
REGULAR RANK RINGS 

ISRAEL HALPERIN 

1. Introduction. 
1.1. Throughout this note, 9Î will denote an associative ring bu t we shall not 

require 9Î to possess a unit. 
If 4̂ and B are subsets of 9Î, then A + B will denote the set {% + y\ x £ A, 

y G £ } . ^4r will denote the set {u £ $l\ au = 0 for all a G 4 } . 
Elements a and 6 will be said to be orthogonal if ab = ba = 0. 

1.2. W7^ s/ta/Z assume throughout that 9? is regular in the sense of von Neumann, 
i.e., for each a in 9t, axa = a for some x in 9Î. Then obviously the principal 
r ight ideal (a)T (i.e. the smallest right ideal which contains a) coincides with adt 
and with (e)T where e = ax ( idempotent) . Similarly, the principal left ideal (a) i 
coincides with 9?a and with (/) z w h e r e / = xa ( idempotent) . 

j?9i and L^ will denote respectively the set of all principal r ight ideals and 
the set of all principal left ideals, each ordered by inclusion. Clearly each of 
these has a minimum element 0, which consists of the zero element in 9î. 

1.3. Whenever an ordered set L is under consideration, the symbols \J and P 
will denote respectively the supremum and infimum (if they exist) in L. 

If an ordered set L possesses a minimum element 0, then : 
(i) £ in L will be called a relative complement of S3 in 21 if S3 \J E exists 

and is equal to 31, and S3 H S exists and is equal to 0; 
(ii) [31 — S3] will denote any (fixed) relative complement of S3 in 3Ï; 

(iii) L will be said to be relatively complemented if [21 — S3] exists whenever 
33 < 31. 

An ordered set L will be called a lattice if 3Ï W S3 and 31 Pi S3 exist for all 
pairs 3Ï and S3 in L. A lattice will be said to be modular if 3Ï > S3 implies t h a t 
3Ï C\ (S3 U (£) C S3 U (31 C\ S) (this is equivalent to = since D holds 
always). 

If L is a lattice with minimum element 0 and I is any set of indices, then 
elements ( 31*)^/ in L will be said to be independent if 

(UUJ 31,) r\ (KJUK 3U = 0 

whenever / and K are finite disjoint subsets of / . When L is modular, it follows 
by induction on m t h a t 3li, . . . , 3lw are independent if 31* C\ (\Jj<t 3l;) = 0 
for all 1 < i < m; see (4, Pa r t I, Chapter I I ) . In particular, if 31 and S3 are 
elements in a relatively complemented modular lattice, then 3Ï P S3, 
[31 - 31 P S3], and [S3 - 31 P S3] are independent. 
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1.4. A real-valued function R(a) defined for each a in 9Î will be called a 
rank function on 9Î if : 

(1.1) 0 <R(a) < oo for all a ^ 0. 
(1.2) R(ab) < R(a), R(ab) < R(b) for all a, b in 9t 
(1.3) R(e + f) = i£(e) + i£(/) whenever e and / a r e orthogonal idempotents. 
The rank function will be said to be normalized if 9î has a unit 1 and 

R(l) = 1. 
We note that: 

(i) (1.3) implies: R(0) = £ ( 0 + 0) = i?(0) + 72(0); hence 2?(0) = 0. 
(ii) (1.2) and the regularity of 9Î imply that R(a) < i?(6) whenever 

(a)r C (b)r; 

hence -K(a) = R(b) whenever (a)r = (b)T 

(if (a)r C (i)n then a = by for some y in 9?; so by (1.2), i?(a) < R(b)). 
(iii) (1.3) and the regularity of 9? imply (see below) that: 

R(a + b) < i?(a) + i?(6) for all a, J in 9t. 

Hence if i?(a) is a rank function on a regular ring 9Î, then the function 
8(a, b) = R(a — b) is a metric (to be called the rank metric) on 9?. As is well 
known, this implies that 9? possesses a (unique) metric completion 9T which 
is itself a ring. 

