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The boundary-layer stability on a section of a rotating wind turbine blade with an FFA-W3
series aerofoil at a chord Reynolds number of 3 x 10°, with varying rotation and radii, is
studied with direct numerical simulations and linear stability analyses. Low rotation does
not significantly affect transition in the outboard blade region. The relative insensitivity to
rotation is due to a laminar separation bubble near the leading edge, spanwise-deformed
by a primary self-excited instability, promoting the secondary absolute instability of the
Kelvin—Helmholtz (KH) vortices and rapid transition. Moderate increases in rotation,
or moving inboard, stabilise the flow by accelerating the attached boundary layer and
possibly inducing competition between cross-flow and KH modes. This delays separation
and transition. Initially, for high rotation rates or radial locations close to the hub, transition
is delayed. Nevertheless, strong stationary and travelling cross-flow modes are eventually
triggered, spanwise modulating the KH rolls and shifting the transition line close to the
leading edge. Cross-flow velocities as high as 56 % of the free stream velocity directed
towards the blade tip are reached at the transition location. For radial locations farther
from the hub, the effective angle of attack is decreased, and cross-flow transition occurs
at lower rotation rates. The advance or delay of the transition line compared with a
non-rotating configuration depends on the competing rotation effects of stabilising the
attached boundary layer and triggering cross-flow modes in the separation flow region.

Key words: boundary layer stability, transition to turbulence, absolute/convective instability

1. Introduction

System rotation may engender various types of flow instabilities, as demonstrated for
channel flows subject to spanwise rotation (Hart 1971; Lezius & Johnston 1976), in which
regularly spaced stationary streamwise vortices appear at a lower Reynolds number than
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Tollmien—Schlichting (TS) waves (Tritton & Davies 1985; Alfredsson & Persson 1989).
Transition to turbulence occurs through the secondary instability of these vortices,
characterised by their twisting (Alfredsson & Persson 1989; Wall & Nagata 2006).
Experiments indicate that cyclonic rotation (parallel to mean vorticity/shear) is stabilising,
whereas anticyclonic rotation (antiparallel to mean vorticity/shear) is destabilising
(Koyama et al. 1979). This effect also occurs in Blasius (Potter & Chawla 1971; Dechamps
& Hein 2018) and turbulent (Tritton 1992) boundary layers. The stabilisation engendered
by cyclonic rotation reduces the receptivity to free stream disturbances (Masuda &
Matsubara 1990) and changes the optimal perturbation from streamwise vortices (low
rotation) to spanwise vortices (high rotation) (Yecko & Rossi 2004).

More relevant to wind turbine applications are the configurations in which the rotation
axis is orthogonal to the spanwise direction. The generated cross-flow profiles may be
prone to inflectional (cross-flow) instability (Saric, Reed & White 2003). The rotating
disk (von Kdrman 1921) epitomises such flow configuration, where cross-flow vortices
form an angle of 14° to the radius (Gregory, Stuart & Walker 1955). Stability analyses by
Malik (1986) allowed obtaining the neutral curve for stationary disturbances. Balachandar,
Streett & Malik (1992) showed a primary disturbance root mean square (r.m.s.) amplitude
of 9 % of the disk rotation speed for the inception of secondary instability, characterised
by counter-rotating vortices superimposed on the cross-flow structures. Short-wavelength
vortices are more susceptible to secondary instability but not the most amplified primary
disturbances. The presence of axial flow reduces the amplification of the cross-flow
instability as the cross-flow profiles become less inflectional (Garrett, Hussain & Stephen
2010), which may explain the irrelevance of cross-flow modes to transition in the wind
turbine blade study of Jing, Ducoin & Braud (2020). The rotating disk flow is convectively
stable in the circumferential direction but absolutely unstable in the radial direction
above a critical radius-based Reynolds number (Lingwood 1995, 1996), explaining the
insensitivity of transition to the disturbance level (Malik, Wilkinson & Orszag 1981).
The marine propeller investigated by Jing & Ducoin (2020) displayed similar instability
mechanisms to the rotating disk.

Regarding fan blades, cross-flow modes driven by rotation seem too weak to trigger
transition (Pascal et al. 2020; Theiss et al. 2022), even though their growth rates tend to
increase with the rotation rate (Dechamps & Hein 2018). Likewise, experiments showed
that transition on a rotating helicopter blade occurred via two-dimensional TS waves, with
rotation not affecting the transition location (Weiss et al. 2017, 2019, 2020). This may
be due to the attached character of the flow, where Coriolis and centrifugal forces are in
balance, and there is a low cross-flow (McCroskey 1971). Other experiments on rotating
aeronautical propellers showed that the flow transitioned to turbulence over a laminar
separation bubble (LSB), whose starting point shifted abruptly to the leading edge above
a critical radius (Schiilein, Rosemann & Schaber 2012; Lang et al. 2015). The role of
rotation and spanwise flow in this mechanism is unclear. Toppings & Yarusevych (2023)
observed an increased spanwise velocity inside LSBs near a stationary wing tip and root,
triggering modes travelling in the same direction as this flow. In the case of a swept LSB,
the literature suggests that a self-excited LSB instability is little affected by the cross-flow
(Hosseinverdi & Fasel 2016).

In the few detailed numerical simulations regarding the stability of rotating wind
turbine blades, rotation-induced cross-flow instability was observed in some cases (Gross
et al. 2012; Fava, Henningson & Hanifi 2024) but not noted in Jing et al. (2020). The
linear stability analysis of the flow on a wind turbine blade obtained from the boundary
layer equations showed a partial stabilisation of TS waves by rotation (Hernandez 2012).
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There was no mention of cross-flow modes. Thus, the role of cross-flow instability in
transition seems highly dependent on the blade geometry and operating condition. The
cross-flow on wind turbine blades scales with the solidity (s = ¢*/r*), where ¢ is the
chord length, r is the radial position and * denotes dimensional variable (Shen & Sgrensen
1999; Chaviaropoulos & Hansen 2000). Dumitrescu & Cardos (2004) showed, solving
the boundary layer equations for a rotating flat plate, that the outward radial flow scales
with Ro;z, where Ro, = 2*r*/U%,, and §2 and Uy, are the angular and relative inflow
velocities. This phenomenon, denominated centrifugal pumping (McCroskey & Yaggy
1968), is due to an imbalance between centrifugal and Coriolis forces upon flow separation
(Corten 2001). Measurements indicated nearly radial flow in the laminar separated flow
on fan (Schiilein et al. 2012; Pascal et al. 2020) and wind turbine (Savino & Nyland 1985;
Schreck & Robinson 2002; Schreck, Sgrensen & Robinson 2007) blades. There may be
secondary effects of that, such as the creation of a favourable pressure gradient delaying
separation and transition (McCroskey & Yaggy 1968; Du & Selig 2000; Dumitrescu &
Cardos 2004) although such effects are not a consensus (Bosschers 1995; Sicot et al.
2008). From the above, it is clear that low Ro, or high s is conducive to increased
cross-flow effects (Shen & Sgrensen 1999; Dumitrescu & Cardos 2012; Fava et al. 2021).
Unfortunately, transition experiments involving wind turbine blades display limited spatial
resolution of the transition process, besides being focused on the outboard blade region
(high Ro,) (Schaffarczyk, Schwab & Breuer 2017; Dollinger et al. 2018; Reichstein et al.
2019).

The impact of rotation on transition is largely unexplored or subject to debate, yet
comprehending these effects is crucial for improving transition prediction and rotor
performance (Schiilein et al. 2012; Lang et al. 2015; Dechamps & Hein 2018; Jaroslawski
et al. 2022). Despite the available works, experimental details on the transition process
are lacking due to difficulties in acquiring data in rotating frames. Moreover, high-fidelity
simulations of these configurations, which could overcome these difficulties, are scarce.
Therefore, the present work attempts to bridge this gap with direct numerical simulations
of a rotating wind turbine blade section at Re. = 3 x 10°. This value is in the range
of small horizontal axis wind turbines (Karthikeyan et al. 2015), whereas large rotors
typically display Re. = 3 x 10°-1.5 x 107 (Jung et al. 2022). The rotation numbers Ro. =
£2%c* /UL, and Ro, = 2%r*/U}, are varied, including the inboard blade region. The
results are compared with non-rotating simulations. This article extends the investigations
of Fava et al. (2024), performed for Re, = 1 X 10°, fixed radial location and three angles
of attack. Insights into the instability mechanisms are gained with primary and secondary
linear stability theory (LST). The study aims to answer the following questions. (i) Are
transition, flow separation and reattachment shifted upstream (or downstream) by rotation?
(ii) Does rotation induce cross-flow instability? (iii) Are there significant topological flow
changes and modifications in the transition mechanisms generated by rotation?

The paper is divided as follows. Section 2 presents the problem modelling and
numerical methods. Section 3 contains the results, with the mean-flow characterisation
and the assessment of the roles of the rotation rate, radial location and adverse pressure
gradient (APG) on transition. The conclusions are drawn in § 4.

2. Methods
2.1. Model problem

The study concerns a rotating wing section with spanwise width L, = L7 /c* = 0.25, at
r*/R* = 0.68, where L, is the spanwise length, c is the chord length, r is the radial position
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and R is the rotor radius. The asterisk, *, denotes dimensional variables. The aerofoil is a
blend of 96 % of the FFA-W3-241 and 4 % of the FFA-W3-301 profiles (Bjorck 1990) used
in the DTU 10-MW Reference Wind Turbine (Bak et al. 2012).

