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ON DIRECT SUMS OF INJECTIVE MODULES 
AND CHAIN CONDITIONS 

STANLEY S. PAGE AND YIQIANG ZHOU 

ABSTRACT. Let R be a ring and M a right /^-module. Let a[M] be the full subcategory 
of Mod-/? subgenerated by M. An M-natural class %^ is a subclass of a[M] closed under 
submodules, direct sums, isomorphic copies, and M-injective hulls. We present some 
equivalent conditions each of which describes when ^C has the property that direct sums 
of (M-)injective modules in %^ are (M-)injective. Specializing to particular M, and/or 
special subclasses we obtain many new results and known results as corollaries. 

1. Introduction. Throughout all rings R are associative with identity, and all mod­
ules are unitary right /^-modules. Given any family J of right ^-modules, and a collec­
tion {Ai}iei with At in 7 for every / G /, these questions arise: i) Is ©/G/A/ in 71- ii) Is 
(Btei E(Ai)in ^ ? (where E(At) is the injective hull of At.) iii) Is ®ieI E(At) = E(®ieI A/)? 
Also, associated with the family J there is, for each module M, the set of submodules 
Hcy(M) — {N Ç M : M/N G ^F}, with particular interest in the set of right ideals 
Hf(R). In this paper we address the above questions for families which are called M-
natural classes for a fixed right /^-module M and give the answers to the questions in 
terms of chain conditions in the sets H^{M) and H^(R). More precisely, by a class % of 
modules we mean Ĉ is a collection of modules such that %^ is closed under isomorphic 
copies. Mod-/? will denote the category of unitary rights-modules. Following Wisbauer 
[8], for any M G Mod-/?, we denote by a[M] the full subcategory of Mod-/?, whose ob­
jects are the submodules of M-generated modules. A subclass of a[M] which is closed 
under submodules, direct sums, and M-injective hulls is called an M-natural class. We 
will see later there do exist many M-natural classes. The results are applied to give direct 
sum decompositions of certain injective modules which generalize known results. 

2. Results on an M-natural class. Let M and N be /^-modules. N is called M-
singular if N = L/K for some L G a[M] and K <e L. The M-injective hull of N, denoted 
by£M(AO,isthetraceofMin^(AO, i.e. EM(N) = £{/(M) : / G Hom(M,£(A0)}. 

LEMMA 1. Let N G a[M]. Then N Ç EM(N). 

PROOF. Since TV G cr[MI there exist an index set / and a module A such that 

0—>N-^A; M(I)-^A—> 0, 
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where £ is a monomorphism and IT an epimorphism. We have a submodule B of A which 
is maximal with respect to i(N) H B = 0. Then £(N) 0 B <e A. Since B is a closed 
submodule of A, £(N) can embed in AjB as an essential submodule. Thus, without 
loss of generality, we may assume that t(N) <e A. For every a £ I, let ia be the 
homomorphism of M into M(/) sending the element x G M into the element of M(/) 

whose value at a is x and whose remaining components are 0. Then A — 7r(M(/)) = 
7r(Eae/ £a(M)) = Eae/TT o ta(M). Thus A Ç EM(A). Since £ is a monomorphism 
and f,(N) <e A, there exists an isomorphism h E(N) —> E(A) that extends Z7. Not­
ing that I(EM(N)) = | ( E { / ( M ) : / G Hom(Af, £(#))}) = E { * o /(M) : / G 
Hom(M,£(A0)} = E{<?(M) : g G Hom(M,£(A))} = EM(A) DAD i(N), we have that 
EM(N) 2iV. -

LEMMA 2. L f̂ M and N be R-modules. If EM(N) is M-singular, then no non-zero 
submodules of N can embed in M. The converse is true if M is M^-projective for all 
index sets I. 

PROOF. If EM(N) is not M-singular, then/(M) is not M-singular for some 0 ^ / € 
Hom(M,£(AT)). Since/(M) ^ M/ Kertf) and M G a[M], Ker(f) is not essential in M. 
Hence, Ker(f)HX = 0 for some 0 ^ X Ç M. It follows that X ^ /(X) C E(N). Therefore, 
the non-zero submodule/(Z) HNofN can embed in X, and hence in M. 

For the converse, we suppose that for some 0 ^ Y ÇN and Y—*M. Then there exists 
a map g: M -» £(F) such that go / is the inclusion of y into £(y). Then Ker(g)nf(Y) = 0. 
So Ker(g) is not essential in M. If g(M) is M-singular, then Mj ker(g) = g(M) = L/K 
for some L G cr[M] and A' <e L. Hence we have an epimorphism h: M —•> L/AT with 
Ker(/z) = Ker(g). Since Mis M(/)-projective for all/and L G cr[M], it follows that Mis L-
projective by [2, Proposition 16.12, p. 186]. Therefore, there exists a map h\\M—*L such 
that 7Toh\ —h, where 7r is the natural map from L to L/K. Since £ < e L, Af *(£) <e M. 
But h\l(K) Ç Ker(A) = Ker(g). It follows that Ker(g) <e M, a contradiction. So g(M) 
is not M-singular. From the fact that g(M) Ç EM(Y) Ç EM(N), it follows that EM(N) is 
not M-singular. • 

COROLLARY 3. Lef M bean f.g. quasi-projective module. Then EM (N) is M-singular 
iff no non-zero submodules ofN can embed in M. 

PROOF. This is because of the fact that if M is f. g. quasi-projective, then M is M(/)-
projective for all / by [2, Proposition 16.12, p. 186]. • 

A class Ĉ Q 0"[M] is said to be an M-natural class if %^ is closed under submodules, 
direct sums and M-injective hulls. 

EXAMPLES, i) a[M] is an M-natural class. 
ii) For an f. g. quasi-projective module M, the class of all modules in a[M] with M-

singular M-injective hulls is an M-natural class. 