The chief purposes of this note are to prove the following: 
(1.4) 9T is itself a regular ring. 
(1.5) The rank function R(a) extends to a rank function on 9T. 
(1.6) 9Î* is complete under its rank metric. 

1.5. Von Neumann (5, 6, 7) stated this result for the special case of the 
normalized rank on !£)«/ (©«/ denotes the inductive limit of rings T)m with 3) 
a division ring and m = 2n, n > 1), and gave some indication of his proof. 

In this note we present a proof for the general case; this proof generalizes 
and simplifies a proof found for the case 3X/ by J. W. Alexander (1 ). 1 am greatly 
indebted to Dr. Alexander for the use of his unpublished thesis. In particular, 
some of the ideas used in the proof of the important Lemma 2.7 below are 
motivated by his work. 

2. Preliminary lemmas for regular rings. Whenever a statement is made 
about right ideals the corresponding statement about left ideals is to be 
understood also. 

2.1. LEMMA (most of this was given by von Neumann (4; Part II, Chapter 
I I ; see also 2, 3)). 

(2.1) Suppose that 21, S are in R^. If 21 + S3 is also in Tfo, then % \J S3 
exists and coincides with 21 + S3; if the set intersection of 21, S3 is in R$i, then 
21 C\ S3 exists and coincides with this set intersection. 

(2.2) If e is idempotent, then u Ç (e)r if and only if eu = u. 
(2.3) If e is idempotent and eb = 0, then (e)T P\ (b)r exists and is 0. 
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(2.4) If e is idempotent and be = 0, then 

(e)r+ {b)r = (e + b)r. 

(2.5) i j eu . . . , em
 are (pairwise) orthogonal idempotents, then g = e\ + . . . 

6m is idempotent, and ei g — ge^ — e^. 
(2.6) If e, f are idempotents and f = ef, then (fe)r = (f)T and fe, e — fe are 

orthogonal idempotents. 
(2.7) If e, f are idempotents and ef — 0, then e — fe, f are orthogonal idem­

potents and 

tor + (f)r = (e~fe)r + (f)r = (* + / " > ) . 

(2.8) // », » e 5», ***» a + » e A». 
(2.9) 7/ 21, 33 G fige, JÂe» //&e set intersection of 21, 33 is in R^. 
(2.10) 7/ 33 < 21 in fig*, JAew [ 2 1 - 5 3 ] awf5 in Rm. 
(2.11) 72^ is a relatively complemented, modular lattice. 
(2.12) If 2ïi, . . . , 21 m are independent in R<& and g is an idempotent with 

(g)r = ^i 2ÏÏ, then g = e\ + . . . + em for pairwise orthogonal idempotents 
d, . . . , em such that {e^)T = 21*. 

(2.13) For each a in 9?, the right ideal {u G 9?| au = u) is in R^. 
(2.14) R$i possesses a maximum element, necessarily 9f, if and only if dt 

possesses a unit element. 
(2.15) (a)l C (b)i if and only if (a)r D (b)r. 

Proof of (2.1). A right ideal in dt contains each of 21, 33 if and only if it 
contains 21 + 33 ; a right ideal in dt is contained in each of 2ï, 33 if and only if 
it is contained in the set intersection of 2Ï and 33. 

Proof of (2.2). If u G (e)r, then u = ey for some y; then since e is idempotent, 
eu = e.ey = eu = u. On the other hand, if u = eu, then u £ (e)r. 

Proof of (2.3). If u is in both (e)T and (b)r and eb = 0, then u — eu = by 
for some y. Then ^ = e(£;y) = 0. 

Proof of (2.4). If be = 0, then (e + b)e = e; so e £ (e -\- b)r. Since 
^ + K (e + ft)r, * = (e + b) - et (e + b)r. Hence (e + b)r D (e)r + (b)r. 
But for every y in 9Î, (e + #);y (E ( e ) r + (ft)r; hence (e + J)f C Wr + (b)r, so 
(e)r + (b)r = (e + b)r. 