The simulations are in the rotating frame of reference (fixed to the blade). The Coriolis
and centrifugal terms are included in the right-hand side of the momentum equation. They
are given by

fe = =22yu; — 2,2y + 2] (x — x0),
——

Ay By
= 1202, +2%y — 2.2,(x — x0),
f;; ¢ xY X y( 0) 2.1)
Ay B,

fo = —r2% —2Q2uy + 2Q2yuy,
¢ A

z

where 2, = 2sing, 2y = 2 cos¢ and ¢ is the geometric twist angle; uy, uy and u,
are the velocity components in x, y and z xq is the streamwise location of the rotation
centre along the blade; 4 = (Ay, Ay, A;) is the Coriolis acceleration; B = (By, By, 0) is
the centrifugal acceleration due to the difference between the local radius and the radius
at xg (r); C = (0, 0, C;,) is the centrifugal acceleration over a circular shell with radius r.
Equation (2.1) can be rewritten in vector form as f* = (fx, fy, f;) given by

f = ROC.i'C() +R03.f.Cent| +R0CR0V./~.Cent2’ (22)
A B C

where Ro. = 2*c*/U%, = 2 and Ro, = 2*r*/U}, are the rotation numbers, where
Ui = \/ (Vg‘o)2 + (£2%r%)2, Vs and £2 are the wind and angular velocities (Gross et al.
2012). Note that Ro.Ro, = Rog /s, where s = ¢*/r* = 1/r is the solidity. Buckingham’s
IT-theorem predicts three non-dimensional parameters, considering physical variables
Ui, 2%, r*, p*, n* and c*, where p is the density and p is the dynamic viscosity.
Some possibilities are Re. = p*U% c*/u*, Roc, Ro, and r (or s). We select Re,, Ro. and
Ro, as governing parameters. Here Ro, is directly connected with the ratio between the

rotational and wind speeds A, = 2*r*/VZ by Ro, =1/4/1+ A% and to the angle of
attack AoA = arctan(/lr_l) — ¢. For r* = R*, A, becomes the tip-speed ratio A. Therefore,
although not providing further information than Ro,, the parameters r, s, A, and AoA will
be provided since they present an enhanced physical intuition.

The forcing f enters the incompressible Navier—Stokes equation as follows:

o 4 Vu=—Vp4 ——Vusf
—4u-Vu=— u-+f,
ot P Rel (2.3)

V-u=0,

where u = (uy, uy, u;), p is the pressure and Re. is the chord Reynolds number. All
quantities are non-dimensionalised by the relative free stream wind velocity (U%,) and
chord (¢*). Figure 1 shows the domain and coordinate systems. The y’ axis is orthogonal
to the rotor plane (parallel to the incoming wind), and 7’ is the spanwise direction. Due to
the twist angle ¢, a new coordinate system x, y, z oriented along the chord, parallel to the
leading edge and in the spanwise direction, respectively, is defined and used in the study.
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(a) (b)

Figure 1. Schematic representation of the simulation domain (blue region) and the blade section. The
following symbols are used: §2, rotation vector/rate; r, radius at point xo; L;, width of the simulation domain;
AoA, angle of attack; ¢, twist angle; Uso, Vo, £27, relative free stream, wind and rotation velocities.

The kinematic relations of the rotation domain in the x, y and z coordinate system,
employed as boundary conditions, are given by

Uy = +82rcos¢ + Voo sing,
uy = —2rsing + Voo cos @, 2.4)
1, = +2[(x — x0) cos ¢ — ysin ],

which can be rewritten in terms of the non-dimensional parameters as

Uy = +Ro,cos¢ + Ro,./A,sing,
uy = —Ro, sing + Ro, /A, cos ¢, (2.5
u, = +Ro.[(x — xg) cos ¢ — ysin ¢].

Therefore, given a fixed geometry (including ¢), kinematic and dynamic similarity
can be achieved for the same Re., Ro. and Ro, (or AoA or A,). Note that the boundary
conditions are imposed sufficiently far away from the airfoil, so the induced angle of attack
is negligible. Moreover, no spanwise variation of the geometry, forcing and boundary
conditions is assumed, since L;/r is small.

2.2. Numerical procedure

The direct numerical simulation of the incompressible Navier—Stokes equations (2.3)
is performed with Nek5000 (Fischer, Lottes & Kerkemeier 2008). Nek5000 is
an open-source, highly scalable and portable code based on the spectral element
method (Patera 1984), with minimal dissipation, high accuracy and nearly exponential
convergence. The spectral element method can be viewed as a high-order version of
the finite element method, where the computational domain is discretised into a finite
number of non-overlapping elements. The basis functions, defined on each element,
are polynomials with order N. In this study, N =7 is employed (Deville, Fischer &
Mund 2002). The equations are solved in weak form, using a Py — Py_, formulation,
where Py is the polynomial approximation space of the velocity and Py_, is that of
the pressure. The velocity and pressure fields are expanded with Lagrange interpolants
on Gauss—Lobatto-Legendre and Gauss—Legendre points. As high-order methods present
very low numerical dissipation, numerical instabilities might arise. Thus, the highest
wavenumbers are filtered with an implicit filter (Negi, Schlatter & Henningson 2017).
The time integration is performed via third-order implicit backward differentiation, with
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a third-order extrapolation scheme for the convective term. A Courant—Friedrichs—Lewy
number below 0.4 is guaranteed by using a time step Ar*Uso/c = 5 x 1079,

Adaptive mesh refinement is used to design a non-conforming mesh that reduces
the influence of boundary conditions on the aerofoil, by increasing the computational
domain, and lowers computational cost. The adaptive mesh refinement was implemented
in Nek5000 (Offermans 2019; Massaro, Peplinski & Schlatter 2023d) and extensively used
in turbulent (Peplinski er al. 2020; Massaro, Peplinski & Schlatter 2023b,c; Offermans
et al. 2023; Toosi et al. 2023) and transitional (Massaro et al. 2023a; Massaro & Schlatter
2024) flows. The isotropic s-refinement is based on the interpolation and quadrature errors
measured by the spectral error indicator (Mavriplis 1989). The mesh design process ends
when the final non-conforming mesh (adapted for each case) is frozen. Then we start
to collect data on the final mesh (Massaro et al. 2024). Further details can be found in
Offermans (2019) and Massaro (2024). The wall resolution is evaluated with the largest
distance between two Gauss—Lobatto—Legendre points normalised by the viscous length
scale (/*). The mean values respect Ax™ < 8.4, Ayt < 1.3, Azt < 4.0 on the suction
side and AxT <20.0, Ay" < 0.5, Az" < 5.1 on the pressure side, where * indicates
normalisation by [*.

The computational domain extends in the horizontal, vertical and spanwise directions
from x = —20 to x =20, y = —20 to y=20 and z =0 to z = 0.25 (coordinates in
figure 1). The computational domain is enlarged 2.5 times in the spanwise direction and
13 times in the x and y ones compared with Fava et al. (2024). The aerofoil extends from
x = 0tox = 1. A Dirichlet velocity boundary condition (2.4) is imposed at the inflow at
x = —20. A Neumann boundary condition of the form (—pl + 1/Re.Vu) - n = 0, where
1 is the identity matrix and n is the outward normal unitary vector, is applied to the outlet
face at x = 20. Finally, periodic boundary conditions are applied in the spanwise direction
(z =0 and z = 0.25). To avoid any dependency of transition on the (minimal) numerical
noise, a tripping forcing technique (Schlatter & Orlii 2012) is used in the free stream
flow, positioned 5 % of the chord length upstream of the blade leading edge (x = —0.05).
The forcing term is a weak stochastic volume force acting on the right-hand side of the
momentum equation, and it is given by

(x — x0)? yﬂ

22

F=f(z,t)eXP|: 2.6)

@ 1) = Tsg(2) + Tulll — b(0)1h' (2) + b))k T (2)}.

The function f(z,f) consists of two terms, corresponding to steady and unsteady
perturbations, with amplitudes T and T, respectively; [, and [, are the spatial Gaussian
attenuation of the forcing region in x and y, b(t) = 3p> — 2p>, p = t/t; — i, i = int(t/ty);
2(2) and h'(z) are Fourier series with unit amplitude for all wavenumbers below 27/l and
zero amplitude otherwise. The parameters are chosen as [, = 1.8 x 1073, ly =4.6 x 1074,
[, =7.8x 1074, T,=0,T, =1 x 107% and 7, = 7.9 x 10~*. Section 3.2.2 assesses the
impact of the introduced noise on the instability mechanisms.

Several cases with varying Ro, (AoA or A,;) and Ro, for fixed Re, = 3 X 10° are
studied. The geometric twist angle ¢ = 4.8° is kept constant. Table 1 summarises the main
parameters employed in the simulations. The non-rotating cases (4B and 5B) are obtained
by considering f = 0 in (2.3) (no Coriolis and centrifugal effects), and the same boundary
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Case r s AoA (°) Ay Ro, Ro. (= 2) Status
4A 18.2 0.0549 12.8 3.1487 0.9531 0.0523 Rotating
4B 18.2 0.0549 12.8 0 0 0 Non-rotating
4C 6.08 0.1645 12.8 3.1487 0.9531 0.1570 Rotating
4D 3.04 0.3289 12.8 3.1487 0.9531 0.3140 Rotating
5A 6.08 0.1645 42 6.2975 0.9876 0.1627 Rotating
5B 6.08 0.1645 4.2 0 0 0 Non-rotating

Table 1. Parameters of the studied cases. The following definitions are made: r = r*/c, non-dimensional radial
location; s = ¢/r*, solidity; AoA, angle of attack; A, = 2*r*/V; Ro, = 2%r* /Uso; Ro, = 2%c/Ux = £2.

conditions (see (2.5)) as their rotating counterparts (cases 4A and SA), but setting u, = 0.
Note that cases within the same group (4A—-4D, 5A and 5B) share the same AoA.