PROOF. It is easy to check by using Corollary 3. 
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For a subclass f Ç a[M], we denote by Cy the class of all modules in a[M] for 
which no nonzero submodules can embed in any element of J. The following proposi­
tion shows that all M-natural classes can be constructed in this way. 

PROPOSITION 4. A class 9£ of modules is an M-natural class iff%^ — Cj for some 
class *J Ç o\M\ 

PROOF. First we show that Cy is an M-natural class for any class J Ç a[M]. It is 
easy to see that Cy is closed under submodules. Suppose that EM(N) ^ Cjr. Note that 
EM(N) G a[M]. There is a 0 ^ Nf Ç EM(N) such that N' ^ P G 7 for some P. Then 
O ^ i V n i V ' ^ P . Thus N ^ Cgr. Let N=®tNt with all Nt G Cy. Clearly W G a[M]. If 
A ^ C<;-, then there is a nonzero cyclic submodule xR of A which is embeddable in some 
module of J . But xR Ç Nt] © Nh © • • • © A^ for some n. Then A^ © N,2 © • • • © Ntn 

is not in Cy. Let m be the least number such that some Ntl © Nt2 © • • • 0 A^ is not 
in C j . Then there is a nonzero submodule Af' Ç Afr, © Afr2 © • • • © A^ such that Nf is 
embeddable in some module of $ • If pt is the projection of Nr, 0 • • • 0 N/m onto Nti, then 
by the minimality of m, P;|yy: A7 —̂  Â ( is a monomorphism. It follows that Nt. ^ Cy, a 
contradiction. So C j is closed under direct sums, and hence is an M-natural class. 

Conversely, suppose that %^ is an M-natural class of modules. Let 7 — C< .̂ We show 
3C = Cy. It is easy to see that 3C Ç Cy. Suppose that N G Cy. Then Â  G cr[Ml and 
N £ f, and so there exists 0 ^ Nf Ç N such that Af' G 3C By Zorn's Lemma, there 
exists a maximal independent family X of submodules in 9£ of N. Let £/ = (B^'ex^'. 
Then we have a submodule V of A" such that UHV = 0 and £/ © V is essential in N. If 
V ^ O , then V G Cy, and we have some 0 ^ P Ç V with P G Ĉ just as above. Hence 
XU {P} is an independent family, contradicting the maximality of X. Thus V = 0 and £/ 
is essential in N. Thus E(U) = P(N), and hence EM(U) — EM(N). But since every Nf e X 
is in ^C, it follows that £/, and hence EM(N), and hence Ar G ^C by our assumptions on 

Throughout the following, we let !̂C — Cy, where F̂ Ç <r[M], be an M-natural class, 
and H^N) = {Nf Ç N : N/N' G 3C}. 

LEMMA 5. Suppose that B\ Ç 2?2 Ç • • • is a chain of submodules ofN G cr[M] such 
that Bi+{ /Bt G Xfor all I Let B = (J,- P*. Then B/Bt G fflC/br a// L 

PROOF. Suppose that P/P/ is not in 3C for some i. Note that P/P/ G <r[M]. Then 
there exists a nonzero submodule Z/P, of P/P/ (X Ç 5) such thatX/P/ is embeddable in 
an element of J. We have that 0 ^ X/Bt = (X/Bt) n (U/>,- 5,-/ft) = U;>K*nP7)/P/. It 
follows that (XC\Bj)/Bi ^ 0 for some y > /. Since (XC\Bi)/Bi = 0, we may assume that 
XnBj^i/Bi = O.Then ((Xnfij) + 5 H ) M - i = (XnP/)/(XnP7-_i) = (XH £,•)/£/ Ç 
X/P/. This shows that Bj/Bj-\ has a nonzero submodule which is embeddable in an 
element of J. Thus Bj/Bj-\ is not in 0^, a contradiction. • 

LEMMA 6. Ler Pi Ç P2 C - - - be a chain as in Lemma 5. Then there exists K Q N 
such thatN/K G %, Bx Ç K, and (Bi+X + £)/(£/ + ^) = P/+i /P/ /^r a// / > 1. 

https://doi.org/10.4153/CJM-1994-034-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-034-9


INJECTIVE MODULES AND CHAIN CONDITIONS 637 

PROOF. If N/Bx G 30 then let K = Bx and we are done. Assume N/Bx $ 30 
and let B = \JtBi. Then there exists a submodule X/B\ of N/B\ (X Ç N) which is 
maximal with respect to (B/Bx ) n (X/Bx ) = 0. Let K = X. Then clearly £ H # = Bx. It 
follows that KCiBt = #i for all L Hence, (£/+i +K)/(Bi + K) ^ 5 /+1 / (#/+1 n (#; + ft>) -
£/+1 / (fi/+(5/+i HO) = £/+i /(fi/+fii ) = Bi+X jBi. Note that K/Bx is a closed submodule 
of N/B\. By using of [5, Proposition 1.4, p. 18], we have that B/Bx can embed in N/K 
as an essential submodule. Therefore, E{B/BX) ^ E(N/K). It follows that EM(B/BX) ^ 
EM(N/K). By Lemma 5, B/Bx G ft Thus EM{B/BX\ hence EM(N/K) is in ft since ft 
is closed under M-injective hulls. But N/K G a[M]. We have that EM(N/K) D N/K by 
Lemma 1. It follows that N/K G ft since ft is closed under submodules. • 

LEMMA 7. The following are equivalent for a module N G a[M\ and an M-natural 
class ft: 

(a) Every chain of submodules of N:BX Ç B2 Ç • • • with all Bt+X / Bt G determinates; 
(b) //^(A0 has a. c. c. 

