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1. Introduction. Let A, B, and X be ^-square matrices over an algebraic­
ally closed field F of characteristic 0. Let [-4,-B] = AB — BA and set 
(Ay B) = [A, [A, B]\. Recently several proofs (1; 3; 5) of the following result 
have appeared: if det {AB) ^ 0 and (A,B) = 0 then A~lB~lAB - I is 
nilpotent. In (2) McCoy determined the general form of any X satisfying 

(1.1) {A,X)=Q 

in the case that A has a single elementary divisor corresponding to each 
eigenvalue, that is, A is non-derogatory. In Theorem 1 we determine the structure 
of any matrix X satisfying (1.1) and also give a formula for the dimension 
of the linear space of all such X in terms of the degrees of the elementary 
divisors of A. Moreover, we apply our results to obtain a condition that B 
be a polynomial in A. It is a classical result (6, p. 150) that if [X, B] = 0 
whenever [A, X] = 0 then B is a scalar polynomial in A. We prove in Theorem 
2 that if (X, B) = 0 whenever (A, X) = 0 then B is a scalar polynomial in A. 

We also obtain the result that the dimension of the linear space K(A) of all 
such matrices B is precisely the number of distinct eigenvalues of A. 

2. Solutions of (A,X) = 0. Let A have the distinct eigenvalues Xi, . . . , \q 

and let 

(x - \i)eii, 

j = 1, . . . , ni} i = 1, . . . , q be the elementary divisors of A with the notation 
chosen as follows: 

For each i = 1, . . . , g 

en > ei2 > . . . > eini 

and 

( * - A,)"''' 

appears with multiplicity r^, j = 1, . . . , nt. 

THEOREM 1. The number of linearly independent solutions of 

(1.1) (A,X) =0 

is 
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(2-1) É { E (2eu - l)rl + 4 £ ) r , /«««:( • 

It is clear that we may assume A to be in Jordan canonical form / . Set 

Pi = 12 riJei:h 

the algebraic multiplicity of Xj. 
We write 

(2.2) A = £' (XJ,, + Vt) 
i=l 

where Ivi is a j£>rsquare identity matrix, Vf is a />rsquare matrix with only 
1 and 0 in the superdiagonal, all other elements 0, and ]£' indicates direct 
sum. 

We also write 

(2.3) Vt = E Uit, Jt = \tIri + E t /„ 
3=1 i = l 

and hence 

(2.4) A = £ ' E (X.Ie,.,. + tf„). 
7 = 1 * = 1 

where U^ is the direct sum of the e^-square auxiliary unit matrix repeated 
fij times, j = 1, . . . , nt. We partition X conformally with the partitioning 
of A indicated in (2.4). Now consider a block of X, call it C, that corresponds 
to \i and \j for i ^ j . A result obtained in both (2) and (4) is 

LEMMA 1. C = 0. 

From Lemma 1 we conclude that 

x = E xt 
f = i 

and Xt is a p rsquare matrix. To determine the structure of Xt we may 
obviously confine our attention to the case in which A has a single eigenvalue 
with several elementary divisors. 

LEMMA 2. Let A be an n-square matrix with the single eigenvalue X and let 
(x — X)"1' be an elementary divisor of A of multiplicity ru i = 1, . . . , /, 
vi > . . . > v t, Y-,i=\rivi = n> Then the most general matrix X satisfying (1.1) 
contains 

t 

E (2*, - l>\ + 4 E »V 

arbitrary parameters. 

jy3 
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Proof. Since (1.1) holds for A — XI if and only if it holds for A we may 
assume X = 0 wi thout loss of generality. Thus we assume 

(2.5) A = £ ' ] £ ' Ut 
1 = 1 j=l 

where Ui is a ?>-square matr ix with 1 along the superdiagonal and 0 else­
where. If vi = 1 then Ui is the 1-square 0 matrix. We parti t ion X conformally 
with A in (2.5) : 

X = (Xij), 

and observe from (1.1) t ha t 

(2.6) UlXij + XUU) - 2UiXijUj = 0. 

For the sake of simplicity of notation, we take Ui = U as m-square, Uj = V 
as ^-square, and XtJ — C = {ci3) as an m X n matrix. There are three 
essentially distinct cases to consider: 

(i) m = n, (h) m > n, (iii) m < n. 

