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Abstract

Certain permutation representations of free groups are constructed by finite approximation. The first is a
construction of a cofinitary group with special properties, answering a question of Tim Wall published by
Cameron. The second yields, via a method of Kepert and Willis, a totally disconnected locally compact
group which is compactly generated and uniscalar but has no compact open normal subgroup. Finally, an
oligomorphic group of automorphisms of the random graph is built, all of whose non-trivial subgroups
have just finitely many orbits.

2000 Mathematics subject classification: primary 20B07.

1. Introduction

In this paper we give three constructions of faithful permutation representations,
with peculiar properties, of free groups. We collect them in the same paper more
because the methods are similar than because the topics are. In each case, we define
the permutation representation by finite approximation, expressing the generators as
unions of finite partial functions. It is not important that the groups acting are free:
indeed, by a theorem of Dixon [3], the set of pairs of permutations which generate a
free group is comeagre in the natural topological space on pairs of permutations of N
(the product topology from the usual topology on Sym(N)), and it remains a challenge
to build examples like those below which are not free.

Our permutation groups will always act on a countable set Q := {£, : i e N}. We
use lower case Greek letters for elements of Q, upper case Greek letters for subsets
of £2, and lower case Roman letters for group elements (except that we allow variables
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268 Meenaxi Bhattacharjee and Dugald MacPherson [2]

x, y to range through group elements or ft). Permutations are written on the right of
their arguments.

Our first theorem, proved in Section 2, concerns cofinitary permutation groups.
Recall that a permutation group G on ft is cofinitary (Cameron [2]) if every non-
identity element has just finitely many fixed points. Our theorem answers a question
of Wall [2, Section 10], posed as a test of the construction methods available for
cofinitary groups.

THEOREM 1.1. There is a cofinitary permutation group G on the countably infinite
set ft such that G is freely generated by (/, : i e N) and for each i e N

(a) / , fixes i-j for 0 < j < i and acts as a single cycle on £l\ {£, : j < i],
(b) the group (/0, . . . ,/,•> is not (i + 2)-transitive.

It is evident that by condition (a), ( / 0 , . . . / , ) is (/ + l)-transitive for each i.
In Section 3 we construct a permutation group which provides an answer to a

question of George Willis, in his work on scale functions for totally disconnected
groups.

THEOREM 1.2. The free group Fi — (/, g) has a faithful transitive action on a
countable set ft such that the following hold, where ft = F U A is a partition of ft
into two infinite sets:
(a) each cycle of each element of F2 is finite;
(b) for each x e F2, the symmetric difference FAFx is finite.

It follows that for each x e F2 there is A C ft such that A AT is finite and Ax = A,
but (by transitivity) there is no G-invariant set A c ft with A AT finite.

The context of this construction is as follows (see [9] or [6] for background). If G
is any totally disconnected locally compact group and x e G, then there is a compact
open subgroup U of G so that the following hold, where U+ := C\(x" Ux~" : n e N)
and t/_ := f](x~n Ux" : n e N ) .

(1) U= U+U-
(2) \J(x"U+x~" : n 6 N) and \J(x~" U-Xn : n e U) are both closed subgroups

of G.

The index function s(x) = \x U+x~* : U+\, the scale function of G, is independent
of the choice of U, and is a continuous function s : G —> N such that s(x) = 1 =
jOt"1) if and only if* normalises some compact open subgroup of G. The group
G is called uniscalar if s takes value 1 everywhere. Clearly if G has a compact
open normal subgroup then G is uniscalar, and the converse is known to be false (see
[10] for references). However, it was not previously known if there was a totally
disconnected locally compact compactly generated uniscalar group with no compact
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[3] Strange permutation representations of free groups 269

open normal subgroup, but in [6] Kepert and Willis show that such an example can be
obtained from the group constructed in Theorem 1.2. For let K be a finite group, and
let H := £ A K x \\r K. Let F2 act on ft as in Theorem 1.2. Then F2 acts on H via
its action on the indices, and the semidirect product G := H x F2 will be a totally
disconnected locally compact compactly generated uniscalar group with no compact
open normal subgroup. As commented at the end of [6], for each g e F2 the group
G even has a basis of neighbourhoods of the identity consisting of compact open
subgroups normalised by g. Possible variations on the construction are discussed at
the end of Section 3.

We turn in Section 4 to ZTF groups. A permutation group on an infinite set is said
to be ZTF 'Zimmer torsion-free' if each non-identity element has just finitely many
cycles (so each non-trivial subgroup has finitely many orbits). R. Zimmer raised
questions about the structure of such groups, in connection with ergodic theory. An
easy example of a ZTF group is the infinite cyclic group acting regularly, and at the
other extreme, the free group on 2-generators was shown in [7] to have a faithful
ZTF action. These examples are in a sense typical, for by a result of Neumann [7,
Lemma 3.3], centralisers in a ZTF group must be cyclic-by-finite. A critical question
is whether there exists a highly implausible Frobenius group, that is, a Frobenius ZTF
group in which point stabilisers are infinite cyclic. Recall that a permutation group
on a countably infinite set is oligomorphic [1] if it has finitely many orbits on &-sets
for all k > 0. Neumann [7, Proposition 3.6] showed that any non-trivial ZTF group
which is not oligomorphic or regular has a subgroup with a faithful highly implausible
Frobenius action on some (possibly different) set. It is not known whether there is any
highly implausible Frobenius group, but it is easy to see that such a group cannot be
free. We remark that by [8] and [5], there is no 2-transitive permutation group whose
one-point stabilisers are infinite cyclic.

The ZTF group constructed in [7] may well be highly transitive, that is, ^-transitive
for all k > 0, and certainly the construction there can be modified to yield a highly
transitive group. It is more interesting (and relevant to the existence of highly implau-
sible ZTF groups) to consider non-highly transitive ZTF groups. As pointed out by
Peter Neumann, if (G, ft) is the permutation group built in [7], then G has a 'diagonal'
action on the disjoint union of two copies of ft which is oligomorphic, ZTF, but not
transitive. However, it is not so clear how to obtain a primitive but not highly transitive
ZTF group. Below, we build such a group acting on the random graph (defined at the
end of the section).

THEOREM 1.3. Let (ft, ~) be the random graph (so ~ is a binary irreflexive sym-
metric relation on the domain ft), and let ft := {£, : / e N}. Then there are
f,g€ Aut(ft, ~) such that

(a) / . 8 generate a free subgroup o/Aut(ft, ~) ,
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(b) / has a single cycle on £2, which is infinite,

(c) g fixes £o and has two cycles on£l\ {£0},
(d) the group (/ , g) is a primitive oligomorphic ZTF group.

