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Abstract

For triangular arrays {Xn,k : 1 6 k 6 n, n > 1} of upper extended negatively dependent random variables
weakly mean dominated by a random variable X and sequences {bn} of positive constants, conditions are
given to guarantee an almost sure finite upper bound to

∑n
k=1(Xn,k − EXn,k)/

√
bn Log n, where Log n :=

max{1, log n}, thus getting control over the limiting rate in terms of the prescribed sequence {bn} and
permitting us to weaken or strengthen the assumptions on the random variables.
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1. Introduction
Strong limit theorems play a central role in probability theory and the classical strong
laws have been extended to more general assumptions on the random variables. One
of those interesting extensions involves arrays of random variables. In 1989, Hu et al.
established the Marcinkiewicz–Zygmund strong law of large numbers for arrays of
independent and identically distributed zero-mean random variables (see [6]). Three
years later, Hu and Weber (see [7]) showed that the classical Hartman–Wintner law
of the iterated logarithm is no longer valid for arrays of independent and identically
distributed zero-mean random variables. In fact, Hu and Weber found a new rate of
convergence in what has become known later as the ‘law of the logarithm’ (see [8] and
the recent paper [5]):

lim sup
n→∞

1√
n log n

n∑
k=1

Xn,k =
√

2 a.s. (1.1)

for every triangular array {Xn,k : 1 6 k 6 n, n > 1} of independent and identically
distributed random variables satisfying EX1,1 = 0, EX2

1,1 = 1 and EX4
1,1 <∞. In 1994,

Qi [10] improved Hu and Weber’s result proving that for arrays of independent and
identically distributed random variables, (1.1) holds if and only if EX1,1 = 0, EX2

1,1 = 1
and EX4

1,1(Log|X1,1|)−2 < ∞, where Log x denotes max{1, log x}. In 1996, Sung [11]
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took a further step proving (1.1) for (truncated) triangular arrays of independent zero-
mean random variables. In addition, Sung gave an example in which (1.1) could fail
if the truncation of Xn,k is not tight enough (in particular, if |Xn,k| 6 Cn/

√
log n almost

surely for any 1 6 k 6 n, n > 1 and some C > 0).
Our purpose in this note is to obtain

lim sup
n→∞

1√
bn Log n

n∑
k=1

(Xn,k − EXn,k) 6 C a.s. (1.2)

for some constant C > 0 and for some sequences of positive constants {bn}, while
relaxing at the same time the assumptions on the triangular array of random variables
{Xn,k : 1 6 k 6 n, n > 1}. Specifically, we shall prove (1.2) when the array of random
variables {Xn,k, 1 6 k 6 n, n > 1} is upper extended negatively dependent and weakly
mean dominated by a random variable X.

We next state the definitions required in this paper. A random triangular array
{Xn,k : 1 6 k 6 n, n > 1} is weakly mean dominated by a random variable X if, for some
C > 0,

1
n

n∑
k=1

P{|Xn,k| > t} 6 CP{|X| > t}

for all t > 0 and every n > 1 (see [4]). If a triangular array of random variables is
stochastically dominated by a random variable X (see, for instance, [12]), then it
is weakly mean dominated; however, the converse is not true. Random variables
X1, . . . , Xn are said to be upper extended negatively dependent (UEND) if there is a
constant M > 0 such that

P(X1 > x1, X2 > x2, . . . , Xn > xn) 6 M
n∏

i=1

P(Xi > xi) (1.3)

holds for all real numbers x1, . . . , xn (see [2]). A sequence of random variables
{Xn : n > 1} is said to be upper extended negatively dependent if, for each n > 1, the
random variables X1, . . . , Xn are upper extended negatively dependent. We say that a
triangular array {Xn,k : 1 6 k 6 n,n > 1} of random variables is row-wise upper extended
negatively dependent if for each fixed n > 1, the random variables Xn,1, . . . , Xn,n are
upper extended negatively dependent. A triangular array {Xn,k : 1 6 k 6 n, n > 1} of
random variables is said to be upper extended negatively dependent if it is row-wise
upper extended negatively dependent and the constant M in (1.3) is the same for
each row.

Given a positive monotone sequence of constants {bn}, a continuous monotone
function b(·) on [0,∞[ is called a monotone extension of {bn} if b(n) = bn (see
[3, page 90]).