The case (i), m = n, is done in (2) and (4) and in this case ccj = 0 i > j , 
and the elements of each diagonal parallel (or equal) to the main diagonal 
are in ar i thmetic progression. Hence the number of arbi t rary parameters in 
C in case (i) is 2 (n — 1) + 1 = 2w — 1. The case n < 2 is not considered 
in (2) bu t it is trivial to see t ha t the number of parameters there is also 
2n - 1. 

Case (ii) : m > n. We have from (2.6) 

(2.7) U2C + CV2 - 2UCV = 0. 

We assume in wha t follows tha t m > 3. The case m = 2, n = 1 will be dis­
posed of later. Let e* be the uni t column ^-vector with 1 in position i, i = 1, 
. . . , n. We evaluate the transform of et by the left side of (2.7) to obtain 

(2.8) lPct + Ct-2 = 2Uc^u 

where ct denotes the i th column of C, / = 1, . . . , n. Co-ordinatewise (2.8) 
becomes for i = 1, . . . , n 

(2.9), [ 0, 0] + [ 

= 2 [ C 2 , i - i , £3 ,2-1 , • • • ? £m—l,i-l> Cwi,i-1> OJ-

We show first t ha t ctj = 0 for 7' > j , i > 3. We compute the (i + 5) co­
ordinate of ( 2 . 9 ) Ï where 5 is one of the integers 0, . . . , m — i; 

(2.10) ci+s+2fi + ci+Sji-2 — 2ci+s+iti-i = 0, i = 1, . . . , m - (s + 2). 

We first note t ha t from (2.8) for i = 1 we have 

U2ct = 0 
and hence 

( 2 . 1 1 ) Czi = C41 = • • • = Cml = 0 . 
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Consider the system (2.10) for i = 2, 3, . . . , m — (s + 2) in succession and 
obtain 

cs+4,2 = 2cs+3,i = 0 (by 2.11) 
£s+5,3 = ~~ £s+3,l + 2Cs+4,2 = 0 

Cm,m— (s+2) = = ^ra—2,ra—s—4 I ^Cm— l,ra— s—3 = U . 

Thus Cij = 0 for i > j> i > 3. We now consider in succession the (i — 1) 
co-ordinate of (2.9)* for i = 2, . . . , n (since n + 1 < m), to obtain 

Ci+l,i + ^z—l,i—2 — 2citi-i = 0. 

Setting i successively equal to 2, . . . , n we have 

C32 = 2^21, C43 = 3^21, . . . , Cn+itn = UC<i\. 

Hence there is only one arbitrary parameter C21 in this diagonal of C. We 
next consider the elements Ctj for i < j . We compute the rth co-ordinate of 
(2.9) r+«, y — 1, . . . , w — s, where s is one of the integers 2, . . . , n — 1, to 
obtain 

£3,5+1 + £ i , s - i = 2c2 ,s 

C4.S+2 + ^2,.9 = 2C2 ) S +i 

£w— s+2,w l* Cn—s,n—2 = ^Cn—s-fl,n—1» 

Hence 

£ l , s - l> c 2 , s , £3,s+l> • • • » ^w—s+2,w 

are in arithmetic progression. Thus in each diagonal 

ds-l = Cl.s—1, • • • , Cw_ s+2,n S = 2 , . . . , fl — 1 

there are two arbitrary parameters. In the diagonals dn-i and dn we accumu­
late three more arbitrary parameters in C, Ci,w_i, C\ni Cin. Hence the total 
number of arbitrary parameters in C for m > n is 

3 + 2{n - 2) + 1 = 2n. 

We compute easily that for m = 2, n = 1, C involves 2w = 2 arbitrary 
parameters as well. 

Case (iii) : n > m. We reduce this to case (ii) as follows: 
Let Pic denote the ^-square permutation matrix with 1 in each of the 

positions (k — j , j + 1), j = 0, . . . , k — 1. Taking the transpose of (2.7) we 
have 

(2.12) C'(U')2 + (V'yC - 2VfCU' = 0. 