We remark that since (f, g) is transitive on vertices, edges, and non-edges, by the
primitivity criterion of Higman [4] it acts primitively on £2. By the remarks above,
since F2 is free but does not act regularly, the action is oligomorphic. It seems
likely that the proof could be modified to ensure that (f, g) is also a dense subgroup of
Aut(£2, ~ ) , that is, has the same orbits on finite ordered sets as the whole automorphism
group. The proof is rather involved, but it suggests that many structures which are
homogeneous (in the sense defined below) admit large ZTF groups of automorphisms.
Observe though that Aut(Q, <) has no non-trivial ZTF subgroup. Furthermore, if G
is any oligomorphic group acting on a set £2 such that the pointwise stabiliser in G of
a finite subset of £2 preserves some partial ordering on £2 with an infinite chain, then
the action of G on £2 cannot be ZTF.

The method of proof of Theorems 1.1-1.3 is to build a permutation group generated
freely by {/, : i € /},by approximating each permutation/, by a chain of finite partial
functions. In Section 2, / = N, and in Section 3 and Section 4, / = (0, 1), with
/ := f0 and g :=f\. We denote by f,(k) the partial function on £2 constructed after
k steps, so / , := U(/7*' '• k e N) (so we regard each partial function as a set of
ordered pairs). If w is a word in t he / , , then w(k) is the partial function on £2 obtained
by composing the / / * \ A partial w(k)-cycle is a maximal sequence y0,... ,y, from
£2 (denoted ( . . . , yo. • • • . Yn • • •)) s u c n t n a t Yo(wM)' is defined and equals y,. We
use the word cycle for partial cycle, and complete cycle to refer to a cycle as above
where y,w(k) = y0. A wik)-chain is a sequence (S o , . . . ,&,,i,w) € £2 such that
for some subword ux- •• u, of a power of w (with U\ the /* symbol of w, and with

« , , . . . , u, e {/, g,f~\ #- '}), we have 80u\k) • • • uf = 8j for each y = 1 f.
In practice, we refer to the u>-chain (Si, ... , 8,) and drop the final entries /, to, but
formally, two to-chains are equal if they agree in all entries, including the final ones.
A maximal u/*' -chain is a if/*' -chain which is not a proper subsequence of any other
u/*'-chain. The length of a maximal u/^-chain (So, . . . , 8,) is t. At step k, a new point
is some 8 e £2 such that 8 £ {&, • • • , &} and such that 8 £ domC/"/*"1') U ran)//*"0)
for all i e I. We often regard partial permutations as sets of ordered pairs, and we use
the notation (a, /}) for ordered pairs.

A relational structure M is homogeneous if its domain is countably infinite and any
isomorphism between finite substructures of M extends to an automorphism of M.
The standard method of construction of homogeneous structures is Fraisse's amal-
gamation theorem. The random graph, is a well-known example of a homogeneous
structure. It is up to isomorphism the unique countably infinite graph F satisfying
the following 'extension property': for any two finite disjoint sets U, V of vertices,
there is a vertex adjacent to everything in U and to nothing in V. The homogeneous
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[5] Strange permutation representations of free groups 271

structure constructed in Section 2, though over an infinite language, has a similar
characterisation. See [1] for more on homogeneous structures, Fraisse amalgamation,
and the random graph.

2. Proof of Theorem 1.1

The group G will be a group of automorphisms of a countable homogeneous
relational structure ft* which we first construct. Let L be a first order language, with,
for each n e N, a single relation symbol Rn+2 of arity n + 2. Let # be the class
of all finite L-structures in which, for each n > 0, whenever R(x\,... , xn+i) holds,
we have that (a) all the xt are distinct, and (b) R(xlg, . . . , x{n+1)g) for each g in the
symmetric group Sn+2. It is routine to check that ^ is an amalgamation class, so there
is a unique countable homogeneous L-structure ft* whose finite substructures are up
to isomorphism precisely the members of *€. Let ft denote the domain of ft*, and for
each / > 1 let ft* be the reduct of ft* to the language containing only the relations Rj
for; > i (so ft* = ft*). Put ft = {ft : i e N}.

We build the permutations / , so that for each i e N,

(i) / , fixes ft for all j < i, and acts as a single infinite cycle on (ft : ; > /}, and
(ii) / , e Aut(ft*+2).

Since some but not all ordered (i + 2)-sets in ft*+2 satisfy Ri+2, the group (/0 , . . . , / , )
will not be (i + 2)-transitive.

We construct the permutations in co many steps, arranging that for each word
in the / / , / , " ' . after a certain stage it acquires no new fixed points. The group
G : = ( / , : / e N) must then be cofinitary. Each / , is constructed as a union of a
chain of finite approximations (f^ : j > /), where/,W) is the approximation of/,
constructed after; steps.

Let W := {Wj : i 6 N} be the set of cyclically reduced words in the/ , and/,"1.
To ensure that G is cofinitary, it suffices to arrange that each element of W induces
a permutation of ft with just finitely many fixed points. This ensures also that G is
freely generated by the / , .

At step 0, we put /0
(0) = (... f,, £0, fi •. • X where / 6 N \ {0, 1} is least such that

^2(£i. to) *> ^2(^0. £i)- This notation means that (... ?i, to. £,-...) is a partial cycle
of/0

(0), so ti/0
(0) = to and to/o

<O) = ft, with/0
<0) not defined elsewhere.

Before the n* step, we will have definedZ/""0 for all; < n. Here,//""0 fixes ft
for k < j and has exactly one other finite partial cycle, which is incomplete and of
length greater than one, and ft e dom*//""0) D ran(//""°) for all k < n - 1. This
last condition guarantees that the fj will be defined everywhere and surjective.

At the n"1 step, we ensure that ft € dom(//n)) n ran(//n)) for; < n, and that
/n

(n) fixes to. • • • , ft-i- Our procedure to put ft into the domain and range of/,(n)
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is as follows (we do this for each / < n). If £„ e dom(f,(n~n) D ranC//""0), put
//"> := Z/"-'). If £„ € domC/1/"-") \ rantf/""0), choose a 'new' point 5 6 Q
('new' as defined in the end of Section 1) and put /,(n) := Z/""0 U {(8, £„)} (so
5//n) = £„). We also assume that a 'new' point for//n) cannot be new for any fjn)

where j € {0, . . . ,n}\ {/}. The restriction on S is that/,(n) preserves the relations Rj
for 7 > / + 2. Since the Rj only hold on tuples of distinct elements, and dom(/(

(n)) is
finite, only finitely many Rj need be considered (of arity at most | dom(/",(n))| - 1), and
so by the homogeneity of £2* there are infinitely many possibilities for S. Similarly,
if £„ e rant//""0) \ domf//""1'), then choose new S e £1 as above and put//"' :=
//"""ufd, , , 5)}. Also, to put £„ into the domain and range of/n

(n),just choose suitable
distinct new 8, e and put/n

(n> := (f0) . . . (£,_,)(... , 8, $„, e,...).
We must also consider the case when £„ £ dom(ff"~1)) U ran(/•/""I}), and j < n.