Proof of (2.5). By direct calculation, since et et = et and et e^ = 0 for i 9e j . 

Proof of (2.6). Since (fe)f = f(ef) = / / = / , so (f)T C (fe)r. Since fe 6 (/)„ 
so (fe)T C (/)r- Hence (fe)r = (f)r. Finally, 

fe.fe = f(ef)e = /e ; (/c) (e - fe) = fe - fe = 0; (e - fe)fe = fe - fe = 0; 
(e-fe)(e - fe) = (e - fe) - fe(e - fe) = (e - fe) - 0 = e - fe; 

sofe, e — fe are orthogonal idempotents. 
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Proof of (2.7). 

f(e-fe) =fe-fe=0; (e - fe)f = ef - f(ef) = 0 ; 
(e - fe)(e - fe) = (e - fe)e + 0 = e - fe; 

so fye—fe are orthogonal idempotents. Then, by (2.4), 

(e)r + (f)r = (e-fe)r + (f)r = (e - fe +f)r. 

Proof of (2.8). We may suppose that 21 = (e)ri 93 = (b)r with e idempotent. 
Then 21 + 93 = (e)r + (b - eb)r = (e)r + (f)r with idempotent / = (b - eb)y 
for some y. Since ef = e(b — eb)y = 0, it follows from (2.4) that 

21 + S3 = (f + e)r e R*. 

Proof of (2.9). We may suppose that 2Ï = (e)r, 93 = {f)r with e,f idem­
potents. Then for u £ 9Î the conditions w £ (e)r and w Ç (/) r are equivalent 
(successively) to each of the conditions: 

(i) u = eu = fu. 
(ii) u = eu and (e — f)u = 0. 

(hi) u = eu and (e — /e)w = 0. 
(iv) u = eu and gu = 0 (where g is an idempotent such that (g) t = (e — fe) h 

which implies that g = ge). 
(v) u = eu and (eg)u = 0 (since geg = gg = g). 

(vi) w = (e — eg)u (since u = (e — eg)u implies u = eu). 
(vii) u G (e — eg)r (since e — eg is idempotent). 

Proof of (2.10). We may suppose that 21 = (e)r and 93 = (f)r with e,f 
idempotents. T h e n / = ef. Hence by (2.6), (e — fe)r satisfies the requirements 
for [ 8 - 93]. 

Proof of (2.11). From (2.1), (2.8), (2.9), and (2.10), it follows that R^ is a 
relatively complemented lattice. To show that R^ is modular, we may suppose 
that (a)T D (b)r and that u Ç (a)r C\ ((b)r \J (c)T), and we need only show 
that 

(2.16) u e (b)rV ( ( a ) r H (c)r). 

We have that u = ax = by + cz for suitable x, y, z £ 9?. Then 

cz = ax — by £ (a)r; 

so cz is in the set intersection of (a)T and (c)r. Now (2.16) follows. 

Proof of (2.12). We may suppose that 21* = (ax)r. Then for suitable Xj in 
9?, g = S J ^ J X ; and a* = ga* = ^ja^x^ax. Since the (at)r are independent, 
it follows that a i x i a i — a i and for j 9e i, ajXjai = 0. Set et = atXi. These 
et satisfy the requirements of (2.12). 

Proof of (2.13). Let e, f be idempotents such that (e)T — (a)r and 

https://doi.org/10.4153/CJM-1965-071-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-071-4


REGULAR RANK RINGS 713 

(/) i = (e — ae) i- Then for u G 9? the condition au = u is equivalent (succes­
sively) to each of the conditions: 

(i) au = eu = u. 
(h) eu = u, (e — ae)u = 0. 

(iii) eu = u,fu = 0. 
(iv) eu = u, efu = 0 (since f.ef =ff = / ) . 
(v) (e — ef)u = u (since this condition implies that eu = u). 