PROOF, (a) => (b). This follows because ft is closed under submodules. 
(b) => (a). Suppose there exists a strictly ascending chain of submodules of N: Bx C 

#2 C • • • C Bn C • • • such that Bi+X /B; is in ft f° r every /. We show that this leads 
to a contradiction by constructing a strictly ascending chain Kx C ft C • • • with every 
N/Kt G 30 By Lemma 6, there is a Kx Ç N such that N / f t G 30 51 Ç ft, and 
(Bi+X + ft)/(£; + ft) ^ £/+1 /ft- for all L Then #i Ç ft C £2 + ft and B2 + ft C 
#3 + ft C • • • is a strictly ascending chain with all (Bi+X + Kx)/(Bt + ft ) in ft for * > 2. 
Suppose we have constructed ft, ft,..., ft such that all N / f t are in 30 ft C ft C 
• • • C ft, ft C #„+i + ft and #„+i + ft C Bn+2 + ft C • • • is a strictly ascending 
chain with (Bi+X + ft)/(#/ + ft) in ft for all / > n + 1. Applying Lemma 6 to the 
chain Z?„+i + ft C #„+2 + ft C • • •, wehave a ft+i Ç Af such that N/ Kn+X G 30 
Bn+\ + ft Ç ft+i C fi„+2 + ft+i and fl„+2 + ft+i C Bn+3 + ft+i C • • • is a strictly 
ascending chain with (Bi+X + ft+i)/(#; + ft+i) in 3C for all i > n + 2. The induction 
principle implies that there exists a sequence {ft : / G N} with all N / f t in ft and 
ft C ft C • • • ft C • • • is a strictly ascending chain. The lemma is proved. • 

COROLLARY 8. Let ft be an M-natural class, and let Y be a submodule ofX G a[M]. 
Then H^iX) has a. c. c. iff both HK(Y) and H^(X/ Y) has a. c. c . 

PROOF. The necessity follows from Lemma 7. To show the sufficiency, we assume 
that ft Ç ft C • • • is an ascending chain of submodules of X with each X/Xt G 30 Then 
wehaveft H F C f t H F C . . . Ç Fand(ft + F ) / F C (ft + Y)/YÇ • • • C X/ Y. Since 
(ft+i H Y)/(Xi f l F ) ^ Xi+X / f t we have that ( f t i H F)/(X; H Y) G 3C for each L Since 
Hg^(Y) has a. c. c , by Lemma 7, there exists a positive integer m such that (Xm+S Pi F) = 
( f t D Y) for all s. Then for any j > m, we have that [(Xj+Ï + Y)/Y]/[(Xj+ Y)/Y] ^ 
(Xj+X + Y)/(Xj + F) - Xy+, /[(*; + (Xj+X CiY)]= Xj+X /Xj G 30 Because HX(X/Y) has 
a. c. c , by using Lemma 7 again, we can find a positive integer n (n > m) such that 
Xn+t + F = ft + Y for all /. Then it is clear that Xn+k = ft for all k. m 
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PROPOSITION 9. The following are equivalent for an M-natural class 30 
(a) Every direct sum ofM-injective modules in 3£ is M-injective; 
(b) Every direct sum of M-injective hulls of modules in 3C is M-injective; 
(c) For every cyclic (or finitely generated) submodule xR of M, any chain of submod­

ules ofxR: B\ Ç #2 Q ' ' ' such that all B(+\ / B( are in 30 terminates. 

PROOF, (a) => (b). This is because of the fact that if N G 30 t h e n EM(N) is M-
injective, and in 30 

(b) => (c). Suppose that for a cyclic submodule xR Ç M, there is a strictly ascend­
ing chain of submodules of xR: B\ C B2 C • • • such that all Bi+\/Bi G 30 Then 
E = (BiE\i(Bi+\ /Bt) is M-injective by (b). Let B = \JB( and pi the natural map from 
Bi+\ onto Bi+\/Bi. Since EM{BI+\ /Bt) I) Bi+\ /Bi by Lemma 1, we let i[ be the inclu­
sion of Bi+\ jB[ to EM(Bi+\/Bi). Because EM(Bi+\/Bi) is M-injective, there exists a ho-
momorphism/:M —-> EM(BI+\/Bt) that extends £/ 0/7/. Define a map/ :B —-> £ via 
7T/ o/(Z?) = /(b) , where 7r/ is the projection of E onto EM(Bi+\ /Bt). Then/ is well-defined. 
Since £ is M-injective and B Ç xR Ç M, there exists g:xR—^E that extends/. We have 
that g(M) Ç ©"Lj £M(£J+1 /Bt) for some m. Then TT; 0 / = 0 for all / > m. If 6 G Bm+l, 
then 0 = 7rm+i o/(Z?) = /m+1(£) = b + Bm. This implies that #m+i = Bm, a contradiction. 

(c) => (a). By [6, Theorem 1.7, p. 3], to show (a), it suffices to show that every direct 
sum of countable M-injective modules in 3C is M-injective. So let N = ©g^ TV;, where 
each N( is M-injective, and in 30 Let B be a submodule of xR with i G M and/: B -^ N 
a homomorphism. Let Bk = {b e B :f(b) G ©f=1 ty}. Then Bx Ç B2 Ç • •., and 

#*+i /Bk ^ ( © t y ) / ( © M ) = Nk+l G 3C via 

# + ft)=/(i) + © % 
1=1 

Since 3C is closed under submodules, Bk+i/Bk G 30 By (c), there exists m such that 
#m+/ = Bm for all /. Thus/(#) Ç © ^ M - Since ©f=1M is M-injective, there exists 
g: xR —» N\ 0 • • • © 7Vm Ç Af which extends/. Hence N is x/?-injective for every x G M. 
By [6, Proposition 1.4, p. 2], N is M-injective. • 

THEOREM 10. The following are equivalent for an M-natural class 30 
(a) £Wry direct sum of M-injective modules in 3£ w M-injective; 
(b) Every direct sum of M-injective hulls of modules in 3C /s M-injective; 
(c) For any cyclic (or finitely generated) submodule A Ç M, H<^(A) has a. c. c. 