Suppose that the non-trivial partial cycle of Z/""1' is (... , c*i,... , a r , . . . ) . Choose
a new point S and then a set of distinct new points Bt = [B\,... , Bs) (with 8 & Bt)
where s = max{r — 1, n}, and put

fln) := (fo) • • • (£;-.)(• • • . «,, . . . , a,, Bu ... , B,, £„, 5 , . . . ) .

The choice of 5 is easy, much as in the last paragraph. The choice of the /3, however
needs some care, to ensure that /,(n) preserves Rj for j > i + 2. We can ignore the
fixed points £0. • • • . £i-i> since each relation Rj and subset of size k of {£0, • • • . Hi-\)
determines a new relation of arity j — k > i + 2 — k > 2 on Q \ {£0, • • • , £<-i} which
must be preserved by/ , , and there are finitely many of these 'new' relations (we only
need to consider relations of arity less than r + s + 2, the length of the non-trivial
cycle of//"'). We have two kinds of conditions required for the Bj and 8. First, if one
of the relations holds of a tuple from [au • • • ,ccr] then it must hold for any translates
underZ/"' which involve the Bt. Conditions of this sort have 'span' at most r — 1, in
the sense that they involve points at most r — 1 apart in the cycle of//"'. Second, if
a relation holds of a tuple involving £„ and some of {oti,... , ar}, then translates of
this under//"' impose conditions on the Bt and 8. Conditions of this second sort have
span at least s + 1 > r, so there is no clash between conditions of the two sorts. Thus,
using the homogeneity of £2* the elements of 5, can be found. The sets /?, (for i < n)
are all chosen to be disjoint.

It remains to verify that in this construction, each word u>, has finitely many fixed
points. Consider a word w e W. As usual let wM denote the word obtained from
w by replacing, for each / e N, any occurrence of/, or/ ,"1 by / /" ' or C/"/"')"1

respectively. Suppose that at step n, w acquires a fixed point, that is, there is e € M
such that fw(""" is undefined but eu/n) = e. We shall show that either l(w) > s (so
l{w) > n), o r / n occurs in w. It follows that there is some step t such that after step
t, w acquires no new fixed points. Since w(t) has just finite domain, the word w has
just finitely many fixed points, as required.
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[7] Strange permutation representations of free groups 273

We may suppose that / „ does not occur in w. Step n really consists of n + 1
substeps (one for each of/0

<n),... ,/n
(n))» and for convenience we shall suppose that

wM becomes defined at e at the 0th substep, when we put £„ into the domain and range
of/0

<n). (The arguments f o r / 0 ) . . . , fn-\ are similar, and by the above assumption, we
can ignore the substep when/n

(n) is defined as this cannot introduce a fixed point for w.)
We shall suppose that £„ £ dom(/0

(n~1)) U ranf/d""1'), this being the hardest case. So
/0

("-" = ( . . . , a , , . . . . a ), and/0
(n) = ( . . . , a , , . . . , a,, 0U... , 0,, ?„, 5, . . . ) ,

where 5 = max{r — l,n).
Clearly/o or/0~' occurs in u>. Write u> = MI • • • u, and u>(n) = M(,n) • • • «,(n), where

Mi e {/;./; ' : 7 e N} and H-n) is the approximation of w, after n steps. There is
7 < t such that MJ""0 • • • uf'^ is defined at e but i//1"0 • • • M]""0 is undefined at e.
This means that u} is / 0 or / „ " ' and e', the image of e under i//1"1' • • • wjlY', is in
{ar, fa,..., fi,, U (if ii; = /o) or in { f t , . . . , 0,, £„, 8} (if «, = / „ - ' ) .

In the first case, when Uj = f0, there are three possibilities.

(0 €' = £„;
(ii) €' = ar;

(iii) e' e [0i,... , 0S) (in which casey = 1 as the /J, are new).

As ^n/0
(n) = 5 which is new and w is reduced, if case (i) holds then j = t, e = S,

and u\ = / „" ' , contrary to the assumption that w is cyclically reduced. If case (ii)
holds, then as w(n) is defined at e it follows that each of Uj, ... , Uj+S is equal to / 0 ,
so i(w) > s. In case (iii) we have e' = e = 0k, say. Now since w is cyclically
reduced and u\ — / o and the 0i are new, u, = /o- From this it again follows easily
that £(w) > s.

In the second case, we have Uj = / 0~' . Now, one of the following holds.

(i) e' = %„ and j = 1 (as 8 is new);
(ii) e' = 8 andj = 1 (as 8 is new);

(iii) e'e{0u... ,0s}&ndj = 1.

In case (i), each of Uj, ... , uj+s equals / „ " ' , so £(w) > s. In case (ii), it follows that
e' = € = 8, and u, = /o , contrary to the assumption that w is cyclically reduced.
Finally, in case (iii), as the 0{ are new we have e' = e = 0k, say. Now as in the last
paragraph, since w is cyclically reduced it follows that u, = / 0 ~ \ and l(w) > s.

We have shown that in all cases, if / „ does not occur in w, then i(w) > s > n.
Hence, w has just finitely many fixed points, as required. •

3. Proof of Theorem 1.2

Put Q, := {£, : i 6 N}, F := {£2l : i e ^}> and A := Q \ F. Fix a surjection
<J> : N —> N2. Let F2 be the free group on generators / , g. Let W := {if, : i e N] be

https://doi.org/10.1017/S1446788700003293 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003293


274 Meenaxi Bhattacharjee and Dugald MacPherson [8]

the set of non-empty cyclically reduced words in f,g,f~l,g~l- We shall define an
action of F2 on £2 step-by-step, so that after step k the partial isomorphisms / (k\ g(k)

will have been defined (and/ := U(/ ( t ) : k e N), g := l)(g(k) : k e N)). We adopt
other notational conventions of Section 1. For each k e N there is an equivalence
relation ~ t on Q: a ~ t /} if there is some word w such thatau;(A) = p. The ~*-classes
will be called k-components.

At step 0, we put / <°> := {(f0, ?i>, (f i, lo>} and £<°> := {(f0, f2)• &, ?o)}• We shall
preserve throughout the construction the following conditions.

(i) For each / e N, all partial cycles of w(k) are finite.
(ii) F and A are g(t)-invariant;

(iii) All/(i)-partial cycles other than (£0, £i) lie within P or within A.
(iv) If 0 is a non-empty k-component, then there is £ e 0 such that not all of

!/<A), £s(i)> £(/"(t))~', ^(g(i))"' are defined (and if £0 e 0 then § can be chosen in
either F or A).