(vi) u G (e — ef)r (since e — ef is idempotent). 

Pr<w/ o/ (2.14). If 21 D (a), for ail a G 9Î, then necessarily 31 D $ so 
2t = 9?. If 9î = (e)r with e idempotent, then a = ea for ail a in 9?, and for 
some x in 9?, 

a — ae = (a — ae)x (a — ae) = (a — ae) (ex) (a — ae) 

= (ae — ae)x(a — ae) = 0; 

thus e must be a unit in 9Î. On the other hand, if e is a unit in 9?, then 9? = (e)r. 

Proof of (2.15). If (a)i C (ft)?, then a = yb for some 3/ in 9? and hence 
(b)T C (a)r- On the other hand, if (b)r C (a)r, let g be an idempotent such that 
(e)i = (b)t. Then b = be; so b(z — ez) = 0 for all z in 9?; hence as = aez, 
(a — ae)3 = 0 for all z in 9?. Since a — ae = (a — ae)z(a — ae) for some z in 
9Î, so a — ae = 0; a G (e)i; (a)j C (b)h 

2.2. COROLLARY to (2.12). / / 2Ï, 53 G Âfo, /Aew there exist orthogonal idem-
potent s e, f, g such that 

( e ) r = 2 i n S 3 , (e+f)r=K, (e + g)r = 58, 

7w particular, if 21 Pi 33 = 0 , /&ew 

21 = (/)r, « = (g)r, 2IW93 = a + « ) r . 
Proo/. Since 21 H 93, [21 - 21 H 93], and [93 - 21 H 93] are independent, 

they can be represented as (e)T, (/) r , (g)r for suitable orthogonal idempotents. 
From this and (2.4) the Corollary follows. 

2.3. LEMMA. If a G 9Î, there exists an idempotent e with (e)r C (a)? and 
a — e = ay (a2 — a) for suitable y in 9Î. 

Proof. For some idempotent / , (a2 — a) t = (f) t. This means that 
(a2 — a)/ = a2 — a (hence a2 — a2/ = a — af), and f = y(a2 — a) for some 
3/ in 9?. 

Set e = a — af. Then 

e = ae; 

fe = / (a — a/) = 3>(a2 — a) (a — af) = ya((a2 — a) — (a2 — a)f) = 0. 
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Hence ee = (a — af)e = ae = e, so e is idempotent and satisfies the require­
ments of Lemma 2.3. 

2.4. LEMMA. If e,f are idempotents, there exist orthogonal idempotents ei,f\ 
such that (ei)r C (e)T, (/i) r C (f)r and e - ex € (ef)r,f - / i G (Mr. 

Proof. Since (e/)r C Wr, (2.12) implies that e = ei + e2 with orthogonal 
idempotents ei, e2 such that: 

(e2)r = (e/)r and (ei)r = [Wr - (e/)r]. 

Similarly,/ = fi + f2 with orthogonal idempotents/i,/2 such that (/2) r = (fe)r. 
Then 

*i/i = ei effx = ex e2 eff1 = 0 and fx ex = fifed = fif2feex = 0. 

2.5. LEMMA. If e is an idempotent and (e)r C\ (b)T = 0, then (be)i = (e)h 

Proof. Since (be) t C (e)h (2.12) shows that for some idempotent e\ with 
ee\ = ex e = e1 we have [(e) t — (be) i] = (e{) h Then 

ei = eei G (e)r and bex = ô(eie) £ (ei)i H (6e)j, 

so 6 î = 0. Since (e)T C\ (b)r = 0 by hypothesis, therefore e\ = 0. Hence 
(g) 2 = (&£) «, as stated. 

2.6. COROLLARY TO LEMMA 2.5. / / (a)r H (£)r = 0, then a = uba for some 
u in dl. 

Proof. Let e be an idempotent with (e)r = (a)r. Then by Lemma 2.5, e = ube 
for some u in 3?. Since a = ea, therefore a = uba. 