3. Results

The results presented in the following sections concern the suction side of the blade, as it
is the most crucial in terms of transition. In the remainder of the manuscript, the quantities
are non-dimensionalised with the relative free stream velocity (U},) and chord length
(c*) or derivative quantities if not otherwise indicated. Furthermore, y will indicate the
wall-normal coordinate.

3.1. Outline of mean results

Figure 2 compares the spanwise- and time-averaged pressure distributions. The pressure
progressively decreases in the second half of the chord on the suction side with the
rotation rate for cases 4B, 4A, 4C and 4D. On the pressure side, the only significant
difference occurs in case 4D, presenting a higher pressure than its lower rotation
counterparts. The improved lift of case 4D may be associated with cross-flow transition
(see §3.3), suggesting that this phenomenon may be a path for rotational augmentation
(Himmelskamp 1947), as also highlighted by Gross et al. (2012). Cases SA and 5B present
a significantly reduced APG on the suction side due to a higher Ro, and lower angle
of attack (AoA = 4.2°). However, unlike the four-series cases, the pressure difference
and, consequently, the lift is lower for the rotating blade (case 5A) compared with the
non-rotating blade (case 5B).

Table 2 summarises the spanwise- and time-averaged quantities related to the transition
process. In case 4D, the time series consists of two windows, before and after the
occurrence of cross-flow transition at time 7}. The split is necessary as the flow switches at
Ty, changing significantly. xp,, , xp, and xp, denote the streamwise locations of separation,
reattachment and maximum height of the LSB. The LSB edge is defined as the zero
streamwise mass-flux line, i.e. (x,yp) fulfilling [3”(U).(x, §)d§ = 0, where y; is the
LSB height and (U);, is the spanwise- and time-averaged streamwise velocity (Avanci,
Rodriguez & Alves 2019). Thus, A, = max, yp is the maximum LSB height, and ;. /§*
is this quantity scaled with the local displacement thickness (§*). Here x,, ... and u, jnax
correspond to the streamwise location of the maximum reverse flow and the value of the
latter, respectively; u.,,, is the cross-flow velocity inside the boundary layer at the transition
location xy-, the latter defined as the streamwise location of maximum boundary layer
shape factor H = 6* /6 (Jaroslawski et al. 2023); 6 is the momentum thickness.
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Suction side

e

Pressure side

0 0.2 0.4 0.6 0.8 1.0

Figure 2. Spanwise- and time-averaged pressure distributions.

Case Window  xp, Xby Xy Mmar X 10° Mpan/8F Xup e Urmax Uecr, Xir
4A — 0.017 0.082 0.061 1.513 0.687  0.064 —0.126 —0.048 0.061
4B — 0.018 0.088 0.066 1.454 0.661 0069 —0118 0 0.066
4C — 0.033 0113 0.079 0.447 0269 0073 —0.011 —0.216 0.073
4D T<T, 0348 0484 0452 3.837 0.679 0455 —0107 —0.283 0.448

T>T, 0013 003 0.024 0.244 0224  0.020 —0.010 —0.561 0.020
5A — 0350 0.558 0.488 6.718 0.772 0536  —0.067 —0.116 0.479
5B — 0328 0.523 0479 7.571 0.821 0502 —0206 0 0.467

Table 2. Spanwise- and time-averaged transition-related quantities. The following definitions are used: x;,,
Xp, and xy,,,., separation, reattachment and LSB maximum height locations; A4 and §*, maximum LSB
height and local displacement thickness; xy,,,. and x;, maximum reverse flow and transition locations;
Ur, max, Maximum reverse velocity; uc,,,, cross-flow velocity at x;.

3.2. Outboard blade region: null and low rotation speed

3.2.1. Flow characteristics
Case 4A corresponds to the outboard blade region (high radial position) and low
rotation speed, whereas case 4B is its non-rotating counterpart. Figures 3(a) and
3(b) display the isosurfaces of A = —100 (normalised by Ugo/cz) coloured by the
instantaneous streamwise velocity. Two-dimensional spanwise rolls form near the leading
edge, characteristic of a Kelvin—Helmholtz (KH) instability due to the inflectional velocity
profiles in a flow separation region (Dovgal, Kozlov & Michalke 1994; Brinkerhoff &
Yaras 2011; Boutilier & Yarusevych 2012). The rolls correspond to the nonlinear growth
phase of the instability near the location of maximum separation height (Toppings &
Yarusevych 2023). The central frequency of the unstable region of KH modes typically
determines the mean vortex shedding frequency (f;) (Kirk & Yarusevych 2017), which
lies in the range fi6,/us; = 0.005-0.016, where 6; and u; are the momentum thickness and
edge velocity at the separation point (Pauley, Moin & Reynolds 1990; Brinkerhoff & Yaras
2011). Cases 4A and 4B present f;05/u; = 0.011-0.012 (f; = 84.7), in agreement with the
frequency of KH modes in the literature.

The A, isosurfaces indicate two turbulence wedges fixed at given spanwise locations
(independent of the numerical noise parameters), where the KH rolls and turbulence spots

999 A54-8


https://doi.org/10.1017/jfm.2024.913

https://doi.org/10.1017/jfm.2024.913 Published online by Cambridge University Press

Transition to turbulence on a rotating wind turbine blade

Figure 3. The Ap-structures (1, = —100) coloured by the streamwise velocity (a,b) and isocontours of
streamwise vorticity (wy) on a near-wall plane (c,d) for cases 4A (a,c) and 4B (b,d).

appear earlier. These wedges and the transition location start slightly more upstream in the
rotating case (table 2). The appearance of the wedges in both cases demonstrates that they
are unrelated to rotation. The isocontours of instantaneous streamwise vorticity (w,) on a
near-wall plane, in figures 3(c) and 3(d), provide further insight into the wedge structure.
The spanwise flow in the —z direction in the rotating case creates w, < 0 upstream of
the wedges, whereas w, = 0 in the non-rotating case. Two pairs of opposite-sign vorticity
regions occur where the turbulence wedges are located. There is a fast turbulent breakdown
to small-scale turbulence in the region where vorticity changes sign inside these two pairs.

Figure 4 presents the w, contours on a cross-section passing through these cells at
x = 0.05. In case 4B, there are three lobes in the vertical direction, located in y ~ 0 — y,,
y &y, —y;,andy ~ y; — yn, where y, (dash—dotted line), y;, (dashed line) and y,, (dotted
line) are the locations of the zero streamwise velocity, inflection point and maximum
streamwise velocity, respectively. The peak amplitude of the intermediate lobe agrees with
the zero streamwise mass-flux line (yp, solid line). The structure resembles the eigenmode
obtained with the linear stability analysis on the yz plane of an LSB (Rodriguez, Gennaro
& Souza 2021). However, the latter found the varicose (symmetric) KH mode to be
more unstable, whereas a sinuous KH mode, antisymmetric around the shear-layer crests,
appears here. Furthermore, the most external lobe was not observed in Rodriguez et al.
(2021), possibly due to the accelerating boundary layer in the current simulations, with
peak velocity at y,,. Secondary instabilities occur and vorticity oscillations appear in the
outer lobe, as shown in figure 4(b). Interestingly, streaks present a similar destabilisation
mechanism where high-frequency free stream noise excites secondary instabilities in the
outer region of the boundary layer (Brandt, Schlatter & Henningson 2004; Zaki & Durbin
2005). This noise cannot penetrate deeper into the boundary layer due to shear sheltering
(Hunt & Carruthers 1990). In case 4A, the lobes are not centred around the shear layer
crests but rather shifted to lower z besides presenting stronger vorticity. The mode is still
sinuous, antisymmetric around the shifted spanwise locations and destabilisation occurs
over the external lobes

Figure 5 shows a top view of the time-averaged streamwise ((U);) and spanwise ({W),)
velocities on a wall-parallel plane at y = 1 x 107> (y*/hypar = 0.67 or y*/8* = 0.45 at
Xh,..)- The mean streamwise velocity indicates that the LSB (dark blue region) features
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Figure 4. Isocontours of streamwise vorticity on a cross-sectional plane at x = 0.05 for cases 4A (a) and
4B (b). The dash—dotted line represents the end of the mean reverse flow region (y,), the solid line depicts the
mean streamwise zero mass-flux line (yp), the dashed line is the mean normal location of the inflection point
closest to the wall (y;,) and the dotted line denotes the mean maximum streamwise velocity locus (y).
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Figure 5. Contours of time-averaged streamwise (a,b) and spanwise (c,d) velocities on a plane parallel to the
wall at y = 0.001 for cases 4A (a,c) and 4B (b,d). The solid and dashed white isolines indicate the reverse flow
region at y = 0.001 and the first node above the wall.

a steady spanwise modulation with two wavelengths. The spanwise locations of more
premature separation match those where the turbulence wedges develop in figure 3.
Moreover, the regions with higher reverse flow (darkest shade of blue) are antisymmetric
about a longitudinal (xy) plane in the rotating case and symmetric around it in the
non-rotating case. The difference may arise from the preferential amplification of modes
with spanwise wavenumbers (8) of the same sign as the spanwise flow (Toppings &
Yarusevych 2023). Symmetry around 8 = 0 occurs in the non-rotating case since there
is no preferential growth direction. The mean spanwise velocity indicates the same cells
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Figure 6. Contours of the ratio between the time-averaged normal location of the streamwise velocity profile
inflection point (y;, ) and the local height of the separation bubble (y;) for cases 4A (a) and 4B (b). The white
isoline indicates y;, /y» = 1, and the red isoline denotes reverse flow u, = —0.12.

as the streamwise vorticity. Rotation generates a spanwise flow of —8 % at the leading
edge. The extrema of (W), reaches —19.9 % to +9.9 % inside the cell in the rotating case,
whereas this value spans £19.1 % in the non-rotating case. The lower spanwise velocity
in the rotating case is due to the tip flow on top of which the cellular pattern develops.