Associated to a probability space (Ω,F ,P), we shall consider the space Lp (p > 0)
of all measurable functions X (necessarily random variables) for which E|X|p <∞.

Throughout, C will denote a positive constant, which is not necessarily the same
on each appearance. The symbol bxc will be used to indicate the largest integer not
greater than x.
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2. Main result

The main result of this paper is the following theorem.

Theorem 2.1. Let {Xn,k : 1 6 k 6 n, n > 1} be an array of upper extended negatively
dependent random variables weakly mean dominated by a random variable X ∈L1,
{an} a positive increasing sequence of constants with increasing extension a(·) and {bn}

a positive nondecreasing sequence of constants with nondecreasing extension b(·). If:

(a) ` := lim supn→∞ an
√

Log n/bn <∞;
(b)

∑n
k=1 EX2

n,k 6 bn;
(c) Ea−1(|X|) <∞;
(d)

∫ ∞
1 1/Log u

∫ ∞
u−1 P{a

−1(|X|) > t} dt du <∞;

(e)
∫ ∞

0 P{|X| > t}
∫ ba−1(t)c

0 (u + 1)/
√

b(u) Log u du dt <∞;

then

lim sup
n→∞

1√
2bn Log n

n∑
k=1

(Xn,k − EXn,k) 6 ` +
√

2 + `2 a.s.

The next corollary allows us to identify a sufficient moment condition on X in order
to derive an almost sure finite upper bound for the row-wise sum elements of the
triangular array under the rate of the ‘law of the logarithm’.

Corollary 2.2. If {Xn,k : 1 6 k 6 n, n > 1} is a triangular array of upper extended
negatively dependent random variables weakly mean dominated by a (nonnull)
random variable X such that EX4 Log X <∞, then

lim sup
n→∞

1√
2n Log n

n∑
k=1

(Xn,k − EXn,k) 6
√

CEX2(1 +
√

3) a.s.

for some positive constant C.

3. Lemmas and proofs

The first auxiliary lemma extends the properties of upper extended negatively
dependent sequences of random variables (described in [2, Lemma 2.2]) to triangular
arrays.

Lemma 3.1. If {Xn,k : 1 6 k 6 n, n > 1} is a triangular array of upper extended
negatively dependent random variables and fn,1, . . . , fn,n are real functions, all
monotone nondecreasing, then the triangular array { fn,k(Xn,k) : 1 6 k 6 n, n > 1} is
upper extended negatively dependent. Furthermore, if fn,1, . . . , fn,n are also positive,
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then there exists a constant M > 0 such that

E
[ n∏

k=1

fn,k(Xn,k)
]
6 M

n∏
k=1

E fn,k(Xn,k)

for each n > 1.

Proof. Assume that fn,1, . . . , fn,n are all monotone nondecreasing. Since {Xn,k : 16k6n,
n > 1} is a triangular array of upper extended negatively dependent random variables,

P(Xn,1 > xn,1, Xn,2 > xn,2, . . . , Xn,n > xn,n) 6 M
n∏

k=1

P(Xn,k > xn,k) (3.1)

for any n > 1 with M > 0 independent of n. For every 1 6 k 6 n and each real number
yn,k, the event { fn,k(Xn,k) > yn,k} is equivalent to either {Xn,k > xn,k} or {Xn,k > xn,k} with
xn,k = inf{x : fn,k(x) > yn,k} (in the latter case, {Xn,k > xn,k} can be approximated by
{Xn,k > x∗n,k} as x∗n,k → x+

n,k). From the continuity of the probability measure and (3.1),

P[ fn,1(Xn,1) > yn,1, . . . , fn,n(Xn,n) > yn,n] 6 M
n∏

k=1

P[ fn,k(Xn,k) > yn,k]

with the same constant M > 0. The remaining statement follows from the well-known
formula for positive random variables Y1, . . . ,Yn,

E(Y1 · · · Yn) =

∫ ∞

0
· · ·

∫ ∞

0
P(Y1 > y1, . . . ,Yn > yn) dy1 · · · dyn. �

The result above is a Bernstein inequality (see [9, page 57]) for arrays of upper
extended negatively dependent random variables.