Clearly, the above hold after Step 0. We also ensure that for each i > 0, u>, moves
some element of £2, and that If, g) acts transitively on £2. By (i), part (a) of the
theorem holds. By (ii) and (iii), if x e F2 then all but finitely many of the cycles of x
lie entirely in T or entirely in A, and (b) of the theorem follows.

The construction is in the following steps.
Step k = An. Ensure that £„ e dom(/ w ) Pi ran(/(t)) n dom(g(':)) n ran(g(t)).
Step k = An + 1. Ensure that u^*' moves some element of Q (to guarantee that

If, g) acts faithfully).
Step k = An + 2. Arrange that £0 and £„ lie in the same ^-component (this will

yield transitivity of {/, g) on Q).
Step k = An + 3. Ensure that if 4>(n) = (r, s) then the w(

r
k)-cycle containing ^ is

complete (this yields (i) above—the finiteness of all u>-cycles).
We now verify that each of these steps can be carried out. It is easily checked that

(i)-(iv) are preserved.
Step k = An. Suppose that £„ £ dom(f(k~l)) U rani/'*"0)- Find distinct new

points £, £' in V (if n is even) or in A (if n is odd) and put

/<*>:=/<*-» U {<£,&,).&,.*'))•

There are other cases (when / is replaced by g, or when £„ lies in just one of the
domain or range of/ or g), and these are handled similarly.

Stepk = An+L Let / := l(wn). We extend/ (*-'\ g(k~l) t o / <«, g(i) so that there
is an u^-chain consisting of distinct new points a0, . . . , a; G F such that aou;^' =a ; .

Step & = An + 2. We may suppose £„ 6 F (as the case £„ e A is essentially the
same). Also, we may suppose that £0 and £„ are in distinct (k — l)-components, as oth-
erwise the result already holds. By (iv), there is y e F lying in the (k — l)-component
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of fo such that for some ht e {/, g,f~l, g~1}, yh\k~l) is undefined. Likewise, there
is S in the (k - l)-component of fn such that for some h2 e {f,g,f~\ g'1}, 8h2

k~l)

is undefined. Let h3 e {/, g,f~\ g~]], hj ^ hj\ h2. Choose new points eu e2 6 P,
and take the least extension of/ <*-'>, gik~» t o / <*>, g(k) so that yA* = e,, e, fcf = e2

and €2(h2
k))~l = 8. If w := h1h3ti2~

l, then yww = 8, so £0> f« are in the same
^-component, as required.

Step k = An + 3. For notational convenience, put f := &, u; := wr and / := €(u»).
We may suppose that the u/*~"-cycle containing £ is incomplete, and has the form
(... , <5i,... , 8,,...). (We do not exclude here the case when £ is a new point, so
t = 1.) Let «i be a maximal initial segment of w such that 8,uf~l) is defined, and
likewise let V\ be a maximal final segment of w such that ^(uf"1 ')"1 is defined. Put
e := 8,itf~l) and e' := ^(uj*"0)"1. There are words u\, v\ so that w = u\u\ = v[v\
(so «,, u', are non-empty, but possibly equal in).

Case 1. e, e' e V. (The case c, e' e A is similar.)
Let m := £(i>i) + t(u\) and put u;' := u\v[. Then iw' is reduced, as w is cyclically

reduced. Suppose first e ^ e'. Choose new points €\,... , em_] e P and extend
/ <*~1), g(k~l) so that there is a u/w-chain from e to e' of the form (e0, • • • , fm), where
e0 := € and em := e'. The m-chain containing £ is now complete.

If e — e', slight extra care is needed if some initial segment of u\ is equal to an
initial segment of u',"1. However, as w is cyclically reduced, we cannot have u\ = v'{~x,
and so essentially the same argument as above works.

Case 2. e' e P and e € A. (The case e' e A and e e P is similar.)
In this case, by (ii), there is at least one occurrence of/ o r / "' in w.

CLAIM. There are r) € A and I J ' G F and a maximal w<-k~1^-chain beginning at r\
and ending at r\' with r]{u2u^ v2)

<-k~1) = r)', where u2 is a proper final segment ofw
and v2 is a proper initial segment ofw {and possibly j = 0).

PROOF OF CLAIM. For each occurrence of/ o r / " 1 in w, consider the maximal
ui^'-chain in which that occurrence takes £0 to £i, and the maximal u)(i~I)-chain in
which that occurrence takes | i to £0- Let C\, ... , C, list the w(k~X) -chains so obtained.
Let a, be the number of (P, A)-crossings of C, (that is, successive pairs £0. £i in Q),
and bt the number of (A, T)-cwssings (successive pairs £(, fo)- Each occurrence of/
(or/"1) in w determines a unique (P, A)-crossing of some C,, and a unique (A, P)
of some (distinct) C,. Also each (oriented) crossing of each C, comes from a unique
occurrence of/ o r / "' in w. It follows that

a, H \- a, = b\ -\ Ybt.

If C, is a chain of a complete w(k~ "-cycle, or begins and ends in P, or begins and ends
in A, then a, = bt. Likewise, if C, begins in P and ends in A then at = b( + 1, and if
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C, begins in A and ends in F then b( = a, + 1. Since the chain from e' to € begins in
r and ends in A, it follows that there is some C, which begins in A and ends in F, as
required. •

Given the claim, write w = u'2u2 = v2v'2. As in case 1, the words u\u'2 and v'2v\
are reduced. Suppose first that e ^ r\ and e' ^ r)'. As in Case 1, extend f(k~l\ ^( i -1)

to / '* ' , gw in a minimal way, entirely using new points, so that €(u\u'2)
(k) = 1 and

r\'(y'2v[)ik) = e'. As in Case 1, slight extra care is needed if say e = rj (and similarly if
e' = T}'). For example, it could happen that € = r) and there is an initial segment u of
u\ such that u~x is a final segment of u'2. In this case, since w is cyclically reduced we
cannot have u\ — u = (u'2)~\ and it follows that the extension is still possible. •

REMARK 3.1. There are certain refinements of the construction in the proof of
Theorem 1.2. For example, it is possible to arrange that F2 acts 2-transitively on
£2. One needs to show that the stabiliser of £2 can be made transitive on Q \ {f2}.
The idea is, for an arbitrary £, to fix £2 and map £0 to £, by some very long word.
More generally, one can arrange that the action of F2 on Q is highly transitive, that is,
it-transitive for all k > 0.

4. Proof of Theorem 1.3

We build automorphisms / , g of the random graph (J2, ~ ) . Let S be the set of
non-empty cyclically reduced words in / , g,f~\ g~l. Define an equivalence relation
= on 5, putting a s u i f and only if there are words wit w2 e 5 and r, s e Z \ {0}
such that

w^urwi = w2
lvsw2.