The spanwise modulation of the LSB may have two roots (Rodriguez & Theofilis 2010).
The first is a primary absolute instability (Huerre & Monkewitz 1990) of the LSB for
minimum reverse flows of 12 %-25 % of the free stream velocity (Hammond & Redekopp
1998; Alam & Sandham 2000; Rist & Maucher 2002; Fasel & Postl 2004; Diwan &
Ramesh 2009; Rodriguez, Gennaro & Juniper 2013). Even though the time-averaged
reverse flow before three-dimensionalisation is —15.7 % and —11.8 % in the rotating and
non-rotating cases, respectively, the inflection point in the streamwise velocity profiles is
not under the zero streamwise mass-flux line, necessary for absolute instability (Avanci
et al. 2019). The second possible mechanism is a self-excited centrifugal instability for
minimum reverse flows of ~7 % (Rodriguez & Theofilis 2010; Rodriguez et al. 2013).
As demonstrated by Theofilis, Hein & Dallmann (2000), this leads to a stationary,
three-dimensional global mode in the LSB. The new three-dimensional base flow
destabilises further convective KH modes (Rodriguez et al. 2021; Fava et al. 2023a); the
relative phases of the wave are spanwise distorted, inducing oblique modes whose maxima
occur over regions with the highest reverse flow (Rodriguez & Gennaro 2019). This agrees
with the breakdown occurring over these regions in the current simulations. Furthermore,
the excitation of oblique waves can trigger the oblique instability mechanism, known to
lead to a rapid breakdown to small-scale turbulence (Rist & Maucher 2002; Fava et al.
2024).

The three-dimensionalisation induced by the centrifugal global mode may create strong
enough reverse flow pockets to trigger an absolute secondary instability (Rodriguez et al.
2021). The time-averaged maximum reverse flow in figure 5 reaches —22.3 % near the
wall at x =0.078, y =5.1 x 1074, 7 =0.211 in case 4A, and —19.0% at x = 0.072,
y=5.1 x 1074, z=0.192 in case 4B. These values are well above their spanwise- and
time-averaged counterparts of —11.0 % and —10.5 %, respectively (table 2). A possible
secondary absolute instability of the KH rolls is assessed in figure 6, which shows the
contours of the ratio between the normal location of the wall-nearest inflection point
(yi,;) and the zero streamwise mass-flux height (y,). The white isoline corresponds to
¥i;/yp = 1, inside which a necessary condition for absolute instability (y;, /y, < 1) is met
(Avanci et al. 2019). The red isoline marks the reverse flow of —12 %, deemed also a
required condition for this phenomenon. In case 4A, these two areas overlap close to the
LSB trailing edge in a way that is oblique to the streamwise direction. In case 4B, these
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Figure 7. Spectra of streamwise velocity perturbations (maximum |u'| over f) near the leading edge of the
aerofoil for cases with (4B) and without (4B-F;- = 0) introduced noise. The inset indicates the relative locations
of the probes.

regions share a much smaller overlap, closer to the LSB leading edge in spanwise locations
with earlier separation. In both cases, the turbulent spots nucleate close to the overlap
region. Therefore, it is likely that an absolute secondary instability of the KH rolls due to
the spanwise deformation of the separation bubble by a primary self-excited centrifugal
instability is responsible for triggering transition.

3.2.2. Receptivity and sensitivity of the results to the introduced noise

Receptivity is analysed in the non-rotating case (case 4B) considering the streamwise
velocity perturbation (|u’|) spectra inside (x =0 — 0.06, y = 6*) and outside (x =0,
y = 0.05) the boundary layer. Note that the noise source is located at the latter location.
The results for a corresponding case without introduced noise (case 4B-Fy. = 0) are shown
to investigate the dependence of the boundary-layer dynamics on the excitation source.
Figure 7 shows the results. Except possibly for 8 = 0 near the noise source, there are only
small amplitude differences between cases 4B and 4B-F;. = 0, with the general trend of
the curves remaining the same. The maximum disturbance amplitude at x = 0.02-0.06
occurs for B = 50.3 (88* = 0.08, n, = L,8/(2m) = 2 wavelengths), related to the mode
deforming the LSB. Peaks for this 8 and its harmonics appear at x = 0 inside and outside
the boundary layer. This fact and the relative insensitivity to the introduced noise suggest
that information about the three-dimensionalisation of the flow propagates upstream,
supporting the claim of a self-excited instability mechanism (Huerre & Monkewitz 1990;
Theofilis et al. 2000; Jing & Ducoin 2020).

3.2.3. Spectral and stability analyses

To assess the spanwise variation in the stability characteristics, computations with spatial
local LST based on the linearised Navier—Stokes equations considering rotation effects are
performed over several spanwise slices of the time-averaged flow. Further details can be
found in Appendix A. The frequency and spanwise-wavenumber envelope of growth rates
for cases 4A and 4B is shown in figure 8(a). The modes become unstable upon separation,
clearly suggesting the role of the separated shear layer in their appearance. The growth
rates are higher over the planes z = 0.05 and z = 0.15 in the rotating case and z = 0.1 and
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Figure 8. (a) Growth rate (maximum over f and ) and (b) neutral curve (maximum over 8) from local LST
for several spanwise slices of the time-averaged flow of cases 4A and 4B. The line with circles in the neutral
curve indicates the most-unstable frequency.

z = 0.2 in the non-rotating case, agreeing with the locations of stronger reverse flow (see
figure 5), as also noted in other works (Rodriguez & Gennaro 2019; Fava et al. 2023a). This
helps explain the earlier formation of turbulent spots over these planes. Figure 8(b) shows
the neutral curve as a frequency and streamwise position function (maximum over ). The
most amplified frequency, marked with circles, is initially high but decays as the height
of the separated shear layer increases. The frequencies over planes with higher reverse
flow tend to be higher. Note that the inflectional velocity profiles allow a broad range
of unstable frequencies, including quasisteady perturbations (Dovgal et al. 1994). This
analysis assumes slow variations in x and z, which may not be valid, especially considering
the spanwise direction. Thus, considering the spanwise modulation of the mean flow is
necessary and the analysis will be carried out later (Saxena, Leibovich & Berkooz 1999;
Kawahara et al. 2003; Marant & Cossu 2018; Rodriguez & Gennaro 2019; Fava et al.
2023a).

Figure 9 shows the |u’| boundary-layer spectra for cases 4A and 4B. Due to the inferred
symmetry, only § > 0 is displayed. In the rotating case, a high-amplitude region appears
at fr ~ 87, especially visible at x = 0.04-0.05, attributed to KH modes. The excitation
of oblique (B8 #0) modes for this frequency is due to the rotation-generated spanwise
flow (Fava et al. 2024). Note that this frequency agrees with the most amplified mode
predicted by LST analysis in figure 8(b). In the non-rotating case, KH modes appear for
a wide range of frequencies but are mainly two-dimensional (8 = 0). Steady modes with
p = £50.3 (n; = £2), linked to the LSB deformation, also appear in both cases. The
interaction between plane KH modes (f/ff, n;) = (1, 0) and the steady distortion of the
LSB (0, £2) also excites oblique modes (1, 2), resembling the mechanism described
by Marxen et al. (2003). This mechanism is typically attributed to the growth of oblique
convective TS waves in the attached boundary layer (Brinkerhoff & Yaras 2011; Michelis,
Yarusevych & Kotsonis 2018). However, here, this interaction seems to be mainly driven by
the (0, £2) global mode and (1, 0) KH mode, leading to the destabilisation of the oblique
KH mode (Rodriguez & Gennaro 2019).