PROOF. By Lemma 7 and Proposition 9. • 

COROLLARY 11. The following are equivalent for an f. g. module M, and an M-
natural class 30 

(a) Every direct sum of M-injective modules in 3£ is M-injective; 
(b) Every direct sum of M-injective hulls of modules in 3£ is M-injective; 
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(c) Hj^{M) has a. c. c. 

PROOF. By Theorem 10 and Corollary 8. • 
By applying Theorem 10 to the M-natural class <r[M], we have another consequence: 

COROLLARY 12. The following are equivalent for a module M: 
(a) Every direct sum of M-infective modules is M-injective; 
(b) Every direct sum of M-injective modules in cr[M] is M-injective; 
(c) Every direct sum of M-injective hulls of modules is M-injective; 
(d) M is a locally Noetherian module, i.e. every cyclic (or finitely generated) sub-

module of M is a Noetherian module. 

PROOF. The equivalence of (a) <=> (d) is [6, Theorem 1.11]. And (b) <=» (c) & (d) 
follow from Theorem 10. • 

LEMMA 13. Let N G CJ[M]. IfN is M-injective, then N is quasi-injective. 

PROOF. If TV is M-injective, then TV is M(/)-injective by [6, Proposition 1.5, p. 2]. If 
TV G <T[M], then TV is a submodule of a homomorphic image of some M(/). Thus TV is 
N-injective by [6, Proposition 1.3, p. 1]. • 

An i?-module TV is said to be an extending module, if every closed submodule of TV is 
a summand. Recall that a family {Ni : i G /} of submodules of a module TV is said to be 
a local summand if the sum £/e/ Ni is direct, and ÇBieFNi is a direct summand for every 
finite subset F of /. 

LEMMA 14. Let %^ be an M-natural class, N G %^an extending module. IfH^(M) 
has a. c. c, then every local summand ofN is a summand. 

PROOF. Let r = {Xx : A G A} be a local summand of TV and X = £AeAXA. 
Since TV is an extending module, X <e Y Ç 0 TV for some Y. Then y is an extending 
module and in %^. So, without loss of generality, we can assume that X <e N. We need 
to show that X = N. Suppose that X ^ N. Note that TV C EM(N) = E{/(Af) : /• G 
Hom(M,E(N))\. There exists a least number t such that, for some x G TV \ X and some 
fi G Hom(M,£(A0) (/ = 1, . . . , t), x G f(M) + • • • +/,(M). For gi G Hom(M,£(A0) 
(/ = 1, . . . , 0» we denote by ©j=1 gi the map M{t) —> E(N) which sends (x\,... ,xt) to 
g\(x\) + ' • • + gt(xt)- Then, as a submodule of EM(N), Im(©-=1 gf) is in %. Now, let 
Q. = {Ker(©[=1 gi): there exist y G N \ X and gtG Hom(M, E(NJ) (i = 1 , . . . , 0, such 
that y G g\{M) + • • • + gt(M)}. By the choice of t, we see that 12 is a non-empty subset of 
//<^(MW). Since Hg^(M) has a. c. c , H^(M^) has a. c. c. by Corollary 8, and thus there 
exist y eN\Xmdgi e Hom(M, E(N)) (i = 1, . . . , t), such that y G g\ (M) + • • • + gt(M) 
and Ker(ffi-=1 gi) is a maximal element in £1. Since X <e TV, then 0 ^ yr G X for 
some r G R. Let yr G ©?=1 X\r By assumption, TV = (©?=1 XA.) © Z for some Z Ç N. 
Then £(TV) = £(©"=1 XA.) © £(Z). Let /?z be the projection of E(N) onto E(Z). Write 
J = y\ + J2, where yi G ©?=1 XA., y2 G Z. Clearly, y2 ^ X and yr = yi r. Let ht =pz° gi 
(/ = 1 0- Then y2 = pz(y) e E-=1 /*,-(M) Ç £(Z). Therefore, Ker(©J=1 ht) G Q. It is 
easy to check that Ker(©J=1 gt) Ç Ker(©J=1 ht). Choose at G M (i — 1, . . . , t) such that 
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gi(ûi) + • • • + gt(at) = y. Then £[= 1 gi(atf) = yr ^ 0, but £} = 1 A/for) = /?z(yr) = 0. 
Thus, ( f l lr,... ,fl,r) G Ker(0j=1 A,-) \ Ker(®J=1 #) . Hence Ker(0|=1 gi) C Ker(©J=1 A,-), 
which contradicts the maximality of Ker(©J=1 g,). • 

LEMMA 15. LetN G a[M]. Then 
(a) IfN\,..., Nm is an independent set of submodules ofN, then EM(N\ 0 • • • 0 Nm) = 

EM(Ni)®.--®EM(Nm); 
(b) IfX Ç N, then EM(N) = EM(X) 0 EM{Y)for some Y C N. 