Let W = {u)j : i € N) consist of exactly one element, chosen of least possible
length, from each =-class. By the minimality assumption no element of W can be
a proper power, and each is reduced, and not conjugate to any shorter word. The
construction of/, g is by finite approximation, and after step k we denote by / ( t ) , g(k)

the restrictions of/, g so far defined (likewise, for any word w, w(k) is the restriction
defined after step k). Let /„ := £(wn). We suppose that w0 — f and W\ = g.
To ensure that {/, g) generate a ZTF group, we shall arrange that each u>, has just
finitely many cycles. One of the steps will be to extend/(k), g(k) so that certain partial
cycles of some u>, are 'joined' into a single cycle. This is not always possible: for
example, if a partial automorphism h had incomplete cycles (... , c*i, . . . , ar,...)
and (... , f}\,... , fis,...) where a, ~ a2 but J8J / /32, then there is no extension of
h with a single cycle extending these partial cycles. This problem did not arise in [7]
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(where there was no invariant relational structure) and makes the proof here more
complicated. First, we must formalise the notion of compatibility of partial cycles.

DEFINITION 4.1. Let w be a word, with l(w) = I. Then two io(t)-cycles

( . . . , € ! , . . . , € , . , . . . ) and (...,€[,... ,e's,...)

are compatible, if the following hold, where the w(k)-chains corresponding to the
above cycles are (Su... , <5n) and (<$;,... , S'm).

(i) For all t e N with tl < min{m, n]

-o-

(ii) Suppose the finite complete w(k) -cycles are Q Cp, of lengths ri, ... ,rp,
and that £>, := {x e C,• : x ~ €\) and D't := {x e C,: : x ~ ej}. Then there are
su ... ,sp e M such that D\ = Dj(w(k)y' for each i and there is a e M such that
a = Sj (mod r,) for each j = 1 , . . . , p .

We shall say that two w(k)-cycles are weakly compatible if just condition (ii) above
holds.

Because of condition (i), compatibility is not an equivalence relation (since two
incompatible long ui(*'-cycles can each be compatible with a short iy(i)-cycle). How-
ever, weak compatibility is an equivalence relation. The idea of the above definition
is that if two w(k)-cycles are compatible then it should be possible to extend u>(t) so
that they are parts of a single cycle and such that the number of new points used to
join the two cycles depends on the a obtained in (ii) above. We shall do this explicitly
a little later.

We now describe the construction of / , g. First, we fix a surjective function
<t> : N —> N3 which takes each value of N3 infinitely often. Our construction proceeds
through steps 5n to 5n + 4. If A: e {5n,... , 5n + 4), then step k may be a sequence
of substeps. We adopt the general notation that for a word w, the function determined
by w before such a substep of step k is written u>(**\ and after the substep it is denoted
by w(i+).

DEFINITION 4.2. Suppose a, b e M with a,b < k/5, and that wa, wb e W. A
(wa, Wb, k*, a, fi)-coincidence consists of a w(

a
k*}-chain and a distinct u^'-chain

from a to @ such that there is a common letter* (one off, g,f~\ or g~l) such that
Px(kt) is undefined, but in some extension of both the u^**'-chain and the lo^'-chain,
f}x(k+) would be the next element after p .

Before starting step 5n, we partition the incomplete cycles of w(*"^~l) which lie in
maximal chains of length at least 1ln_x into finitely many classes, say

fsn—1 it"1"'
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so that any two cycles in some K?~x are compatible (here h : N -> N is some indexing
function). We will eventually arrange that u»n_i has h(n — 1) infinite cycles (so that
h(0) = 1 and h(l) = 2), with partial cycles in a given K"~x eventually being joined
so they lie in the same cycle. The word wn_\ acquires no new finite complete cycles
after step 5n — 1. If a partial cycle lies in K"~l then we refer to K"~x as its type, or
compatibility type. This is never changed: later extensions of a partial cycle in K"~x

will still have type K"~\ and at later stages, every cycle of w(
n
k\ in a maximal chain

of length at least 2/n_i will have type AT""' for some unique i e { 1 , . . . , h(n — 1)}.
At each substep after 5n, as soon as a partial cycle of ion_i lies in a chain of length at
least 2/n_i, we choose some / so that the cycle is compatible with cycles of type K"~\
and specify that it has type K"~x. At any stage any two cycles of a word of the same
type will be compatible.

Step k = Sn. Ensure that £, e dom(/ (*>) n ran(/ <*>).
Step k = 5n + 1. Ensure that £„ € dom(^(i)) n ran(g(t)).
Step k — 5n + 2. If <£(«) = (p, q, r) with p < n, and £,,, £,. lie in ^ " " - c y c l e s of

the same type, each in chains of length at least 2lp, extend/ (*~l), g " " " so that £9, £r

are in the same u/^-cycle.
Step k = 5n + 3. We ensure that over the complete cycles of w^~l) there are

wl
n
k)-cycles of each possible weak compatibility class lying in chains of length at least

2ln.
Step it = 5n + 4. Extend/ (*~1), ^(*~1) to arrange that there are no (wh wn, 5n + 4,

a, /^-coincidences for / < n.
Throughout the steps 5n to 5n + 4, we ensure that

(a) up to compatibility there is a unique / w-cycle and at most 2 incomplete gik)-
cycles, and gik) has a unique complete cycle (£0)-
(b) there is no coincidence in which both the words involved are from w0,... , wn_\,
(c) if i < n — 1, then any complete u»,-5n+4)-cycle is a complete wf"""-cycle,
(d) any extension of cycles of wk* (0 < i < n — 1) respects their compatibility type;

that is if two cycles of io,-**) have the same type, then so do their extensions to cycles
of^( t+) .

We call any extension / ( i + ) , g( t + ) of/ '**', g(kt) preserving these properties a good
extension.

LEMMA 4.3. Suppose that n = [k/5], the integer part of k/5, and that y &
dom(fikt)). Suppose that after step k*, (a)-(d) above hold. Then there is 8 e Q
so that the extension f(k+) :=/<**> U [{y, 8)}, g*-k+) := g(**> is good.

REMARK. The corresponding statements hold with f~\g, or g~x in place of / .

PROOF OF LEMMA 4.3. We must choose 8, a new point of £2. The requirement
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that / (*+) is a partial automorphism essentially says that for certain finite disjoint
Ai, A2 c £2, S must be chosen in

{x : Vy e At(x ~ y) A Wy e A2(x •/• y)}.

By the extension property which characterises the random graph, this set is infinite,
that is, there are infinitely many choices for such S. As 8 is new and the Wj are
cyclically reduced, for any i e N any complete cycle of w\k+) is a complete cycle of
u>-**\ so in particular (c) above will be satisfied.