Lemma 3.2. If {Xn,k : 1 6 k 6 n, n > 1} is an array of zero-mean upper extended
negatively dependent random variables such that |EXm

n,k| 6 m!am−2
n EX2

n,k/2 < ∞, with
an > 0, for all 1 6 k 6 n, n > 1 and every m > 2, then

∀ε > 0, P
{ n∑

k=1

Xn,k > ε
}
6 M exp

[
−

ε2

2(εan +
∑n

k=1 EX2
n,k)

]
for some M > 0 (independent of n).

Proof. Fixing an > 0 and 0 < tn < 1/an,

E exp(tnXn,k) = 1 +
t2
n

2!
EX2

n,k +
t3
n

3!
EX3

n,k + · · · +
tm
n

m!
EXm

n,k + · · ·

6 1 +
t2
n

2
EX2

n,k +
t3
n

2
anEX2

n,k + · · · +
tm
n

2
am−2

n EX2
n,k + · · ·

6 1 +
t2
n

2(1 − antn)
EX2

n,k

6 exp
[ t2

n

2(1 − antn)
EX2

n,k

]
.
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Since {Xn,k : 1 6 k 6 n, n > 1} is upper extended negatively dependent,

E exp
(
tn

n∑
k=1

Xn,k

)
6 M

n∏
k=1

E exp(tnXn,k) 6 M exp
[ t2

n

2(1 − antn)

n∑
k=1

EX2
n,k

]
for some M > 0 via Lemma 3.1 with fn,k(x) = etn x (0 < tn < 1/an). From the Chebyshev
inequality,

P
{ n∑

k=1

Xn,k > ε
}
6 M exp(−εtn)E exp

(
tn

n∑
k=1

Xn,k

)
6 M exp

[
−εtn +

t2
n

2(1 − antn)

n∑
k=1

EX2
n,k

]
and, taking tn = ε/(εan +

∑n
k=1 EX2

n,k),

P
{ n∑

k=1

Xn,k > ε
}
6 M exp

[
−

ε2

2(εan +
∑n

k=1 EX2
n,k)

]
. �

Lemma 3.3. Let {Xn,k : 1 6 k 6 n, n > 1} be an array of zero-mean upper extended
negatively dependent random variables and {an}, {bn} sequences of positive constants.
If:

(i) |Xn,k| 6 an almost surely for every 1 6 k 6 n, n > 1;
(ii)

∑n
k=1 EX2

n,k 6 bn, n > 1;

(iii) ` := lim supn→∞ an
√

Log n/bn <∞;

then

lim sup
n→∞

1√
bn Log n

n∑
k=1

Xn,k 6 ` +
√

2 + `2 a.s.

Proof. Fix an arbitrary ε > 0. Since

E|Xm
n,k| =

∣∣∣∣∣∫ an

−an

tm dP{Xn,k 6 t}
∣∣∣∣∣ 6 am−2

n EX2
n,k

for any 1 6 k 6 n, n > 1 and all integers m > 2,

P

{
1√

bn Log n

n∑
k=1

Xn,k > ` +
√

2 + `2 + ε

}

6 M exp

−
(
` +
√

2 + `2 + ε
)2

2
[(
` +
√

2 + `2 + ε
)
an

√
Log n

bn
+ 1

] Log n


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according to Lemma 3.2. Hence,

lim inf
n→∞

(` +
√

2 + `2 + ε)2

2
[(
` +
√

2 + `2 + ε
)
an

√
Log n

bn
+ 1

]
=

(` +
√

2 + `2 + ε)2

2(` +
√

2 + `2 + ε) lim supn→∞ an

√
Log n

bn
+ 2

=
(` +

√
2 + `2 + ε)2

2(` +
√

2 + `2 + ε)` + 2
> 1,

which yields
∞∑

n=1

P
{ 1√

bn Log n

n∑
k=1

Xn,k > ` +
√

2 + `2 + ε
}
<∞

and the result is a direct consequence of the Borel–Cantelli lemma. �

Remark 3.4. Lemma 3.3 improves [11, Lemma 1]. Indeed, an almost sure finite upper
bound to

∑n
k=1 Xn,k/

√
n Log n is obtained when {Xn,k : 1 6 k 6 n, n > 1} is an array of

zero-mean upper extended negatively dependent random variables.