2.7. LEMMA. If a, b, x £ 9? and axa = a> then there exists y Ç 3î such that 
byb = b and x — y = W\ + w2 with each wt of the form u(a — b)v for suitable 
u, v in 9?. 

Proof. By (2.13) and (2.12), applied to {z G $l\bxz = z) C (b)r, it follows 
that (b)r = (e\)T U (e2)T1 with orthogonal idempotents d, e2 such that 

(e\)T = {z G 9Î| bxz = z). 

This implies that bxex = e\\ (e\ + e2)b = b; e2 = bq for some q in 3?. 
Set y = x — xe2 + ge2. Then 

byb = 63/̂ 1 6 + bye2 b = focei £ + bqe2 b = exb + e2b = b. 

Next, y — x = (q — x)e2. Since (e2)r \J (d)r = (b)r it follows that 

(e2)r U [fo), - fo), C\ (a)T] \J ((ei)r r\ (a)r) = (i) r t 

2̂ G [(b)r- (ei)rr\ (a)r] 

for a suitable relative complement. Thus, for suitable relative complements 

e2 € [(b)T - (b)r n (a)f] U [(ft)r Pi (a) r - (ex)r H (a)r], e2 = w1 + w2 

with wi e [(b)r - (b)r H (a)r] and w2 G [(ô)r H (a)r - (é?0r H (a)r]. 
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Now (w2)r H ((a — b)x)r = 0;in fact, w2 G (a) r;soif ((a — b)x)(w2z) = 0, 
it follows that 

axw2 z = bxw2z; w2z — bxw2z ; e\ w2 z = w2 z £ (^i)r ^ (à)r\ w2z = 0. 

Then by Corollary 2.6, w2 = u(a — b)xw2 = u(a — b)v for some u, v in 9?. 
Next, w\ = fo; for some v in 9î and te Ç (a)r implies that Wi z = 0 for each 

z in <R. 
In particular, bvz = a^s implies that W\Z = 0. Thus ((a — b)v)r C (^i) r. 

Hence, by (2.15), W\ G ((a — 6)z;)z s o ^ i = w(a - b)v for suitable w, z; in 9?. 
Thus each of W\, w2 is of the form u(a — £)ZJ. Since 3/ — x = (g — #) (w/i + ^2), 

Lemma 2.6 follows. 

3. Completion of regular rank ring. 

3.1. Throughout this section R(a) will denote a rank function assumed given 
on a regular ring 9Î. 

3.2. LEMMA. 

R(-a) = R(a), R(a - b) < R(a) + R(b), R(a + b) < i?(a) + i?(6). 

Proof, axa = a implies that — a=ax( — a), so R( — a)^R(a). Hence 
R(a) = R(- (-a)) < R(-a), so i ? ( - a ) = i?(a). 

Now by Corollary 2.2, for certain orthogonal idempotents e,f, g we have 

(a)r = ( * + / ) , , (b)r = (e + g)r, 

(a)r\J (b)r = (e+f + g)r, a + be (a)r+ (b)r. 

Hence 

a + b = (e+f + g)(a + b); 

R(a + b)< R(e + / + g) = R{e + f) + R(g) 

< R(e + / ) + 2?(e + g) = R(a) + R(b). 

Finally, R(a - J) < Jî(a) + J?(—Ô) = i?(a) + R(b). 

3.3. Definition. A sequence (aw)w>i with all aw Ç 9? will be said to be funda­
mental if R(an — aw) —* 0 as n, m —> 00. 

If (an), (Z>J are fundamental sequences, we write (an) = (bn) ii R(an — bn) —±0 

di will be said to be complete with respect to its rank metric R if for every 
fundamental sequence (an) there exists an element a in 9Î such that 
i? (aw — a) —> 0 as w —» 00. 