PROOF, (a) It suffices to show that EM(N\ 0 N2) = EM{N\) 0 EM(N2). We have 
that E(NX 0 N2) = E(N\) 0 £(N2). Let pi ,p2 be the projections of E(N\ 0 N2) onto 
E(N\) and E(N2), respectively. It is clear that EM(N\) 0 EM(N2) Ç £M(Ni 0 N2). Define 
a homomorphism a: EM(N\ 0 N2) —> EM(N\) 0 EM{N2) via CT(JC) = /?I(JC) + /?2(JC). The 
restriction of <7 on EM(N\) 0 EM(N2) is equal to the identity map of EM(N\) 0 EM(N2). 
Therefore EM(N\) 0 EM(N2) is a direct summand of EM(N\ 0 N2). But by Lemma 1, 
#i 0 N2 Ç EM(NX) 0 £M(Ay, implying that EM{NX) 0 £M(Ay <e EM{NX 0 Af2). It 
follows that EM(Ni 0 Afe) - EM(NX) 0 £M(Ay • 

(b) IfXÇN, then X 0 F <e N for some F Ç N. Then by (a), £M(A0 = EM(X ®Y) = 
EM(X) 0 EM(Y). m 

THEOREM 16. The following are equivalent for an f. g. module M and an M-natural 
class *Kj 

{a) Every direct sum ofM-injective hulls of modules in %^ is M-injective; 
(b) Every M-injective hull of a module in %^ is a direct sum of uniform modules; 
(c) Every M-injective hull of a module in %^ has a decomposition that complements 

direct summands; 
(d) Every extending module in ^C is a direct sum of uniform modules. 

PROOF, (a) => (d). If (a) holds, then we have a. c. c. on H^(M) by Corollary 11. 
Then, if N G ^C is an extending module, every local summand of N is a summand by 
Lemma 14. Hence, by [6, Theorem 2.17, p. 25], N is a direct sum of indecomposable 
modules. But every extending indecomposable module is a uniform module, and thus N 
is a direct sum of uniform modules. 

(d) => (b). By Lemma 13, every M-injective hull of a module in %^ is an extending 
module. 

(b) & (c). By Lemma 13 and [6, Theorem 2.22, p. 27]. 
(c) => (a). Let D be a direct sum of M-injective hulls of modules in %^. Since every 

M-injective hull of a module in %, is a direct sum of uniform modules, every M-injective 
hull of a module in %^ is, in fact, a direct sum of M-injective hulls of uniform modules 
in ^ . Therefore we can write D = (&{EM(Da) : oc G But G T} such that all Da are 
uniform modules in ^C, and if a G Bt, oc' G Bt>, then EM(Da) ~ EM(Da>) if and only if 
t — t'. For each t, choose one at G Bt and let F — {at : t G T} and D\ = ®aeF EM{DO). 

Let E — EM(D^). Then E is in ^C since Ĉ is an M-natural class. So we can write 
E = ®A Ea, a decomposition that complements direct summands. For each a G F, let 
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A(a) = {(3 £ A : Ep = EM(Da)}. Now for each n > 0, the module EM(Da)
(n) is 

isomorphic to a submodule of E, and hence isomorphic to a direct summand of £ by 
Lemma 15. So by [2, 12.2, p. 142], Card(A(a)) > n. And hence A(a) is infinite. Let 
B — \JaeF A(a). Then D\ ) is isomorphic to a summand of the direct summand ®B Ea 

ofE. Therefore Z)(
1
N) is M-injective. Let B' is the disjoint union of {Bt : t G T}. Then by 

[6, Theorem 1.7, p. 3], D(f} is M-injective. From this it follows that D ^ ®{EM(Da) : 

aeBt,te T}<* ®teTEM{Dat)
m Ç® S ^ M C A * , ) ^ 0 = (®teT EM^,))™ * Df'\ 

This shows that Z) is M-injective. • 

COROLLARY 17. The following are equivalent for an f. g. module M: 
(a) M is a Noetherian module; 

(b) For every N, EM(N) is a direct sum of uniform modules; 

(c) For every N, EM(N) has a decomposition that complements direct summands; 
(d) Every extending module in a[M] is a direct sum of uniform modules. m 

If M is an f. g. quasi-projective module, then the class {TV G cr[M] : EM(N) is M-
singular} is a M-natural class. 

COROLLARY 18. The following are equivalent for an f. g. quasi-projective module 
M: 

(a) Every direct sum of M-injective modules with M-singular M-injective hulls is M-
injective; 

(b) Every direct sum of M-singular M-injective hulls of modules is M-injective; 

(c) Every chain of submodules of M: M\ Ç M2 Ç • • • such that each EM(M^\ /Mi) 
is M-singular, terminates; 

(d) For any module A, ifEM(A) is M-singular, then EM(A) is a direct sum of uniform 
modules; 

(e) For any module A, ifEiuiA) is M-singular, then EM(A) has a decomposition that 
complements direct summands; 

(f) Every extending module with M-singular M-injective hull is a direct sum of uni­
form modules. m. 

3. A special case: M = R. If M = R, then the M-singular submodule and the 
M-injective hull of a module TV coincide, respectively, with the singular submodule and 
injective hull of the module TV in the usual sense. The M-natural classes are just the classes 
of/^-modules which are closed under submodules, direct sums, and injective hulls . We 
simply call such classes natural classes. 

EXAMPLES, i) Mod-R is a natural class. 
ii) The class of all modules with singular injective hulls is a natural class. 
iii) For any hereditary torsion theory r, the r-torsionfree class is a natural class. 
iv) For any hereditary stable torsion theory r, the r-torsion class is a natural class. 
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PROPOSITION 19. Every natural class is closed under extensions of modules. 

PROOF. By Proposition 4, we may suppose that 3C = Cy is a natural class, and 
0 —» N —• M —» M/N —> 0 an exact sequence with N, M/N both in % If M £ 30 then 
there is 0 ^ Â i CM such that N\ is embeddable in some module in J. Since N G 30 
N HN\ — 0. It follows that Afi can embed in M/N, implying M/N ^ 30 This is a 
contradiction. • 

A natural class is, in general, not a hereditary torsion class or a hereditary torsionfree 
class. For example, the class of torsion Z-modules is a natural class, but is not closed 
under products, and hence is not a hereditary torsionfree class. An example of a natural 
class, but not of a hereditary torsion class is provided in [7, Remarks ii]. 