A two-dimensional eigenvalue problem over cross-planes (yz) is employed to study the
secondary stability of the spanwise-deformed base flow of the LSB (Rodriguez et al.
2021). Since the modulation is steady, the time-averaged flow is considered as the base
flow. Furthermore, since the growth rates are very high, the local approach is expected to
yield similar results to non-local methods such as the plane-marching parabolised stability
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Figure 9. Spectra of streamwise velocity perturbations (|u/|) at y = §* for cases 4A and 4B.
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Figure 10. Growth rate from linear stability analysis over the cross-sectional planes for cases 4A and 4B for
x = 0.03 (a) and x = 0.05 (b).

equations (three-dimensional parabolised stability equations) (Rodriguez & Gennaro
2019). The spatial stability problem is considered, where o modes with a given frequency
f are spatially amplified with growth rate —¢; (Schmid & Henningson 2001). Appendix B
presents further details. Figure 10 shows the growth rates as a function of f. At x = 0.03,
cases 4A and 4B display a local amplification maximum at f = 90-95 with phase speeds
cp = (0.78-0.77)U,, where U, is the local edge velocity. The maximum growth rates
are higher for the non-rotating case at this location, which lies slightly downstream of
separation. This may be related to the stabilising effect of rotation in the attached flow
and front part of the LSB. Downstream, at x = 0.05, the maximum growth rate occurs at
f =70, with ¢, = (0.79-0.82) U,. The trend in the growth rates is reversed here, with the
rotating case presenting slightly higher amplification since rotation becomes destabilising
upon stronger reverse flow (Fava et al. 2024). The observed phase speeds are higher than
those for KH rolls in an undulated shear layer (c, = (0.33-0.36)U, ) found by Rodriguez
et al. (2021) since the time-averaged flow here already contains the distortion introduced
by the KH modes. Indeed, the phase speeds here present values close to the range of
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Figure 11. Eigenmodes (absolute value) of the stability analysis over the cross-sectional planes at x = 0.03 for
cases 4A (a,b) and 4B (c,d). The dash—dotted line represents the end of the mean reverse flow region (y,), the
solid line depicts the mean streamwise zero mass-flux line (y), the dashed line is the mean normal location of
the inflection point closest to the wall (y;, ) and the dotted line denotes the mean maximum streamwise velocity
locus (ym)-

the varicose and sinuous secondary instability of streaks, with ¢, ~ 0.75U, (Vaughan &
Zaki 2011) or ¢, = 0.87U, (Andersson et al. 2001). The frequencies of the most unstable
modes found in the stability analysis (f = 70-95) agree with regions of high amplitude in
the spectra of figure 9, suggesting that the secondary instability of the KH modes in the
distorted shear layer is responsible for those features in the spectra.

Figure 11 shows the most amplified eigenmodes at x = 0.03. The reverse flow edge
(dash—dotted line) and zero-streamwise mass flux line (solid line) nearly coincide
since separation is weak. Furthermore, the inflection point line (dashed line) is not
spanwise-deformed. The normal shear is higher than the spanwise one, and the most
unstable mode (first mode) is a varicose instability, partially symmetric around the shear
layer crests in case 4A and fully symmetric around them in case 4B (Swearingen &
Blackwelder 1987; Brandt ef al. 2004), as shown in figures 11(a) and 11(c). The maximum
amplitude occurs over the LSB edge (solid line), lying on top of the LSB maximum height
in the non-rotating case and shifted to lower z by the spanwise flow in the rotating case.
A second high-amplitude region appears above the inflection point line, and a third lobe
arises close to the maximum streamwise velocity line (dotted line). The mode structure
resembles that of the secondary instability of KH rolls in a streaky base flow (Fava et al.
2023a). The second most unstable mode (figures 116 and 11d) is of the sinuous type,
partially antisymmetric around the shear-layer crests in case 4A and fully antisymmetric
around them in case 4B. This mode relies on the spanwise shear and presents only a slightly
lower growth rate than the varicose mode. Interestingly, the left side of the sinuous mode
presents a higher amplitude in the rotating case and the mode is shifted to the left. In case
4B, the mode is perfectly antisymmetric around the crests.
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Figure 12. Absolute stability analysis over spanwise locations of maximum reverse flow (z = 0.211 for case 4A
and z = 0.192 for case 4B) for 8 = 0. Panel (a) shows the cusp map for case 4B at x = 0.0723. The «-spacing
is 1, and the cusp is represented with a red circle. Panel (b) shows the absolute growth rates.

The presence of absolute instability is evaluated with the cusp map (Kupfer, Bers &
Ram 1987; Fava et al. 2024). The method is applied over spanwise slices deemed more
critical according to figure 6. The growth rates are higher for § = 0, for which the results
are shown. A cusp in the w; > 0 semiplane is considered unstable. This feature is found
in both cases, and the cusp is shown with a red circle in figure 12(a) for case 4B. It
presents low frequency (f ~ —0.3) and growth rates, where the negative sign of f can
be redefined to be positive with a change of variables involving wavenumbers in the x
and z directions. The streamwise evolution of w; is shown in figure 12(b), where case 4B
becomes unstable earlier, but higher growth rates are obtained in case 4A at x = 0.07.
This is due to the destabilising rotation role inside the LSB, increasing the reverse flow.
These results indicate that a secondary absolute instability of the KH rolls occurs, likely
responsible for the localised breakdown to turbulence over specific spanwise locations, as
seen in the simulations. Note that a finite region of absolute instability, as found here,
is necessary for global instability (Huerre & Monkewitz 1990). The occurrence of an
absolute secondary instability of the KH rolls, where the primary instability is the global
mode responsible for the three-dimensionalisation of the LSB, could be the root of the
abrupt transition near the leading edge above specific radial locations observed in the
literature (Schiilein et al. 2012; Lang et al. 2015). This effect is independent of rotation,
but the latter may change the location of start and growth rate of the absolute instability.

3.3. Outboard blade region: large rotation speed variation

3.3.1. Flow characteristics

This section investigates the role of increasing rotation speed (Ro.) for the same Ro, (or
angle of attack) of cases 4A and 4B. This is equivalent to moving towards lower radial
locations so that the free stream azimuthal velocity remains constant. Case 4C presents
Ro. = 0.1570 (r = 6.08), a rotation rate three times higher than case 4A. Figure 13 shows
the isosurfaces of 1 = —100 coloured by the streamwise velocity for case 4C. The LSB
moves downstream (x = 0.033-0.113) compared with cases 4A and 4B, presenting a much
lower height (see table 2). Furthermore, the higher Ro. suppresses the turbulence wedges,
delaying the transition to x = 0.073, which suggests the mitigation of the global mode that
three-dimensionalises the LSB and absolute secondary instability of the KH rolls. The
latter develops 16 hairpin structures or lambda vortices (8 = 402.1, 8§* = 0.7, orn, = 16)
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Figure 13. The Az-structures (12 = —100) coloured by the streamwise velocity for case 4C. Panel (b) shows a
magnified view of transition.

along the span before breakdown to turbulence, as highlighted in figure 13(b). The
secondary instability of KH modes in separated shear layers may lead to the appearance of
streamwise vortical structures (‘ribs’) in the braid region between rolls in the fundamental
case (Jones, Sandberg & Sandham 2008; Marxen, Lang & Rist 2013) and vortex pairing,
doubling the streamwise wavelength, in the subharmonic case (Metcalfe ef al. 1987; Lin &
Pauley 1996; McAuliffe & Yaras 2009; Fava et al. 2023b). However, ‘ribs’ and vortex
pairing are not observed. This is possible due to a thin separated shear layer, with a
strong wall influence, where the primary mode has characteristics of TS waves (Rist &
Maucher 2002). Lambda vortices have been observed in other studies on short LSBs
(Alam & Sandham 2000; Burgmann & Schroder 2008; Brinkerhoff & Yaras 2011). In
the fundamental or K-type resonance (Klebanoff, Tidstrom & Sargent 1962), TS waves
interact with a pair of oblique waves of the same frequency, whereas in the subharmonic
or H-type resonance (Herbert 1988), the oblique disturbances present half the frequency
of the TS waves. A detuned resonance is also possible but rare (Liu, Zaki & Durbin
2008). These mechanisms lead to the formation of lambda vortices, which seem staggered
considering two consecutive rows in the streamwise direction, suggesting a subharmonic
mechanism. Note that unsteady, three-dimensional disturbances, as introduced in the
simulations, favour the subharmonic route (Marxen & Rist 2010). Nevertheless, removing
or modifying the noise source did not affect the hairpin vortices. Moreover, 8 = 402.1
agrees well with the most amplified subharmonic secondary instability mode in an LSB
over an aerofoil studied by Maucher, Rist & Wagner (2000) for close values of Regx.
Thus, rotation promotes the flow stabilisation in case 4C. Case 4D assesses the effect
of a higher rotation rate and more inboard location (r = 3.04), with Ro. = 0.3140, six
times the values of cases 4A and 4C, respectively. Figure 14 shows the isocontours of
Ay = —100 for case 4D for times T < Tp, T =~ Tp, T > Tp, with T being the time when
cross-flow transition starts. In the first instant, in figure 14(a), an LSB is present in the
region x = 0.348-0.484 with a reverse flow of —10.7 % (see table 2). The KH rolls are
formed and break down to turbulence, leading to transition at x;- = 0.448. Note that this
is much more downstream than in case 4C, which allows a considerably larger LSB in
case 4D. The cross-flow velocity at the transition location is u,, = —28.3 %, with the
negative sign indicating tip flow. However, this flow configuration abruptly changes at
T =~ Ty, as depicted in figure 14(b), where oblique structures are present in x = 0.33-0.37.
This is better seen in region T of figure 14(d). One can define the angle ¥ = @ — 5,
where @ = arctan (8/«,) is the wave angle associated with the wavevector k = (o, B),
and n = arctan (W, /U,) is the angle of the inviscid streamline U, = (U,, W,) (Arnal
& Casalis 2000). Here, @ ~ —60° and n &~ 31°, which yields ¥ ~ —91°. This value
of W agrees with those of cross-flow modes (Saric et al. 2003). Furthermore, the LST
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Figure 14. The Az-structures (1 = —100) coloured by the streamwise velocity for case 4D: (a) T < Tp;
b)Y T~Tp; (c) T > Tp; (d) T~ Tp. In (d), T and S denote the travelling and stationary cross-flow modes.
The wavevector (k) and inviscid streamline vector (U,) are represented with red and blue arrows, respectively.