Proof of Theorem 2.1. Setting

X′n,k = Xn,kI{|Xn,k |6an} + anI{Xn,k>an} − anI{Xn,k<−an},

X′′n,k = Xn,kI{|Xn,k |>an} + anI{Xn,k<−an} − anI{Xn,k>an},

we have X′n,k + X′′n,k = Xn,k. The triangular array {X′n,k − EX′n,k : 1 6 k 6 n, n > 1} is
upper extended negatively dependent since the function gL(t) = max(min(t, L),−L),
which describes the truncation at level L, is nondecreasing. Since

|X′n,k − EX′n,k| 6 2an

and
n∑

n=1

E|X′n,k − EX′n,k|
2 6 2bn,

Lemma 3.3 guarantees that

lim sup
n→∞

1√
2bn Log n

n∑
k=1

(X′n,k − EX′n,k) 6 ` +
√

2 + `2 a.s. (3.2)

Now, we shall demonstrate that

1√
bn Log n

n∑
k=1

(X′′n,k − EX′′n,k)
a.s.
−→ 0. (3.3)

We have |X′′n,k| 6 |Xn,k|I{|Xn,k |>an} and

1
n

n∑
k=1

E|Xn,k|I{|Xn,k |>an} 6 CE|X|I{|X|>an},
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since {Xn,k, 1 6 k 6 n, n > 1} is weakly mean dominated by X. Thus,

P
{ 1√

bn Log n

n∑
k=1

|Xn,k − EXn,k| > ε
}
6

2

ε
√

bn Log n

n∑
k=1

E|Xn,k|

6
Cn

ε
√

bn Log n
E|X|I{|X|>an}

and it suffices to prove that
∞∑

n=1

n√
bn Log n

E|X|I{|X|>an} <∞. (3.4)

Integrating by parts,

E|X|I{|X|>an} = anP{|X| > an} +

∫ ∞

an

P{|X| > t} dt,

so that (3.4) becomes
∞∑

n=1

( nan√
bn Log n

P{|X| > an} +
n√

bn Log n

∫ ∞

an

P{|X| > t} dt
)
. (3.5)

Recalling that
∞∑

n=1

nan√
bn Log n

P{|X| > an} 6 C
∞∑

n=1

n
Log n

P{|X| > an}

6 C
∞∑

n=1

P{|X| > an}

∫ n

0

1
Log u

du

6 C
∫ ∞

1
P{|X| > a(t − 1)}

∫ t

0

1
Log u

du dt

6 C
∫ 1

0

∫ ∞

1
P{|X| > a(t − 1)} dt

1
Log u

du

+ C
∫ ∞

1

1
Log u

∫ ∞

u
P{|X| > a(t − 1)} dt du

= CEa−1(|X|) + C
∫ ∞

1

1
Log u

∫ ∞

u−1
P{a−1(|X|) > t} dt du

for some C > 0 and
∞∑

n=1

n√
bn Log n

∫ ∞

an

P{|X| > t} dt =

∫ ∞

0
P{|X| > t}

∑
{n:an6t}

n√
bn Log n

dt

6

∫ ∞

0
P{|X| > t}

∫ ba−1(t)c

0

u + 1√
b(u) Log u

du dt,

we establish the convergence of the series (3.5). From the Borel–Cantelli lemma, we
obtain the convergence of (3.3), which, together with (3.2), yields the result. �
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Proof of Corollary 2.2. From [4, Lemma 2.1],

n∑
k=1

EX2
n,k 6 nCEX2

for some C > 0. Putting bn = CnEX2 and an =
√

bn/Log n yields ` = 1. Since
2t2 Log t/(CEX2) is an asymptotic inverse of a(t) = CtEX2 (see [1, page 28]),∫ ∞

0
P{a−1(|X|) > t} dt 6 C

∫ ∞

0
P{|X| > y}y Log y dy,∫ ∞

1

1
Log u

∫ ∞

u−1
P{a−1(|X|) > t} dt du =

∫ ∞

0
P{|X| > a(t)}

∫ t+1

1

1
Log u

du dt

6 C
∫ ∞

0
P{|X| > y}y3 Log y dy

and ∫ ∞

0
P{|X| > t}

∫ ba−1(t)c

0

u + 1√
b(u) Log u

du dt 6 C
∫ ∞

0
P{|X| > t}t3

√
Log t dt.

Using [9, Lemma 2.4, page 61], it follows that assumptions (c)–(e) are fulfilled and
this completes the proof. �
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