For a submodule N of a module MR and x G M, we denote by (N : x) the set {r G R : 
xr G N}. In particular, we let x1 = (0 : x). 

For a natural class 30 M G 3C iff*1 G H^(R) for all x E M . Therefore we have that 
3C forms a hereditary torsion class iff H<^(R) is an idempotent filter. 

PROPOSITION 20. Let ^be a natural class. Then 
(a) Informs a hereditary torsion class iff I Ç J with I G Hj^(R) implies 7 G H<^(R); 
(b) 3C is a hereditary torsionfree class iffH^R) is closed under arbitrary intersec­

tions. 

PROOF, (a) One direction is obvious. Suppose that H<^(R) is closed under super sets. 
Since / G H^(R) implies (/ : a) G Hg^(R) for all a G R, we only need to show that: If 
(/ : a) G Hjç(R) for any a G 7 G Hg^(R), then / G H^R). Consider the exact sequence 
0 —> (/ + 7 ) / / —• / ? / / -> /?/(/ + 7) —> 0. Clearly R/(I + 7) G 30 For any a G 7, 
( / : f l ) = ( / n 7 : a ) G / / ^ W , and so [aR + (/ H / ) ] / ( / H 7) = /?/(/ H 7 : a) G 3Ç 
for all a G 7. Then (/ + 7 ) / / ^ 7/(7 H 7) G 30 By Proposition 19, 3Ç is closed under 
extensions, and hence R/I G ^ i.e. I G H^(R). 

(b) Suppose that H<jç(R) is closed under arbitrary intersections. Let M = 11/ Mt with 
every Mf G 30 F° r any i G M , write x = (xt) with xt G M, for all t. We have x/- G Hj^(R) 
since fl/x1 = xrtf C Mt and Mf is in 3Ç. Then x 1 = p\txj- G //^(tf). It follows that 
M G 30 Therefore we have shown that 3C is closed under products, and hence 3C forms 
a hereditary torsionfree class. 

For the converse, suppose that 3C is a hereditary torsionfree class. Then it is closed 
under products. Let {/, : t G A} Ç H%iR). Since R/C\tIt ^ UGA /?//* and UteA R/h is 
in 30 then f\e4 7* £ H<j^(R). Hence Hg^(R) is closed under intersections. • 

A result of Miller and Teply states that for any hereditary torsion theory r, d. c. c. on 
r-closed right ideals implies a. c. c. on r-closed right ideals. A question related to this is 
that for any natural class 30 does d. c. c. on Hj^(R) imply that a. c. c. on Hg^(R)l Even 
though the answer to the question is 'Yes', there is no possibility to improve the result 
of Miller and Teply at this point as the following proposition shows: 

PROPOSITION 21. A natural class 3C with d.c. c. on Hg^(R) must be a hereditary 
torsionfree class. 
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PROOF. Let H\ Ç H^(R), and #2 the set of all finite intersections of elements in 
H1. Then H\ Ç 7/2 Ç H<%(R). If d. c. c. on 77^(7?), then d. c. c. on 772. Hence there is a 
minimal element, I\ D • • • D Im say (with every 7/ G H%\R)), in 772. Then for any 7 G 77i, 
/H/ifl- • n/m = IiH" n/m by the choice of/iPl- • -n/m, implying that /1H • • -n/w Ç ^for 
all 7 G 77i. Hence flU : 7 ^ #1} = 7i H • • • n / m G 77^(F). Thus, / /^(#) is closed under 
arbitrary intersections. From Proposition 20, it follows that Ĉ is a hereditary torsionfree 
class. • 

For a class 3C, let 1 ^ = {T : Hom(7, C) = 0, for all C G %}, and ^ = {F : 
Hom(F, F) = 0 for all F G T^}. The pair of classes (T^, ^ ) forms a torsion theory, 
and fg^ is the smallest torsionfree class containing %. We will say that the torsion theory 
(7^ , jF^) is cogenerated by %. It is easy to see that if Ĉ is a natural class, then (T^, 7%) 
is a hereditary torsion theory. 

PROPOSITION 22. If ^ is a natural class, then the following are equivalent: 
(a) Every direct sum ofinjective modules in %^ is injective; 
(b) If ï Ç RR, then there is an f. g. right ideal J Ç I such that I/JE T^. 

PROOF, (a) => (b). Suppose there is 7 Ç RR such that for any f. g. right ideal / Ç / , 
11J fi T^. Choose 0 ^ a\ El. Then I/(a\R) ^ T^, and so there exists I\ Ç RR such 
that a\R Ç I{ c 7 and 1/h G %. Since I\ C 7, there is an a2 G 7 but a2 ^ h- By the 
assumption on I, l/(a\R + a2R) £ Tyç. Therefore, there exists I2 such that a\R + ^2^ Ç 
I2 C I and 7//2 G ^G By a simple induction, we can choose a sequence {«/ G R : / G N} 
and a sequence {// : / G N} of right ideals ofR such that a\R+ • • • + anR Ç In c 7, 
<2„+i £ 7„, and 7/7„ G 3C for all rc G N. Thus, £(///„) G Ĉ for all «.Set F = ®iGN £(///,-). 
Then by (a), F is injective. Let K = E^ i a//?. We have a homomorphism / : K —> F 
defined by 7T; of (a) — a + 7;, where 717 is the projection of F onto F(7 /If). Since F is 
injective, there exists some x G F such that/(A) = x« for all a E K. Then there is some 
positive m such that 7T/ 0/ = 0 for all / > m. Therefore, 0 = 7rm+i of(am+2) — am+2+Im+\, 
implying that am+2 G 7m+i, a contradiction. 