Figure 15. Detailed view of the A-structures (1 = —100) coloured by the streamwise velocity for
T=T <Tpin(a)and T = T, such that T} < T> < T} in (b) for case 4D.

results of Gross et al. (2012) for a rotating blade indicate @ = —60.9° for the most
unstable travelling cross-flow mode (f = 15.9 and g = 180), which nearly agrees with
the wave angle observed in the current simulations. It is also worth noting that n, = 7.16
for B = 180, almost matching the eight vortices along z in figure 14(d). Three oblique
vortices appear in x = 0.46-0.51 (region S). They are inclined in a different direction than
the travelling cross-flow modes and present @ = 55° and n ~ 36°, giving ¥ ~ +91°.
This value matches that obtained by Gross et al. (2012) for the most unstable stationary
cross-flow disturbance (f = 0 and g = 70). Furthermore, 8§ = 70 corresponds to n, =
2.79, nearly agreeing with the three vortices in the simulations. Observe that the travelling
cross-flow modes form near the leading edge of the LSB, whereas the stationary ones
appear close to reattachment. Gross et al. (2012) found that the stationary modes were
more unstable than the travelling ones. This is unlike swept-wing flows, where the latter
typically dominates (Borodulin et al. 2019).

Figure 15 shows a detailed view of the KH rolls at two time instants 77 and T, > T
before cross-flow transition. At Ty, the rolls undergo a fundamental secondary instability
where ribs form in the braid region between rolls (Metcalfe et al. 1987). The large
number of filaments along the span resembles the short wavelength instability described by

999 A54-18


https://doi.org/10.1017/jfm.2024.913

https://doi.org/10.1017/jfm.2024.913 Published online by Cambridge University Press

Transition to turbulence on a rotating wind turbine blade

He et al. (2017). At the later time 7>, the KH rolls display a spanwise modulation with eight
wavelengths, the same as the travelling cross-flow modes, suggesting the latter introduces
a secondary instability into the former, leading to premature breakdown of the rolls. The
modulation of the base flow is a known feature of cross-flow modes, which saturates when
their amplitude reaches 20 % (Saric et al. 2003). The saturated state can persist long before
high-frequency convective secondary instabilities are excited, rapidly breaking down to
turbulence (Wassermann & Kloker 2002), as seen here. The most unstable secondary
instability frequency is one order higher than that of the primary mode, with the sinuous
mechanism typically being the most unstable, followed by the varicose one (Malik, Li
& Chang 1994; Malik et al. 1999). After the start of cross-flow transition (T > Tj), the
transition line moves to the leading edge, as shown in figure 14(c). The cross-flow velocity
presents an exceedingly high value of —56 % at the transition location (see table 2), and
the structures forming there resemble cross-flow vortices. Case 4D is prone to cross-flow
instabilities due to the higher rotation, which generates a higher cross-flow since u; scales
with Ro. (see (2.5)). In particular, u.. &~ —30 % where stationary and cross-flow modes
first appear, much higher than the 5 %—10 % required for this instability (Arnal & Casalis
2000). These high cross-flow values are enabled particularly in the LSB, where the reverse
flow provides a means for rotation to generate a cross-flow profile, which presents an S
shape and is highly unstable. The fact that APG is lower in case 4D also allows transition
via the cross-flow mechanism since its growth is not bypassed by that of TS and KH modes
(Arnal & Casalis 2000; Borodulin et al. 2019).

3.3.2. Spectral and stability analyses

Local LST analyses are performed for cases 4C and 4D. Since the flow is sufficiently
spanwise-uniform, the base flow is assumed to be the spanwise- and time-averaged flow.
The most unstable disturbances in case 4C, corresponding to KH modes, present maximum
amplification near the leading edge, followed by a stabilisation as the flow transitions. The
growth rates are lower than those from cases 4A and 4B, confirming the stabilisation
promoted by rotation. Considering case 4D T < Ty, the highest growth rates occur at
x = 0.41 since the LSB and transition are delayed by rotation. Case 4D T > T}, presents
high amplification near the leading edge, surpassing case 4C. The unstable region is
relatively short due to the quick turbulent breakdown. Figure 16(b) shows the frequency
neutral curve for the most unstable 8. The most unstable frequencies (line with circles)
are relatively close, considering cases 4C and 4D, and linked to KH modes. The relatively
high frequency of the modes near the leading edge explains the considerable amplitude
observed in the spectra for frequencies such as f = 80-90. The most unstable mode
frequency quickly drops with x, scaling inversely with the boundary-layer thickness
(Brinkerhoff & Yaras 2011). This frequency converges to that of travelling cross-flow
modes (f ~ 16) as x increases in case 4C T > T}, especially for x > 0.13. Note that the
cross-flow modes only become the most unstable disturbance near reattachment. Before
that, the KH instability displays the maximum growth.

Figure 17(a) shows the growth rates as a function of f and g for cases 4D:- T < T}
and T > T} at specific streamwise locations. There are two unstable regions at x = 0.43
for case 4D (T < Tp) in figure 17(a). The highest growth rates occur for f = 25, 8 =75
(B6* = 0.4), corresponding to a KH mode under the influence of spanwise flow. A second
region, centred at f = 10, 8 = 425 (B8* = 2.3), is associated with travelling cross-flow
modes with lower growth rates than the KH modes. Stationary cross-flow modes present
reduced growth rates than the travelling ones. However, stationary modes display growth
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Figure 16. (a) Growth rate (maximum over f and §) and (b) neutral curve (maximum over ) from local LST
for several spanwise slices of the time-averaged flow of cases 4C and 4D. The line with circles in the neutral
curve indicates the most-unstable frequency.
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Figure 17. Growth rate from LST at specific streamwise locations as a function of the frequency and spanwise
wavenumber for case 4D: (a) T < Tp - x=10.43; (b) case 4D T < Tp - x=0.46; (¢) T > Tp - x = 0.03;
)T > Ty -x=0.06.

rates comparable to the KH instability at x = 0.46 in figure 17(b). The dominance
of stationary cross-flow modes near flow reattachment agrees with the simulations.
Considering case 4D (T > Tp) at x = 0.03 in figure 17(c), the maximum amplification
occurs atf = 73, B = 50 (86* = 0.06), corresponding to a KH mode. However, travelling
cross-flow modes also present non-negligible growth rates. Farther downstream, at x =
0.06 in figure 17(d), stationary cross-flow modes exhibit higher amplification. These
results support the presence of cross-flow modes in case 4D. Note that the structures
ultimately appearing depend on the integrated growth rate (N factor).
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Figure 18. Spectra of streamwise velocity perturbations (|u/|) at y = &* for cases 4C and 4D - T > Tj.

Figure 18 shows the |u/| boundary-layer spectra for case 4C. The KH instability
occurs over the f =0 line for several frequencies. The secondary instability of the
KH rolls generates the 16 hairpin vortices with 8 = £402.1 (8§* £ 0.7), especially for
x > 0.12. Nonlinear interactions lead to the excitation of 8 = +402.1n/2, n =1,2,3,4
disturbances. Considering case 4D (T > T}) in figure 18, there are two regions of primary
instability — the 8 = 0 disturbances, associated with the KH modes formed in the short
LSB near the leading edge and f ~ 15, 8 = £201.05 (88* £ 0.2) perturbations, related to
travelling cross-flow modes, as predicted by LST analysis. Disturbances with g = £402.1
(B8* £ 0.4) also present high amplitude. They may be excited by nonlinear interactions
between the cross-flow and KH modes and present lower amplitude than in case 4C due to
a faster breakdown to turbulence.

3.4. Effect of a lower adverse pressure gradient

3.4.1. Flow characteristics

As shown in figure 2, cases 5A and 5B present a much lower APG on the suction side
than cases 4A—4D, particularly for x < 0.5, due to a reduced AoA (higher Ro,). This
condition contributes to enhanced cross-flow effects (Du & Selig 2000; Borodulin et al.
2019). Figure 19 presents the A = —100 isosurfaces coloured by streamwise velocity for
cases 5A and 5B. The lower APG allows a large region of laminar flow. The flow becomes
unstable due to an LSB in x = 0.350-0.558 in case 5A and x = 0.328-0.523 in case
5B (see table 2), thus indicating that rotation delays separation. The KH rolls form at
x = 0.5 in the former case and x = 0.45 in the latter. Transition is only slightly moved
downstream by rotation from x = 0.467 to x = 0.479. Interestingly, the maximum reverse
flow decreases from —20.6 % in the non-rotating case to —6.7 % in the rotating case, which
is the opposite behaviour of that for high AoA (see cases 4A and 4B and Fava et al. (2024)).
This change could be enough to shift the instability mechanism from absolute in case 5B
to convective in case SA (Huerre & Monkewitz 1990). A weak spanwise modulation of
the KH rolls occurs, generated by an oblique streamwise vorticity pattern, as shown in
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Figure 20. Isocontours of streamwise vorticity for case SA over a plane at x = 0.5 (a) and a plane at y = 0.12
for x = 0.45 — 0.52 (b).

figure 20. Figure 20(b) shows these contours over a plane on the suction side, providing
more explicit evidence of oblique vortices, which resemble the travelling cross-flow modes
in case 4D (figure 14d). The measured wave angle is @ ~ —50°, which yields ¥ ~ —68°
given that n ~ 18°.