We next check that S can be found so that (d) holds. Condition (ii) in Definition 4.1
plays no role here, because the weak compatibility class of a partial cycle is determined
by one of its elements. Essentially, our compatibility requirements merely force us
to restrict the choice of S by increasing Aj and A2 (to ensure that the conditions are
satisfied). The only problem is to ensure that A] and A2 are disjoint, that is, that it
doesn't happen that one compatibility requirement puts some e e A\, and some other
compatibility (or automorphism) condition puts e 6 A2. There could not be a clash
between a compatibility requirement and an automorphism condition, for suppose
the compatibility requirement forced 8 ~ e (that is, e € Ai) and an automorphism
requirement forced 8 / e (that is, e e A2). This means that for some a < n there
will be a w(k+)-chain of length tla say from e to 8, and further r\ := e(f(k*))~i / y.
However, in this case there is already a u;****-chain of length tla from r\ to y which
conflicts with our compatibility requirements. It can be checked that two compatibility
requirements can only clash if there was a {wa, wb, k*, a, /J)-coincidence, and by
assumption there is none.

To verify (b), suppose that there is a (wa, wb, k+, a, fi) coincidence. Then either
a — 8 or ft = 8. If fi — 8, then the last letter used in both the w^+)-chain
and the io£*+)-chain is / , so there was previously a {wa, wb, k*, a, y)-coincidence,
contrary to (b) at the previous step. Similarly, if 8 = a, then there was previously a
(wa, wb, k*, y, yS)-coincidence, again a contradiction. •

LEMMA 4.4. (i) Let wa,wb e W, with wa ^ wb, and put la = l(wa),
lb = £(wb). Suppose that wa, wb have a common chain of length n. Then

n < max{/a(/0 + 1), lb(lb + 1)}.

(ii) Let w € W have length I and (50, . . . , <52/) be a w-chain with 80w
2 = 82i-

Suppose that for some i > 0 there is a w-chain (<5,, . . . , <$,+/). Then i = I.

PROOF, (i) Suppose not. We may suppose /„ > lb. By the pigeon-hole principle,
we may suppose there are distinct e,-, e, on the wa-cycle and an initial subword u of
wa such that e,u, e,« are on the uvcycle. (There is another possible case, handled
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similarly, when u is a final subword of wa and etu~l, €jWl are on the uvcycle.)
Hence etuw^ = ey u for some k € N. Put m :=j — i. Then e, w™ = €j (via the same
chain), so w™u = uwk

b. Hence wa = wb, which is a contradiction.
(ii) Suppose i ^ I and suppose u, v are respectively initial and final segments of w

such that 80u = <5, and <51+;V = <52/. Then (by considering lengths of words), <5,i> = <5(

and Stu = <5,+;. It follows that uw = wu, so w is a proper power of u, which is
impossible. •

To get started we write down the first 10 steps explicitly (remembering that w0 = / ,
w\ = g). This will serve to check that the conditions hold early on.

Step 0: P u t / ( 0 ) = ( . . .£i ,£o. £•••••). where i e N \ {0, 1} is least such that
£i ~ £o • • to ~ &• As in Section 2 this notation means that (. . . £i, to. £ , . . . ) is a
partial cycle of/<0), so f,/(0) = f0 and &/( 0 > = f/, with / ( 0 ) not defined elsewhere.

Step 1: Put g(0) = (£o). That is g fixes ^0-
It is easy to see that there is nothing to be done in Steps 2, 3 and 4. At this stage

we specify that h(0) = 1, that is, w0 = f has a unique compatibility type K°.

Step 5: Put / ( 5 ) = ( . . .£ ; ,£ , , £o. £•••)> where j e N \ (0, 1, /} is least such that
Hj ~ £i •* Hi ~ ^o and § ~ ^o •«• £i ~ ?i-

Step 6: Here we need to put ^ into the domain and range of g. Let us call a point £
of Q a neighbour of £o if £ ~ to and a non-neighbour otherwise. Since g fixes £o we
extend g in such a way that all neighbours will eventually be in one cycle and the non-
neighbours in another, thus giving us 3 cycles in all. Put g(5) = (£o)(- • • £«. £i» Hm • • •)
where £„, £i, £m are either all neighbours or all non-neighbours of £0

Step 7: Nothing need be done, as g(6) has a unique incomplete cycle with more
than one point.

Step 8: The only complete cycle of ga) is (£0), so for example if £i ~ £0. then
at step 8 we must extend ga) by adjoining an incomplete 2-cycle of non-neighbours

offc.
Step 9: Nothing need be done, as w0, W\ have length 1 and distinct words of

length 1 cannot have a common next letter as required for a coincidence.
Finally, we specify that W\ = g has two compatibility types K\ and K\, corre-

sponding to neighbours and non-neighbours of £0 respectively, so h{\) = 2.
It follows immediately from Lemma 4.3 and the remark following its statement

that Steps 5/r and 5n + 1 are possible. It is also straightforward to see that Step 5n + 3
is possible, since we can construct new iy^5n+3)-chains of length /„ using new points.

Step k = 5n + 2. This is the most troublesome step. Suppose that 4>(n) =
(<7ii <72, 93) with qx < n and write u> := wOl and / := t(w). Let ( . . . , 61, . . . , ec, ...)
be the u/*~l)-cycle containing £,,, with corresponding ^ " " - c h a i n (S\,... , <5r), and
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(. . . , e j , . . . , e'd,...) be the w^k~l)-cycle containing ^<n, with corresponding w(k~X)-
chain (S[,... ,S'S). We may suppose that these two cycles are distinct, as otherwise
there is nothing to do. By extending these two cycles if necessary (using Lemma 4.3),
we may assume that they are the two longest ^ " " - c y c l e s , with c > d.

Let /' := max{/0 , . . . , /„}. We first apply Lemma 4.3 to add between I'2 + I' and
I'2 + 2V new points to each end of the u/*"1' -chain (Si,... , Sr) to obtain a new w(k*}-
chain (au ... , ar,) with 10-cycle ( . . . , e_ m , . . . , e c + m + 1 , . . . ) , where al = e_m and
a,- = ec+m+i (so m > /')• Likewise, we can find a good extension of the u/^^-chain

(S[, . . . , ty to a chain ( « ' „ . . . , < ) with u/^-cycle ( . . . , e'_m e ' d + m + i , . . . ) ,

where a\ = e'_m and a's, = €d+m+1. This is done so Lemma 4.4 (i) can be applied later.
We now adopt the notation of Definition 4.1 for the complete cycles C\, ... , Cp

of w(k~l). In particular, D, := {x e C, : x ~ €x) and D\ = {x e C,< : x ~ e[},
for each i = 1, ... ,p. By compatibility, there is a such that a = st (mod r,) for
each i = 1 , . . . , p. Put b := a — (c + 2m + 1). The idea here is to ensure that
exw

a = e[. Now €\\vc+m = ec+m+1, and e'_mwm+i = ej. Thus we need b such that
€c+n+iw

b = e'_m. That gives a = c + m + b + m + 1. For later convenience, we
choose a so that b > c + 2m + 2.