3.4. LEMMA, (i) I^e relation = is aw equivalence relation. 
(ii) 7f (a„) is a fundamental sequence, then l im^^ i?(aw) exists) (an) == (6n) 

implies that \lmn^œ R(an) = \imn^œ R(bn). 
(iii) Tf ( a j , (6n) are fundamental sequences, then so are (an + bn), (an — bn), 
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(an bn), and these are changed into equivalent sequences if (an), (bn) are replaced 
by equivalent sequences. 

Proof. The lemma follows from the relations : 

R(a + b) <R(a)+R(b)y 

\R(a) - R(b)\ <R(a - b), 

R(ab - a'b') <R(ab - ab') + R(abf - a'b') 

<R(b - b') +R(a - a'). 

3.5. Definition. 9T denotes the set of equivalence classes of fundamental 
sequences, with addition, multiplication, and rank defined by the rules: 

ian) + (bn) = (an + bn), (an)(bn) = (anbn), R((an)) = lim„^œ R(an). 

3.6. LEMMA. !KAwa ring. The map: 

a —> (an) with an = a for all n 

is a ring-isomorphic imbedding of 9î into 9T preserving rank, {% (9Î) = 3T if and 
only if dt is complete. 

Proof. The usual proof. 

3.7. THEOREM. 

(i) 9T is a regular ring. 
(ii) R is a rank function on 9T. 

(iii) 9T is complete with respect to its rank metric R. 
(iv) 9T has a unit if and only if sup(i?(a)| a £ 9Î) < <». 
(v) A fundamental sequence (an) is in the centre of 9T if and only if 

R(anx — xan) —» 0 as n —> <*> for each x £ 9?. 

Proof of (i). Suppose that (an) is a fundamental sequence. We need to show 
that (an)(xn)(an) = (an) for some fundamental sequence (xn). 

By replacing (an) by a suitable subsequence we may suppose that 
Y,nR(dn+l ~ an) < co. 

We choose Xi to be any element in 9î such that a\ xi ax = ax. Then, using 
Lemma 2.7, we choose elements xn, n > 1, by induction on n so that for 
n > 1, an xn an = an and 

xn+i — xn = Mn(an+i — aw)yw + un'(an+i — an)vn' 

for some ww, z/w, w/, z;/ in 9Î. This implies that 

R(xn+i — xn) < 2i^(aw+i — an); 
CO 

R(xm — xn) < ^ ^(Xj+i — xt) —» 0 as m, w —> °° ; 
i==min(m,n) 

hence (xn) is a fundamental sequence. 
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Since {an)(xn)(an) = (an), this proves that 9T is regular. 

Proof of (ii). If (an) is a fundamental sequence, 

i ? ( ( 0 ) = \imn^œ R(an); 

since 0 < R(an) < °° for all n, it follows that 0 < R((an)) < oo. From the 
definition of equivalence, (an) = 0 if and only if R((an)) = 0. 

Next, R((an)(bn)) = limn^œR(an bn); since R(anbn) < R(an) and < R(bn) 
for all », it follows that R((an)(bn)) < R((an)) and < R((bn)). 

Finally, suppose that e = (an) and / = (bn) are orthogonal idempotents in 
3T. Then 

0 = e - ee = (an) - (an)(an) = (an - anan), 

so 
R (an — anan) —> 0 as n —* oo. 

Then by Lemma 2.3 there exist idempotents en in 9Î such that i?(aw — en) < 
i?(aw — anan). This means that e = (en) with all ew idempotent. 

Similarly, / = (fn) with all fn idempotent. 
Then 0 = ef = (en)(fn) = (enfn), so R(enfn)-*0 as » - » œ. Similarly, 

^ ( A ^ B ) - ^ 0 a s w - > oo. Now by Lemma 2.4 there exist, for each n, orthogonal 
idempotents en', fn

f such that 

R(en - en
f) < R(enfn), R(fn - f/) < R(fn en). 

This means that 

e = (O, / = (/»'), *+ / = fe/+/»'), 
£ ( * + / ) = \imn^R(en' + /n ' ) = l im^œ (i?fe/) + 22 (/»')) = R(e) + R(f). 