3.4.2. Spectral and stability analyses
Figure 21(a) exhibits the LST results for the maximum growth rates for cases 5SA and
5B. Case 5B is unstable from the leading edge, whereas unstable modes only appear
at x = 0.14 in case 5A, indicating a stabilising rotation role. Furthermore, separation
is delayed from x = 0.33 in case 5B to x = 0.35 in case 5A. These effects are related
to rotation counteracting the APG in the attached boundary layer, as observed by Fava
et al. (2024). The growth rates increase for x > 0.26 because the streamwise velocity
profiles become inflectional, allowing inviscid instabilities. A sharp peak appears near the
transition location (x;- & 0.48) in the rotating case, where the growth rate nearly doubles.
The cross-flow velocity reaches —11.6 % there. This feature is absent in the non-rotating
case. Figure 21(b) presents the frequency neutral curve. High-frequency TS waves occur in
case 5B since they appear near the leading edge, where the boundary layer is thin. A broad
range of modes become unstable upon separation, including steady disturbances (Dovgal
et al. 1994). The most unstable modes coincide for cases SA and 5B until immediately
upstream of the transition location. However, in the rotating case, the frequency of the
most unstable mode drops considerably in the region x = 0.48-0.49. These modes are
linked to the spike in amplification.

Further insight into these modes is obtained with the contours of growth rates as a
function of f and B. Figures 22(a) and 22(b) indicate that the KH mode centred at f = 25
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Figure 21. (a) Growth rate (maximum over f and 8) and (b) neutral curve (maximum over ) from local LST
the spanwise- and time-averaged flow of cases 5A and 5B. The line with circles in the neutral curve indicates
the frequency of the most unstable disturbance.
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Figure 22. Growth rate from LST at specific streamwise locations as a function of the frequency and
spanwise wavenumber for cases SA (a,c) and 5B (b,d). Panels (a,b) are for x = 0.45 and (c,d) are for x = 0.48.

is the most unstable at x = 0.45, although rotation shifts it from g = 0 to 8 = 75 due to the
spanwise flow (Toppings & Yarusevych 2023). The rotating case also has low-frequency
weak travelling and stationary cross-flow modes on both sides of the § = 0 line. The
KH modes ultimately lead to transition in the non-rotating case. Figure 22(c) shows
that low-frequency cross-flow modes with 8 < 0 develop very high amplification in the
rotating case at x = 0.48, responsible for the peak noted in the —«; curves. The mode shape
agrees with cross-flow modes (Borodulin et al. 2019; Fava et al. 2024), which seem to
trigger transition in case SA. However, the transition location is slightly delayed compared
with case 5B due to rotation stabilising the attached boundary layer.

Figure 23 presents the |u/| boundary-layer spectra for cases 5A and 5B. They
show high-amplitude disturbances centred around f = 26, 8 = 0. This corresponds to
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Figure 23. Spectra of streamwise velocity perturbations (|u/|) at y = §* for cases 5A and 5B.

fs0s/us = 0.011, indicating unstable KH modes (Pauley et al. 1990; Brinkerhoff & Yaras
2011). Harmonics with a frequency double the primary instability (f = 54) are excited,
particularly in case 5B, supporting a fundamental instability and the presence of ‘ribs’ in
the KH rolls. This is much less evident in case SA, possibly due to rotation counteracting
the APG. Case 5A also presents strong fluctuations for f < 10 for |B] < 1000 (|86* <
7.86) at x = 0.47-0.48, corresponding to travelling cross-flow modes, as predicted by LST
in figure 22(c). The spectra become noisy soon downstream due to transition at x = 0.47.
These modes do not occur in case 5B. Although transition starts earlier in this case, the
breakdown is slower than that triggered by the cross-flow modes in case SA (Fava et al.
2024).

3.4.3. The role of a lower adverse pressure gradient on cross-flow transition

Raising Ro, for fixed Re. and Ro. reduces the APG on the suction side, as shown in
figure 2, retarding separation and transition. The appearance of strong cross-flow modes
at the transition location in case SA indicates that this instability plays a role in transition.
The only difference between cases 4C and SA is the higher Ro, (and therefore lower AoA)
in the latter since Ro. is nearly the same. Although the cross-flow velocity dropped from
—21.6 % in case 4C to —11.6 % in case 5A, the lower APG in case 5A seems conducive
to cross-flow transition as also pointed out by Arnal & Casalis (2000) and Borodulin et al.
(2019).

3.5. Comparison of disturbance growth and transition locations
Figure 24 shows the streamwise evolution of the Reynolds stresses and r.m.s. of velocity

fluctuations. The «/v’ stress is often used to predict transition (Yuan ez al. 2005; Gaponov
2019). Cases 4A, 4B and 4D (T > Tp) present pronounced peaks in /v’ near the leading
edge, indicating an early transition. The maximum v’ occurs in the latter case and is
associated with cross-flow transition. Case 4C and 4D (T < T}) display lower and more
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Figure 24. Maximum over the wall-normal direction of the Reynolds stresses on the longitudinal («/v’) and
cross-sectional (v'w’) planes, and r.m.s. of streamwise (u,,,) and spanwise (w/,,, ;) velocity perturbations based

on spanwise-averaged statistics.

downstream peaks in #'v’ due to the stabilising effect of, respectively, low rotation and high
rotation in the short term. The negative sign owes to the reversal in /v’ after the maximum
aerofoil thickness location. Cross-flow transition in case 4D (T > T}) is highlighted by

the v'w’ peak in figure 24(b), considerably higher than other cases and associated with
cross-flow intense-fluctuation events. Figures 24(c) and 24(d) present the r.m.s. of
and w' associated with both KH and cross-flow modes since the latter also produces
strong streamwise velocity fluctuations (Saric et al. 2003). Cases 4A and 4B show close
values of peak u),,; and w),, . since they undergo similar absolute secondary instability
mechanisms. However, the increase in Ro. leads to a continuous rise in w/,,,. in cases 4C,
4D (T < Tp), and 4D (T > Tp), as cross-flow instability is enhanced. However, in cases
4C and 4D (T < Tp), the maximum u,,,; is lower than in cases 4A and 4B and occurs
more downstream due to the stabilisation of the KH mechanism by rotation. Regarding
cases 5A and 5B, the maxima in u},,; and w/, . are more downstream in the rotating case,
underlining the transition delay by rotation.

Figure 25 shows the transition locations as a function of Ro. for the two values of A,
(or Ro,) studied. Considering A4, = 3.1, the transition locations are insensitive to rotation
in cases 4A and 4B due to the absolute instability of the LSB near the leading edge. Low
rotation and, in the short term, high rotation delay separation and transition due to the
acceleration of the attached and weakly separated flows. This occurs in cases 4C and 4D
(T < Tp). Although more downstream, the turbulent breakdown is typically faster when
rotation is at play. High rotation shifts transition to the leading edge in the long term
due to strong cross-flow instability, as in case 4D (T > T}). Regarding A, = 6.3, the flow
remains laminar for a much larger extent than in the previous cases due to a lower AoA.
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Figure 25. Transition locations as a function of the rotation numbers Ro. and A,

Compared with A, = 3.1, the main difference is that a strong cross-flow instability is
triggered at a lower Ro.. Although this happens, the acceleration of the attached and
weakly separated flows by rotation moves the transition location slightly more downstream
in the rotation case.

3.6. Analysis of the production of disturbance kinetic energy

The production term (P) in the Reynolds—Orr equation provides further insight into the
mechanisms by which the KH and cross-flow modes act to stabilise or destabilise the flow
(Schmid & Henningson 2001). Here P > 0 implies that the disturbance kinetic energy
may increase over time if it overcomes viscous dissipation. To derive P, the cross-flow
perturbation is written in the x”, y”, 7 coordinate system, see figure 26, and is given by
(0, v”, w")cr. The KH perturbation is written in the x, y, z coordinate system and reads
(u, v, 0)kg. The base flow is assumed to be U = U(x,y), V=V(x,y), W= W(x,y).
Given all quantities in the x, y, z system, the production term reads

P=///£dv, (3.1)

where the integrand is defined as

U aUu 3V oW
e[ [ (5 )] ]
dx ay ax dx
a b c
oW aU
- [(w + vkn) (8—)} H— [(v,%H -~ v%p)a},
Y » (3.2)
d e
in (2A 2A) + 1
R SnCY [Mw} T
2 2
sin (2A) 1 —cos(24)
= TMCF + fWCF ,
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Figure 26. Coordinate system used to derive P. Here x and z are the streamwise and spanwise directions; 7 is
the angle between x and the inviscid streamline U, = (u,, 0, w,) //x’; ¢ is the wave angle, i.e. the angle between
x and the wavevector k = («, 0, B) /7 of the cross-flow mode; ¥ = Z(k, Up) = ¢ — 1.

with A =  — n; L is a quadratic polynomial on R and H, with these functions depending
on A, assumed to be the only independent variable. Furthermore, it is assumed that U
varies with x (a # 0). If there is no streamwise variation of W (¢ = 0), the critical points
(R*, H*), such that VL(R*, H*) = 0, are R* = —b/(2a) and H* € R. The determinant
of the Hessian matrix is simply det(H) = Lrr = —2a, which is negative if the flow
is accelerating (a > 0). In this case, £ has a maximum L(R*, H*) = b?>/(4a) — e, and
the cross-flow perturbations are destabilising if vcr > vky. Conversely, if the flow is
decelerating (a < 0), L(R*, H*) is a minimum and the cross-flow perturbations are
stabilising if vcp > vgy. From the definition of R and equating that to R*, one obtains
the critical angle

(3.3)

. 1 . | b/a+ ucr + 2uku 1 (MCF>
A" = ——arcsin — 5 arctan .

