . . , n, to estimate
∑n

k=1 P(k)βk , equal to the proportion of arrivals that enter the
system. Similarly, we can estimate the proportion of arrivals that are served by server i by
letting π(i : k) be the proportion of states of the chain for which xi = 1,

∑n
j=1 xj = k and

then using the estimate
∑n

k=1 π(i : k)βk/k, where the preceding uses the fact that conditional
on the set of idle servers all orderings are equally likely, and so, given that an arrival is eligible,
each server in this set is equally likely to be the one used.

Example 1. In Table 1 we compare the efficiency of the Gibbs sampler method in finding the
multiplicative constant with a discrete event Monte Carlo simulation. We simulated a model
with five servers with deterministic service times, Di = 1/i, i = 1, . . . , 5. The arrival process
is a Poisson process with rate λ = 15. We have also assumed that the component of the
eligibility vectors are independent Bernoulli random variables with mean 1

2 .
The results are based on 500 runs where each run has a length equal to three seconds. The

per run estimator in the discrete event simulation is the proportion of the run simulated time
that all servers are busy; the per run estimator in the Gibbs sampler approach is the proportion
of states having all of its components equal to 0. The actual value of P(0) was analytically
determined and, for each run, we computed A, the absolute value of the difference between
the run estimator and P(0). In Table 1 we list both the sample mean and the sample variance
of the observed A values for the two methods. The estimators of P(0) are the average of the
estimators over all 500 runs.
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Table 1: Estimate for P(0). Exact value of P(0) = 0.151 49.

Estimates of Gibbs sampler Raw simulation

P(0) 0.147 79 0.144 40
E(A) 0.028 13 0.032 10

var(A) 0.000 432 5 0.000 891 3
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