(b) => (a). Let M = 0Mf, where each Mt G $C and is injective. Let/: 7 —* M be a 
homomorphism, where 7 is a right ideal of R. By (b), there exists an f. g. right ideal 7 Ç 7 
such that 7/7 e % Then/(7) Ç M,, 0 • • • 0M,„ for some n. Write/(7)+Mr, + • • • +M,n = 
M,, 0 • • • 0 Mtn 0 X for some X Ç M. Now/ induces an epimorphism/: 7/7 —> (/(7) + 
Af,, + • • - + Mtn)/{Mh + • • - + Mtn) ^ X , where/(a + 7) = / (a ) + (M/l + • • • + AfrJ. Since 
7/7 G T5Ç, we have X G T^. Thus TT,(X) G 7 ^ for all f. But since 7rr(X) Ç M, G %> we 
have 7r?(X) G ^CH 7^ , implying 7rf(X) = 0 for all t. Hence X = 0. Then we have that 
/(7) Ç Mt] 0 • • • 0 Mrn. Since Mh 0 • • • 0 Af,,, is injective, we can apply Baer's Injective 
Lemma. • 

THEOREM 23. The following are equivalent for a natural class %: 
{a) Every direct sum ofinjective modules in 9C is injective; 
(b) Every injective module in %^ is a direct sum of uniform modules; 
(c) Every injective module in Ĉ has a decomposition that complements direct sum-

mands; 
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(d) Every extending module in Ĉ is a direct sum of uniform modules. 
(e) Hg^(R) has a. c. c. 

PROOF. By Corollary 11 and Theorem 16. • 
A module M is said to be weakly-in] ective if for any f. g. submodule N Ç E(M), there 

exists some X Ç E(M) such that N QX = M. The following theorem generalizes a result 
of Al-Huzali, S. K. Jain and Lopez-Permouth [1]. 

THEOREM 24. The following are equivalent for a natural class %: 

(a) Every cyclic module in %^ has finite Goldie dimension; 

(b) Every finitely generated module in 9^ has finite Goldie dimension; 

(c) Every direct sum ofinjective modules in %^ is weakly-in)] ective; 

(d) Every direct sum of weakly-injective modules in %^ is weakly- injective. 

PROOF, (a) => (b). Because Ĉ is a natural class, the proof of Camillo [3, Proposition] 
can be applied. 

(b) => (c). Let M = (BteA Et, where every Et is inj ective and is in %^. Let N be a finitely 
generated submodule of E(M). Then N G 3C. By (b), there exist uniform submodules 
U\9...9UnofN such that U\ 0 • • • 0 Un is essential in N. Since M is essential in E(M), 
we can choose 0 ^ x; G Ul; Pi M for every i. Then ©?=1 xiR Ç Eh 0 • • • 0 Etm for some m. 
Hence E = £(©"=1 XiR) Ç M, and we have that M = E 0 K for some AT. By noting that 
©Li */* <eUx®--®Un<eN, we have that £(A0 = ©?=1 £(£/,-) = ©?=1 E(xtR) ^ E. 
Since ©?=1 xtR <e E(N), it follows that E(N) D K = 0. Thus £(A0 0 K Ç £(M), and 
W Ç £(A0 + £ = £(A0 ®K^E®K = M. 

(c) => (d). Suppose that M = ©iG4 M; such that every M/ G Ĉ is weakly-injective. Let 
N be a finitely generated submodule of E(M). Then every E(Mi) G ^G Hence ©/G4 E(Mi) 
is weakly-inj ective by (c). Since M Ç ©/GA E(Mi), there exists a submodule F Ç E(M) 
such that i V Ç r ^ ©/G4 £(M;). Write F = ®ieA E(Yt) such that M; ^ 7/ for all / G A. 
Then we have TV Ç ®ieFE(Yi) for a finite subset F of A. Since ®ieFE(Yi) is weakly-
injective, there exists Xi Ç E(®ieF E(Yt) such that N Ç Xi = ®ieF Yt = ®ieF Mt. Then 
we have N Ç X{ ® (©^F Yt) = X^M with X Ç E(M). 

(d) =̂> (a). Let xR G 3C- Suppose xR is not finite dimensional. Then xR contains 
an essential submodule which is a direct sum of infinitely many nonzero submodules 
©rG4 Nt. Then E(xR) = E(®t£A Nt) = E(®teA E(Nt)). Clearly, all E(Nt) G %, Then (d) 
implies that (BteA E(Nt) is weakly-inj ective. Therefore we have xR Ç Y = ©fe4 £(M) 
for some y Ç £(>/?). Write F = ©fGA E(y,) with each Yt = Nt. Then ;ctf Ç © r€F£(y,) 
for a finite subset F of A. Note that xR Ç F C £(>/?). Hence je/? is essential in F, showing 
that 7, = 0 for all t £ F. But, then Nt = 0 for all r ^ F, a contradiction. • 

Next, we apply the previous results to: i) A hereditary stable torsion class; ii) A hered­
itary torsionfree class. 

Consider a hereditary stable torsion theory r. Then 9£ = the r-torsion class is a natural 
class, and H^R) is the set of all right r-dense ideals. By Theorem 23, we have 
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COROLLARY 25. Let rbea hereditary stable torsion theory. The following are equiv­

alent for a ring R: 

(a) R has a. c. c. on right r-dense ideals; 

(b) Every direct sum ofr-torsion injective modules is injective; 

(c) Every r-torsion injective module is a direct sum of uniform modules; 

(d) Every r-torsion injective module has a decomposition that complements direct 

summands; 

(e) Every r-torsion extending module is a direct sum of uniform modules. m 

REMARK. The implication of (a) => (c) is a result of [4, Proposition (41.12), p. 390]. 