2 2
VUcr T Wer

Interestingly, the last term in (3.3) minimises H.

If W varies with x (¢ # 0), the critical points are R* = —d/c and H* = (2ad — bc) /.
However, det(H) = _E%ZH = —c? < 0, indicating that (R*, H*) is a saddle point of L.
This issue may be circumvented by constraining £ over the dL/dR = 0 line (R = (b +
c¢H)/(2a)). The critical point of £ = L(H) is H* = b/c + 4ad/(6¢?), from which R* =
b/(2a) + 4d/(6¢) can be computed. Moreover, det(H) = Ly = —6¢2 /(4a). Therefore,
if a > 0, L(H*) = —3b*/a — 3bd/c — ad®/c* — e is a maximum. Similar to previously
noted for ¢ = 0, the cross-flow perturbations are destabilising if vcr > vgg. In the case of
a < 0, L(H*) is a minimum and vcr > vgy leads to a stabilisation. The critical angle is
obtained by equating the definition of H to H* and is given by

2b/c + 4ad/(3c?) — wer
V Uep +Wep

The second term on the right-hand side of (3.4) maximises R. The above discussion
indicates that a critical cross-flow mode angle exists, maximising or minimising P
depending on the accelerating or decelerating nature of the flow. Besides, cross-flow
perturbations may be stabilising, delaying transition.

1
+ 5 arctan (M) . 3.4

ucr

A* = — arcsin
2
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4. Conclusions

A numerical investigation of transition on a rotating wind turbine blade is carried out with
direct numerical simulations of a blade section at Re, = 3 x 10° in the rotating frame
of reference. Six cases with varying rotation numbers Ro, and Ro, are considered. The
investigations are complemented with spectral and linear stability analyses.

The results indicate that rotation does not substantially affect the transition location in
the outboard region of the blade or for low rotation rates. This is because a leading-edge
LSB appears and is deformed by a global instability mode. The KH vortices undergo a
secondary absolute instability over the deformed LSB, forming turbulence spots at specific
spanwise locations. This phenomenon leads to a rapid transition, and rotation effects are
not predominant. Moreover, it may explain the fast transition observed in the outboard
region of rotating blades in previous works (Schiilein et al. 2012; Lang et al. 2015).

Moderate increases in the rotation rate (Ro.) stabilise the flow, slightly delaying
transition due to the acceleration of the attached boundary layer and possible competition
between weak cross-flow and KH modes. Higher rises in Ro, promote further delay
in transition in the short term. However, stationary and travelling cross-flow modes are
eventually triggered, modulating the KH rolls and leading to their turbulent breakdown.
The transition line rapidly moves to the leading edge, where it lies in the long term.
In this case, the cross-flow velocity reaches a value of 56 % at the transition location,
with a component directed to the blade tip. A higher value of Ro,, corresponding to a
lower adverse pressure gradient and AoA, promotes cross-flow transition at lower rotation
rates. However, despite the high growth rates of the travelling cross-flow mode leading
to transition in the rotating case, the transition location is farther downstream than in the
non-rotating case because rotation stabilises the attached boundary layer.

Thus, there is a threshold of rotation rate above which rotation may trigger cross-flow
transition, and this limit seems to decrease with increasing Ro,. Compared with the
non-rotating case, the delay or advancement of the transition line due to rotation depends
on the competition between the stabilisation of the attached boundary layer and the
inception of cross-flow modes, particularly in the flow separation zone.

Funding. This research was supported by StandUp for Wind and HPC resources from the Swedish National
Infrastructure for Computing (SNIC) and National Academic Infrastructure for Supercomputing in Sweden
(NAISS).

Declaration of interests. The authors report no conflict of interest.
Data availability statement. Data are available upon request.

Author ORCIDs.
T.C.L. Fava https://orcid.org/0009-0007-8056-6109;

D. Massaro https://orcid.org/0000-0002-6712-8944;

P. Schlatter https://orcid.org/0000-0001-9627-5903;

D.S. Henningson https://orcid.org/0000-0001-7864-3071;
A. Hanifi https://orcid.org/0000-0002-5913-5431.

Author contributions. T.C.L.F. and D.M. ran the simulations. T.C.L.F. performed the analyses. T.C.L.F.
and D.M. wrote the paper with feedback from P.S., D.S.H. and A.H. The authors thank Dr A. Peplinski for the
help in the numerical set-up.

999 A54-28


https://orcid.org/0009-0007-8056-6109
https://orcid.org/0009-0007-8056-6109
https://orcid.org/0000-0002-6712-8944
https://orcid.org/0000-0002-6712-8944
https://orcid.org/0000-0001-9627-5903
https://orcid.org/0000-0001-9627-5903
https://orcid.org/0000-0001-7864-3071
https://orcid.org/0000-0001-7864-3071
https://orcid.org/0000-0002-5913-5431
https://orcid.org/0000-0002-5913-5431
https://doi.org/10.1017/jfm.2024.913

https://doi.org/10.1017/jfm.2024.913 Published online by Cambridge University Press

Transition to turbulence on a rotating wind turbine blade

Appendix A. Operators for one-dimensional local stability analyses

The one-dimensional stability problem is obtained by introducing the ansatz
q = q(y)exp (iax + Bz — iwr) in the linearised Navier—Stokes equations (equations
for the momentum in x, y, z and continuity), accounting for rotation effects, where
g, y,z,0) =[u v w p']T is the vector of perturbations of streamwise (u'), normal
(v') and spanwise (w') velocities and pressure (p'). Here o = «, + ia;, where a, is the
streamwise wavenumber, and «; is the spatial growth rate. Here 8 € R is the spanwise
wavenumber. w = 271tf € R is the angular frequency, a parameter in the spatial framework
employed here. The resulting eigenvalue problem, solved for & and g, is given by

Ag = aBBg, (A1)
0 D, iB 0 -i 0 0 0
| & ~U, —22,W 0 _ it 0o 0 i
A=lo = 22, -n, |0 B=lo v o of “¥d
22, -W,—22, —ip 0 0 0 iU 0

where Dy is the derivative in the y direction, obtained with a spectral Chebyshev
approximation, and = =1 /ReC(D§ — ,62) —i(BW — ). The vector of base-flow
variables is given by g = [U V W P]T, where P is the pressure, and U, V and W are the
streamwise, normal and spanwise velocities. The base flow is assumed to be the spanwise-
and time-averaged flow or a slice at given z of the time-averaged flow, interpolated to a
grid with 150 Chebyshev points in the wall-normal direction (y). The subscript , indicates
derivative in the y direction; i = 4/—1 is the imaginary unity; Re, is the Reynolds number;
§2; and £2,, are the rotation speeds in the streamwise and normal direction, given by

2, = 2sin¢ cosO + 2 cos¢psinb,
: ¢ ¢ } A3

2, = §2cos¢pcosf — 2 singsinb,

where £2 is the rotation rate, ¢ is the twist angle, and 6 is the local aerofoil angle. The
boundary conditions are u’, v/, w' = 0 at y = 0 (wall), y — oo (free stream).

Appendix B. Operators for stability analysis over cross-planes

The two-dimensional stability problem is obtained by introducing the ansatz ¢ =
q(y,z) exp (iex — iwt) in the linearised Navier-Stokes equations (equations for the
momentum in x, y, z and continuity), accounting for rotation effects, where ¢’ (x, y, z, 1) =
[/ v w p']T is the vector of perturbations of streamwise ('), normal (v') and
spanwise (w’) velocities and pressure (p’). Here « = «, + io;, where «; is the streamwise
wavenumber, and «; is the spatial growth rate; @ = 2xtf € R is the angular frequency, a
parameter in the spatial framework employed here. The resulting generalised eigenvalue
problem, solved for «, g, and «q, is given by

A oN(g\_ (B c\(q
EOE)-CHE)  w

A Uy l__]z +282, 0
0 A V,—282, D,
A — _ Z N y , B2
—282, Wy + 282 Az D, (B2)
0 Dy D, 0
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iU 0 0 i 1 000
B==10 % wo| = rlooo @
i 0 0 0 0000
Ayl = VDy + WD, — R%C(Dyy + D) — o, (B4)
.AzgzX_/Dy—i—WDZ—Rlec(Dyy—i—DZZ)—i—f/y—ia), (BS)
A33=f/Dy+WDZ—RLC(DWJFDZZ)JFWZ—@, (B6)

where D), and D, are the derivatives in the y and z directions, obtained with a fourth-order
finite-difference approximation. Here / and 0 are the identity and null matrices. The vector
of base-flow variables is given by g = [U V W P]T, where P is the pressure, and U, V
and W are the streamwise, normal and spanwise velocities. The base flow is assumed to
be the time-averaged flow, interpolated to a grid with 700 evenly spaced points in the
spanwise direction (z) and 202 geometrically spaced points in the wall-normal direction
(). Subscripts  and ; indicate derivatives in the y and z directions, respectively. Here
i = +/—1 is the imaginary unity; Re. is the Reynolds number; £2; and £2,, are defined in
equation (A3). The boundary conditions are u’, v',w’ = 0 at y = 0 (wall), y — oo (free
stream). Periodic boundary conditions are imposed in the spanwise direction, such that
qd(x,v,2,0) =q (x,y,z+ L;, 1), where L, is the spanwise width.
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