Now observe that 

U' = PmUPmj 

V = PnVPn, 
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and substituting in (2.12) using Pm
2 = Imi Pn

2 = In we have 

CPnlPPm + PnV'PnC - 2PnVPnCPmUPm = 0. 

Now pre-multiplying by Pn and post-multiplying by Pm we have 

(PnCPm)lP + V\PnCPm) - 2V(PnCPm)U = 0. 

Now PnC'Pm is n X m, the situation of case (ii). Hence PnC'Pm has 2m arbi­
trary parameters and C has 2m arbitrary parameters. 

Returning to the statement of Lemma 2, we conclude from case (i) that 
any block in the partitioning of X corresponding to equal £//s contains 
2vt — 1 arbitrary parameters and there are rf such blocks for each i. Also 
from (ii) and (iii) any block in X corresponding to V\ and Uj} i < j , contains 
2VJ arbitrary parameters (since for i < j , vx > Vj). Hence the total number 
of arbitrary parameters in X is 

E (2vt - l)r • + 4 S rfjVj. 
i=l i<j 

We return now to the proof of Theorem 1. By Lemma 1 we need only add 
the total number of parameters of the q main diagonal blocks of X corre­
sponding to each A*. By Lemma 2, this number for a fixed \ t is 

ni m 

X) (2etj - l)r2ij 4- 4 X) n / » * » . 

Summing this for i = 1, . . . , q we obtain the formula (2.1) and the proof is 
complete. 

3. The space K(A). Let P be a non-singular matrix satisfying 

(3.1) P~lAP = J 

and let Y = P~lXP and C = P~lBP. Then {P~lAP, P^BP) = P~l{A, B)P 
implies that B £ K(A) if and only if C £ K(J). As indicated earlier, if 
(/, Y) = 0, then 

(3.2) Y = £" Ys 
s=l 

and Ys is ps-square, 5 = 1, . . . , q. If 

ns 

(3.3) Ys = (Yi:j), i, j = 1, . . . , m5, ms = X] rSJ-

indicates a partitioning of Ys conformally with the partitioning of Js in (2.3) 
then we have seen in the proof of Theorem 1 that a block in (3.3) is an esi X esj 

rectangular matrix with the following structure: 

A • 6 si ^ & s j • 
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(i) each diagonal, except the element in the upper right corner, parallel 
or equal to the diagonal starting from the upper left corner involves two 
arbitrary parameters, and the elements in each of these diagonals are in 
arithmetical progression; 

(ii) there is one non-zero diagonal immediately below the diagonal starting 
from the upper left corner, containing one parameter only. The elements are 
of the form a, 2a, 3a, . . . , esja for an arbitrary a Ç F; 

(iii) all other elements are zero. 

(i) the diagonal d ending in the lower right corner and those above it 
each involve two arbitrary parameters and the elements are in arithmetical 
progression, with the exception of the upper right corner element which is 
arbitrary ; 

(ii) the diagonal immediately below d contains one parameter and the 
elements are of the form esia, . . . , 3a, 2a, a for an arbitrary a Ç F; 

(iii) all other elements are zero. 

«J» &si = &sj* 

The block is upper triangular. Each diagonal involves two arbitrary para­
meters and the elements are in arithmetical progression with the exception 
of the upper right corner element which is arbitrary. 

Let L(J) be the linear space of all F satisfying (/, F) = 0. 

LEMMA 3. (F, C) = 0 for each Y Ç L{J) if and only if 

(3.4) C=£ CjIpj 

where Cj Ç F, j = 1, 2, . . . , g. 

Proof. The sufficiency of (3.4) is clear. By the above description of L(J), 

^2 xjlps £ L(J) 

for any Xj Ç F. 
Hence (F, C) = 0 implies 

c = Z' c„ 
Cs is £s-square. Now (F, C) = 0 implies that (F s , Cs) = 0 , s = 1, . . . , q. 
We may choose F Ç L(J) with 

ns # Tsj m 

for arbitrary xia Ç F and conclude that 
«a < 

^S = = / v L'SJJ 
j - 1 
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where Csj is a direct sum of rsj e5rsquare matrices j = 1, . . . , ns. Let Msj 

be any one of the eS7-square blocks whose direct sum comprises CS3. 
We next show that Cs is a scalar multiple of the identity by noting first 

that (F s , Cs) = 0 implies that (DsjJ Msj) = 0 where Dsj is an e s rsquare 
diagonal matrix with diagonal elements (in arithmetical progression) along 
the main diagonal. Hence Msj is diagonal. Let 

Msj = diag («i, a2, . . . , aeaj). 