We shall find new ylt... , yn,_i so that there is a good extension / ( t + ) , g<A+) of
/ ( ** \ g(**( such that there is a u>(t+)-chain (ori, . . . , ar-, y i , . . . , yib-i,a'v . . . , a^,)
with ar>(w(k+))b = a[. To smooth out notation, we put

y-(r'-\) :=au... , y0 := a,, yw := a\ y/*+s<-i := a,.

The process is inductive. After a typical step A:* we will have found y\,... , y,_i,
so that (y_(r-_i),.. . . y,_i) is a iw^^-chain. At step k+ we must find y, so that the
following conditions hold (they are assumed inductively to hold after step k*). Below,
we say that a word z potentially takes a to ft if, for any extension of f(k+\ g(k+)

t o / w , g(k) (partial permutations, not necessarily automorphisms) given by choosing
y , + i , . . . , yw-i so that (x-(r<_o, . . . , yib+S'-\) is a K/*'-chain, we have az(k) = P-
Thus, for example, before finding yx the word wb potentially takes y0 to y/6, and if
/ is the first letter of w, then wbf potentially takes y0 to yw+i- The idea of (l)-(4)
below is that we have an implicit commitment that a certain final subword of wb must
eventually take y, to yib. We will also sometimes say that a word z will eventually take
a to Yj e {y,+i,. . . , yw-i], or write that az(k) = Yj, meaning that for any extension
f (*)t gM as above, we have az(k) = Yj •

(1) Automorphism conditions: / ( k + ) , g(k+) are partial automorphisms.
(2) Compatibility conditions: for i < n, if two partial cycles of to,-*"0 have the same

compatibility type, so do their extensions after step k+.

(3) If a, $ 6 Q. with azik+) = P, and /x, k e £2 and nz(k+) is undefined but z
potentially takes /x to A,/Lt ~ a +>• k ~ p.
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(4) If a, 0, a', ) 5 ' e Q and azik+), Pz(k+) are undefined but z potentially takes (a, P)
to (a', P'), then a ~ a' «* P ~ P'.

Conditions (3) and (4) deal with commitments arising because of the intention
later to add y1+1, . . . , Yw-\- They become important when we choose Yib-\- Up
until then, using Lemma 4.3, we could make choices preserving just (1) and (2).
However, to ensure that we can choose yib-\ s o that (1) and (2) still hold, we need to
preserve (3) and (4) throughout the construction (and this will suffice). To see this,
suppose after step (k*) we have found yi,... , Yib-i, and must find yw-i, subject say
to y/i>-z/(*+) = yib-\ and yib-\g

(k+) = yib. Suppose say that it is impossible to find
yib-i (subject to (1) above). In this case there are A., fj., v such that kf(k*) = fj, and
* T6 Yib-2, and iig(kt) = v and v ~ ylb (or the same holds with ~ and / reversed).
Then after step (k*) we had that fg potentially takes yib-2 to ylb, and Xf (k*)g(k*) = v,
but A. T6 ytb_2 but v ~ ytb, contrary to (3) or (4) at step k*.

Condition (2) above poses no problems, essentially by Lemma 4.4 (i) (and the fact
that we extended the chain (Sit... , 8r) sufficiently). For when we add yi,... , yw-i,
no cycles for w0, •.. , wn-\, other than the obvious one for w, are affected (we may
create some new cycles for other words, but they will be compatible with previous
cycles). Also, as in the proof of Lemma 4.3, we may at each stage choose y, such
that (1) holds (with the argument in the last paragraph for i = Ib — 1). Thus, the
problem is to show that (3) and (4) hold before yx is chosen, and that, assuming that
yi,... , y,_i are chosen to satisfy (l)-(4) and that the choice of y, also satisfies (1),
then it can be arranged that (3) and (4) also hold after the choice of y,.

We first simplify (3). Suppose that u(k+) is the word which will take y0 along the
chain (y0, y\,... , y,) to y,, and that wb = uv (so that v potentially takes y, to y/6).
Then, since we assume y, is chosen to satisfy (1), an easy induction argument on the
length of z in (3) allows us to assume that z = v, with a = y, and P = yib. We omit
the other case, when z = v~l and a = y^, P = yo-

Starting the induction. First, note that condition (3) holds before yt is chosen,
since the it/**' -cycles

( . . . , y _ ( r ' - i ) , . . . , y o , • • • ) a n d ( . . . , y , b , . . . , y i b + S ' - \ , • • • )

satisfy condition (ii) of Definition 4.1, and since by the choice of b, there are no other
tu-cycles of length b.

We show now that (4) holds at the beginning, that is, when (k+) is the step
before yt is chosen. Suppose not, and let the word z be a counterexample to (4) of
least length. Then we can write z as x\y\Xiyi • • -xpyp, where the *,-, y, are reduced
words (yp possibly empty, the other y, non-empty), with JCI, . . . ,xr e {wb, w~b}.
Furthermore, we may suppose a 6 {y0, yib], say a = y0, in which case *i = wb.
Slightly abusing notation, we shall write that ax{k+) — ytb. Since we are reducing to
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the case p = 1, we first suppose p > 1. Each yjk+) is defined on a(xiy\ • • • x,_i)(*+),
&nda(xiyi •• •xl-_i)<*+) is equal to ylb if x,_i = uA or yoif;c,_i = ">"*• By minimality
of z (using (1) and that (3) holds at the beginning), a'x[k+\ a'(xiyi)ik+) are undefined,
that is, x\, xxy\ will eventually take a' to points in {y\,.. • , Yw-\}- Since JCI ends in a
copy of io, and x2 starts with a copy of w or w~l, it follows by Lemma 4.4 (ii) that

In particular, yi is a power of u; (clearly a positive power as it is defined on

Yw = axf+)). However, in this case ywy\ = YKI>+J) f ° r some j > 0, contradict-

ing that Ywyx e {y0, y/i)
Thus, we have p = 1, so z = wbyu with y^yj defined after step (k+). By

minimality of z, we also have z = >Ju^* or z = >Ju)""6, and we suppose the former
(the latter is similar). Then fi' = ylb. We wish to show yt or y\ is a power of w, for
then (4) holds by condition (i) of Definition 4.1.