Let r is a hereditary torsion theory and ^C is the r-torsionfree class. Then ^C is a 

natural class and H<^(R) is the set of all right r-closed ideals. 

COROLLARY 26. The following are equivalent for a ring R and a hereditary torsion 

theory r: 

(a) R has a. c. c. on right r-closed ideals; 

(b) Every direct sum of r-torsionfree injective modules is injective; 

(c) For any right ideal I of R, there is an f. g. right ideal J Ç / such that I/J is a 

r-torsion module; 

(d) Every r-torsionfree injective module is a direct sum of uniform modules; 

(e) Every r-torsionfree injective module has a decomposition that complements di­

rect summands; 

{f) Every r-torsionfree extending module is a direct sum of uniform modules. 

REMARK. The equivalences of (a) & (b) & (c) & (d) are contained in [4, Proposi­

tion (20.17), p. 182]. 

PROOF. By Proposition 22 and Theorem 23. • 

COROLLARY 27. A ring R is a right Noetherian ring iff for some hereditary stable 

torsion theory r, R has a. c. c. on r-closed right ideals and a. c. c. on r-dense right ideals. 

PROOF. One direction is obvious. For any injective right module E, £(Y(£)) = r(E), 

and hence E = r(E) 0 X. Then X is a r-torsionfree injective module. If R has a. c. c. on 

r-closed ideals, and a. c. c. on r-dense ideals, then both r(E) and X are direct sums of 

uniform modules by Corollary 26 and 27. Hence E is a direct sum of uniform modules. 

It follows that R is right Noetherian. • 

It is natural to ask if the above corollary may be generalized to any hereditary torsion 

theory. In the following, we provide an example of ring R and a non-stable hereditary 

torsion theory r such that R has a. c. c. on r-closed right ideals and a. c. c. on r-dense right 

ideals, but R is not a right Noetherian ring. 

EXAMPLE 28. Let A be a ring, {Ma : a e 1} a set of A — A bimodules. Let R — 

A 0 (®a£lMa). R will become a ring under the following '+' , and V : 

(a;... ,xa,...) + (/?;... ,ya,...) = (a + b;... ,xa +.y a , . . •) 

(a;.. .,xa,...) o (b\... ,ya,...) = (qb\ ...,aya +xab,...). 
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We take A = Z, and Mi = Z/(pi), where /?/ is the /-th prime number, and / = 1,2, — 
It is easy to check that Soc(/?^) = © g t M, is an essential right ideal of R, and R is not a 
right Noetherian ring. Let 3C = {M : * = 1,2,...} and r = (T, ^F) be the torsion theory 
generated by ^C, i.e., 

7 = { F G Mod-/? : Hom(C,F) = 0 for all C e HQ 

T = { r e Mod-/? : Hom(r, F) = 0 for all F G ^F}. 

It is easy to see that r is hereditary. If / G Hj(R), then Hom(C, R/I) = 0 for all C G ^ . 
Hence Soc(/?^) Ç /. Thus / = (n) 0 Soc(/?/?) for some non-negative integer n. Write 
/i = p^p^ .. ,pt„m T h e n w e have a/?- module decomposition R/I = Z/(p'j) 0 Z/(/?22) 0 
• • 0 Z/(p%). If some f; > 0, then Z/(p,-) can embed in Z/tf;), hence in /?// , as /?-
modules. This contradicts the fact that R/I G f. So all f/ = 0. We have n = 0 or 1. 
Hence H<f(R) = {Soc(/?#), /?}. So /? has a. c. c. on T-closed right ideals. 

Note that every right ideal / can be expressed as / = (n) 0 X for some X Ç Soc(/?/?). 
Let (HI)©XI Ç («2)0X2 Ç • • • Ç (nk)®Xk Ç • • • be a chain of elements in//T(/?). Then 
(n\) Ç («2) Ç • • •. Hence (nt) — (ns) for some s, for all / > s since Z is a Noetherian ring. 
Suppose that ns = 0. Then (ns) 0 X5 = Xs G //<r(#), and hence #/X, G T. It follows 
that R/ Soc(RR) G T. We have shown that R/ Soc(RR) G J . But, then R = Soc(RR), 
a contradiction. Hence ns ^ 0. Let m be a positive integer such that (ns,pj) — 1 for all 
j > m. Then Xt 2 Mm 0 Mm+i 0 • • • for all / > s. Therefore, the chain Xs Ç Xs+\ Ç • • • 
must terminate. Hence we have that the chain (n\) 0 Xi Ç (rc2) 0 X2 Ç • • terminates. 
Thus R has a. c. c. on Hq;(K). • 

PROPOSITION 29. A rmg R is a right Noetherian ring iff for some hereditary torsion 
theory r, R has a. c. c. on T-closed right ideals and every ascending chain of right ideals 
ofR: I\ Ç I2 Ç • • • such that each 7/+i /// is r-torsion, terminates. 

PROOF. If /1 Ç I2 Ç • • • is a chain of right ideals of R. We have a natural homo-
morphism f-.R/U —> R/It+u where f(a + //) = a + Ii+{. Write liR/h) — £,•//,-. Then 
fi(r(R/Ii)) Ç r(/?///+i), implying that /£; Ç J£/+1. Since every AT/ is r-closed and /? has 
a. c. c. on T-closed right ideals, there exists an m such that Kj = Km for all j > m. If 
j > m, then Ij+\/Ij Q Kj+\/Ij = Kj/Ij = r(R/Iï) is r-torsion. By our assumption, the 
chain Im Ç Im+l Ç • • • terminates. Therefore the chain I\ Ç 72 Ç • • • terminates. So R is 
a right Noetherian ring. • 

REMARK. Applying our results to the class of all modules with singular injective 
hulls, we can reestablish the various characterizations of rings for which direct sums of 
singular injective modules are injective, which appear in [7]. 
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