Now we may choose Ys such that the equation (Esj, Msj) = 0 holds, where 
Esj is e s rsquare and 

E>sj = 

0 X 0 
0 0 x + y 

0 0 0 
0 0 0 

0 
0 

x + (esj - 2)y 
0 

Now (Esj, MSJ) = 0 is equivalent (for the case esj > 3, the case esj < 2 
is trivial) to 

E*sjMsj + MsjE
2
sj = 2EsjMsjEsj. 

Elementwise we have 

( * + ( * - 3);y) ( * + ( * - 2)y) (ap + ap_2 - 2av^) = 0 

for t — 3, . . . , esj and for arbitrary x, y. Hence we conclude that 

ah a:2, . . . , aesj 

are in arithmetical progression and thus we may write 

(3.5) Msj = diag (a, a + 0, . . . , a + (esj - 1)0). 

We next show that /3 = 0. To this end we choose Ys such that (Ys, Cs) = 0 
implies the following: 

(3.6) 

where 

(F », Msj) = o, 

1 1 0 
0 2 0 

F« = 
0 0 1 
0 0 es 

From (3.5) we obtain by computing the (1, 2) element of (3.6) that 0 = 0. 
Hence 
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ns 

r . cs = £ ' c 

where 
Taj # 

l^sj = / J Xjct-I-esji 
a = l 

We next show that all xJa are equal. Let 

3>i = xu, j2 = X12, . . . , y T s l = xirsl, yTal+i = x2i, . . . , y m a = xnaTana. 

Then from (Ys, Cs) = 0, it follows that 
ms ms ms 

53 yvYujYjv + J^ yuYUjYj0 = 2 J2 yjYujYjvJ u,v = 1, 2, . . . , m8. 
j = i i = i i = i 

We have, by computing the block in the upper left corner (that is, the 
one conformai with Fn), 

ms wis 

yx Z YljYn = £ y,YltYn. 
j=l 3=1 

ms 

(3.7) £ (yl-yj)YlJYn = 0. 

For a fixed t, 1 < / < m.„ choose the esi X es« matrix (recalling that 
esi > ^«) 

Y it = Zs GJV 

where GJJ is an esi X eHt matrix with 1 in the (j,j) position and zeros else­
where. Also choose 

est 

Y a = LJ Hjj> 
3=1 

where Hjj is est X es\ with 1 in the (j,j) position and zeros elsewhere, and 
let Yu = 0 for j ^ t. Then (3.7) becomes 

(yi - y«)/e., = o. 

Hence yi = yt, t = 2, 3, . . . , ms and C has the form indicated in (3.4). 

THEOREM 2. / / (X, 5 ) = 0 for any X satisfying (A, X) = 0, then B is a 
scalar polynominal in A. 

Moreover the dimension of the linear space K(A) of all such B is given by 

dim K (.4) = q, 

where q is the number of distinct eigenvalues of A. 

Proof. We have seen that B £ K(A) if and only if C = P~lBP Ç K(J) 
where P~lAP = J is the Jordan canonical form of A. 
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Moreover, by Lemma 3 
Q 

where Cj Ç F are arbitrary. This implies immediately that 

dim K(A) = q. 

Now 

B = PCP'1 = Pyi CjIp/)p-\ 

Let 0P be the /^-square matrix of zeros and let 

E, = P(0uj + Ipj + 0VJ)P-\ 

where 
3— 1 J 

UJ = H PuVj = n - 1-, P^ i = 1,2, . . . , g. 

Then the E0 are the principal idempotents of A corresponding to the X; 

respectively and each Ej is a scalar p o l y n o m i a l s ^ ) in A (7, p. 29). 
Hence 

B = É ^ = E c^U) 

where 
a 

f(x) = X) Cjfj(x). 
3=1 
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