Suppose first l(y[) > Ib. Then, since wb is an initial segment of z, we have
z = wbuwb for some u. In this case, as wb is defined (before the choice of yO on
yibU(k*\ the element yibU(kt) lies on a finite complete to-cycle, as does a(«~1)( i*). Now
a ~ a ' <-» $ ~ or' (as the two 10-cycles being joined satisfy Definition 4.1 (ii)). Since
u is defined on a', ft before y\ is chosen, $ ~ a' <-> /}' ~ a. By Definition 4.1 (ii)
again, fi' ~ a •<-> )S' ~ ^, whence a ~ a ' •<-> 6̂ ~ j8', as required. Thus, we
may assume £(y[) < Ib, so y{ is an initial subword of wb (and likewise yi is a final
subword). It now follows by Lemma 4.4 (ii) that vj is a power of w, since otherwise
z would not potentially take a to /J. This starts the induction.

The inductive step. We now suppose that (3) and (4) hold after step it* (when
y,_i was chosen), and verify that y, can be chosen so they hold after step k+. We
may suppose that y, is to be chosen to equal y ,_ i / ( i + ) . Recall the simplification
of (3) before the inductive step, and the choice of v. In particular, after step k*, f v
potentially takes y,_i to y«,.

First note that (3) does not conflict with a condition of type (1). Suppose /x, A. € fi
with /xu^*' = A., and that k ~ yib. We must choose y, so \x ~ y,. If this clashes
with(l), then n(f ~l)(kt) / y,-_i. However,/ v potentially takes (at step k*) y,_i toyib
and (/*(/ ~1)(**))(/ u)(t*> = A.. Thus, A. ~ ylb and /z( / -1)***' -/- y,_,, contrary to (3) at
the previous substep. We should also consider here the case A. = y,, in which case we
must ensure fx ~ y{ *+ y, ~ yib. Again, this is consistent.

Thus, it remains to show that (4) is preserved, under the assumption that (l)-(3)
hold after step k+. So suppose y, is chosen so that (l)-(3) hold but (4) does not hold,
and that the word z is a counterexample to (4) of minimal length. By this minimality
we may suppose that in (4), or = y,, and that the word z has form vyjx2y2 • • -xryr,
where JC2. . . . , xr € {v, v~1}, and the yt are arbitrary (reduced) words. Here, after
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step k*, each yt is defined on the potential image of y, under vx2yi • • -Xj, and the
decomposition of z is chosen so that avy\.. .yj is potentially a if xj+\ = v, or ylb if
xJ+i = i r 1 .

We suppose for a contradiction that r > 1. By minimality of l(z) and the as-
sumption that (l)-(3) hold, u(*+) and (vyi)ik+) are not potentially defined on a' (so
eventually, i.e., after step it, they will take a' to points in {y ,+ i , . . . . Yw-i})- Also, as
Ywyt^ £ {Yi> Yib) a ° d a n y word at step k* of length at most I2 defined on yu, is an
initial subword of wl, £(y\) > I2, and y\ has an initial subword w. It follows that
after step it, w will be defined on a'v(k). In particular, as eventually we will have
a'vw € {yi+i,... , Yib} we have £(v) > £(w), and we can write v — v'wq where
l(v') < t(w) and q > 0. By Lemma 4.4 (ii), after step A: a'v will lie on the ui-cycle
of y0. Assume first l(y') > 0. Then as v' is a proper final subword of w (and the
maximal u/**'-chain of y0 begins with a point on the ui-cycle of yo)> it follows that
a" :— a'f~l is defined. Hence, after step i t * / z potentially takes (y,_i, a") to (/J, )3').
Hence yi-\ ~ or" <->• y3 ~ ^' , so as / is an automorphism, y,- ~ a ' •** /} ~ /S', as
required. If v' is empty, so D = ID', then, by considering Lemma 4.4 (ii) applied to
a'v, a'vy\, a'vy\x2, we get that y\ is a positive power of w. This contradicts that

Yiby\k+) € [yh Yib).

Thus, we reduce to the case r — \, that is, z = vy. Again, by minimality of (,(z) we
may suppose that after step it, each point on the y{k)-chain froma'i/** to a'(try)(*) will
lie in ( y , + i , . . . , yib-i}, except for a'(vy)ik) which is one of y , , . . . , ylb. In particular,
l(y) < l{v). Write v = v'u;1' where £(u') < /.

Suppose first £(y) > £(u>). Then as y^y1*** is defined, y has w as an initial
segment. Hence, by Lemma 4.4 (ii), as yik) will be defined on a'v(k\ a'v{k) will be
on the u>-cycle of y0. In particular, y is a power of w, and /S' = y;i. In this case, vy
is a final segment of a power of iu, and it potentially takes a to fi and a' to /S' along
a subset of the w-chain from y_r<_i to y/(,+J<-i- We may suppose t>' is non-empty, as
otherwise z is a power of u> and hence satisfies (4) by Definition 4.1 (i). In particular,
as above a" := a'f""' is defined at step k*, and / vy potentially takes (y,_i, a") to
($, /J'). Since (4) held at step it* and / is a partial automorphism, (4) holds after
step k+.

Alternatively, i{y) < £(w). There are two cases, according to whether fi' is y;i

or y,. In the first case, we have to choose y, to ensure y,• ~ a' -o- /S ~ y/fc, and in the
second case we choose y, so that y,• ~ a' •<-> /3 ~ y,. It can be checked that this does
not conflict with other constraints.

The above argument shows that the two cycles of w(k~n can be joined, without
creating new incompatible cycles for w0,... , iun_i. It remains to check that after
Step 5n + 2, there are no coincidences. By the proof of Lemma 4.3, any such
coincidence must involve one of the 5, and one of the <$' and for some e < n — 1 must
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involve a u^-chain from <5, to S'j along y0,... , yib (we do not mean that the <5,, <5| are
endpoints of the chains in the coincidence). Furthermore, by Lemma 4.4 (i), we = w.

So suppose we have a (w, uv, k, a, yS)-coincidence. Since the 'next' letter of the
ui-chain from a to /S is undefined, we must have 0 =a's,. However, in this case, some
chain of length at least I2 + I is both a io-chain and a uv-chain, so by Lemma 4.4 (i),
w = We*, and the two chains between a and ft are equal, contrary to the definition of
coincidence.

Step k = 5n + 4. Put / := max{/0, . . . , /„}. Consider all pairs (e, w), where e is an
old point and w is a reduced word of length I2 + I, whose first letter h does not have
e e dom^*""). For each such pair, use Lemma 4.3 to add a u>(t)-chain of length
I2 +1, so that ew(k) is defined. We do this by a good extension, in such a way that there
are no overlaps between the added points for (e, w) and for any other (e', u/), except
those forced because e — c' and w, w' have a common initial subword. It follows
from Lemma 4.4 that after this step there is no (wa, wb, k, a, fi) coincidence for any
a,b<n. •
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