This proves (ii). 

Proof of (iii). The usual proof. 

Proof of (iv). Suppose that the condition sup (R(a)\a 6 9Î) = & < °° holds 
(a sufficient but not necessary condition for this to hold is : 9? possesses a unit 
£0; then R(a) = R(ae0) < R(e0) for all a G 9Î). Then there exists a sequence 
an, w > 1 in 3? with 2x!(a0 > & — 1/w. For each » > 1 let ew be an idempotent 
in 3î with 

(Or = U fa Or-

Then 

W r C W r C . ; i ? ( 0 < ^ ( 0 < . . . ; *(<?») - * * a s » - > œ ; 

R(em — en) = R(em) — R(en) if n < m 
since 

( O r = fe) r ^ (̂m — O r and (en) ^ f c - ^ ) r = 0 

(use Corollary 2.2). 
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Since R(en) — R(em) —» 0 as n, m —• oo, the sequence (en) is fundamental. 
For each fundamental sequence (xn) we have 

In 9Î, for each n > 1: (xn — en xn)r C\ (en)r = 0 since en(xn — en xn) = 0 
(use (2.3)). Hence, by Corollary 2.2, there exist orthogonal idempotents / , g 
such that 

(f)r = ipcn - enxn)r and (g)r = (en)r. 

Hence 

k>R(f + g)= R(f) +R(g) = R(xn - en xn) + R(en). 

Since R(en) —> k, hence R(xn — en xn) —> 0 as n —> œ. This proves that 

Since 9T is now known to be regular, it follows (with the argument used in the 
proof of (2.14)) that (xn) (en) = (xn) ; hence (en) is a unit in 9T. 

On the other hand, if 3T possesses a unit er, then for every fundamental 
sequence (an): 

R((an)) = R«an)e') < R{e'). 

In particular, if an = a (fixed element in 9?) for all n > 1, then 

R(fan)) = l im^œ R(an) = Yimn^œR(a) = R(a), 

so R(a) < i?(e'). Thus sup(i?(a)| a G 9Î) < £(e') < oo. 

Proof of (v). If (an) is in the centre of 9Î, then ( a j (xn) — (xn)(an) = 0 for 
every fundamental sequence (xn) with xn = x (fixed in 9Î) for all w. Hence it is 
necessary that R(anx — xan) —> 0 as w —> oo. 

On the other hand, if R(anx — xan) —» 0 as n —» oo, for each x Ç 9Î, and 
(ZO is any fundamental sequence, then 

R(an bn — bn an) < R(an bv — bv an) + R(an(bn — bp)) + R((bn — bp)an) 

< R(an bv — bv an) + 2R(bn - bp). 

For given e > 0 we can choose p (fixed) so that R(bm — bp) < e/2 for all 
m > £, then ^ large enough so that R(an bp — £paw) < e/2. This shows that 
(an)(*n) = (bn)(an). 

Note. Alexander's unpublished thesis shows that the centre of (S)co')A ls r m g -
isomorphic to the centre 3X/, and hence to the centre of 33. 

3.8. Examples (33 denotes any fixed division ring), 
(i) Let 9î denote the ring of all matrices a — (a^)*,£>i with all atj Ç 33 and 

afy = 0 with a finite number of exceptions. Let R(a) denote the usual (right 
column, left row) rank of a (thus R(a) = 0, 1, 2, . . .). This 9? is a regular rank 
ring, and for it sup(R(a)\ a Ç 9?) is not finite. 
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(ii) Let 9? denote the ring of all sequences a = (an)n>i with all an in 35 and 
an = 0 with a finite number of exceptions (with componentwise addition and 
multiplication in 9?). Let R(a) denote 

where an = 1 if an 9^ 0 and âw = 0 if an = 0. Then 9Î is a regular rank ring 
without unit, but 

oo -i 

sup(R(a)\a € 9t) = X) "2 < 
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