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Abstract
Traditional frequent itemset mining (FIM) is constrained by several limitations, mainly due to its failure to account
for item quantity and significance, including factors such as price and profit. To address these limitations, high utility
itemset mining (HUIM) is presented. Traditional HUIM algorithms are designed to operate solely on static trans-
actional datasets. Nevertheless, in practical applications, datasets tend to be dynamic, with examples like market
basket analysis and business decision-making involving regular updates to the data. Dynamic datasets are updated
incrementally with the frequent addition of new data. Incremental HUIM (iHUIM) approaches mine the high util-
ity itemsets (HUIs) from incremental datasets without scanning the whole dataset. In contrast, traditional HUIM
approaches require a full dataset scan each time the dataset is updated. Consequently, iHUIM approaches effectively
reduce the computational cost of identifying HUIs whenever a new record is added. This survey provides a novel
taxonomy that includes two-based, pattern-growth-based, projection-based, utility-list-based, and pre-large-based
algorithms. The paper delivers an in-depth analysis, covering the features and characteristics of the existing state-
of-the-art algorithms. Additionally, it supplies a detailed comparative overview, advantages, disadvantages, and
future research directions of these algorithms. The survey provides both a categorized analysis and a comprehen-
sive, consolidated summary and analysis of all current state-of-the-art iHUIM algorithms. It offers a more in-depth
comparative analysis than the currently available state-of-the-art surveys. Additionally, the survey highlights several
research opportunities and future directions for iHUIM.

1. Introduction
In literature, various studies have been presented on high utility itemset mining (HUIM) (Liu et al.,
2005; Yao & Hamilton, 2006) that considered the importance of the items, such as the unit profit of
itemsets. Traditional HUIM approaches are designed for static quantitative datasets. In real-world situa-
tions, datasets are frequently updated dynamically, For instance, in tasks like market basket analysis and
business decision-making, the datasets are modified incrementally by appending additional data dynam-
ically. Extensive research has been conducted to develop efficient algorithms for discovering high utility
itemsets (HUIs) from dynamically updated datasets. Traditional HUIM algorithms required process-
ing datasets from scratch each time a new record was added. In contrast, incremental HUIM (iHUIM)
updates and incrementally identifies HUIs without scanning the whole dataset, effectively reduce the cost
associated with discovery of HUIs when new records are added. Over the past decade, various iHUIM
algorithms have been introduced, primarily grouped into tree-based, pattern-growth-based, utility-list-
based, projection-based, and pre-large-based approaches. However, there are still ample opportunities for
designing efficient novel iHUIM algorithms, incorporating effective pruning strategies, data structures,
and more.
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An incremental mining approach for record insertions, named FUP-HU (Lin et al., 2012) is designed
for maintaining and updating the already obtained HUIs by FUP notion (Cheung et al. 1996) and
Two-phase algorithm (Liu et al., 2005). However, it generates a substantial number of candidates
and scans the dataset multiple times. Incremental and interactive utility tree (IIUT) (Ahmed et al.,
2009b) employs the pattern-growth method to resolve the issue of costly candidate generation in a
level-wise manner. Nonetheless, the run-time of the IIUT algorithm also gets larger as the size of the
dataset expands. Ahmed et al. (2009a) proposed an approach that presented three novel tree structures,
namely Incremental high utility pattern lexicographic tree (IHUPL-Tree), IHUP transaction frequency
tree (IHUPTF-Tree), and IHUP transaction-weighted utilization tree (IHUPTWU-Tree). These structures
perform incremental and interactive HUPM and adhere to the ‘build once, mine many ’ principle,
enabling efficient mining of HUIs from incremental transaction datasets. However, the suggested method
produces an excessive number of candidates when the dataset consists of lengthy transactions or when
the minimum utility threshold is set exceedingly low. Moreover, IHUP-Tree proves to be a relatively
efficient approach. This process requires the unnecessary generation of low-utility itemsets, which then
require significant time for pruning. On the other hand, high utility patterns in incremental datasets
(HUPID) growth (Yun & Ryang, 2014) efficiently mines patterns with reduced overestimated utility
from incremental datasets using just a single dataset scan. Nonetheless, it requires an additional phase
to find the actual HUIs from the candidate sets. In contrast, an incremental and interactive HUIM algo-
rithm, namely incremental high utility itemset miner (IHUI-Miner) (Guo & Gao, 2017), is designed to
extract HUIs without the need of candidate generation. A new tree structure, called incremental high
utility itemset tree (IHUI-Tree), has been introduced that tree organizes items in lexicographic order
using the pattern-growth method and follows a bottom-up traversal approach.

The efficient incremental high utility itemset (EIHI) miner (Fournier-Viger et al., 2015) algorithm is
designed to maintain HUIs within incremental datasets. However, it performs extra operations to con-
struct new utility-lists for newly added data and merge them with the existing datasets. LIHUP (Yun
et al., 2017) builds a global list-based structure with just one pass through the original dataset and
then reorganizes this data structure by sorting the lists according to the ascending order of transaction-
weighted utilization (TWU) values. But, the execution time and memory usage of this approach
expand as the dataset size grows. In contrast, an efficient incremental HUIM algorithm named IIHUM
(Indexed-list-based Incremental High utility pattern Mining) (Yun et al., 2019) adopts a novel indexed-
list-based structure to incrementally mine HUIs without the need of candidate generation. The Id2HUP+
(Incremental direct discovery of high utility patterns) approach (Liu et al., 2019) employs a single-phase
approach for incremental mining of HUIs from incremental datasets. A novel data structure named
niCAUL (Newly Improved Chain of Accurate utility-lists) is designed to quickly update the dynamic
datasets. IncCHUI (Incremental Closed high utility Itemset miner) (Dam et al. 2019) uses a novel
incremental utility-list structure that is constructed and rearranged through a single pass of the dataset
scan. However, it incurs memory overhead on some benchmark datasets, leading to higher memory con-
sumption compared to benchmark algorithms, such as CHUI-Miner (Wu et al. 2015), CLS-Miner (Dam
et al., 2018), and EFIM-Closed (Fournier-Viger et al., 2016). Extended HUI-miner (E-HUIM) (Pushp &
Chand 2021) is proposed to generate and maintain the HUIs from the incremental datasets. Nevertheless,
there is room for the development of more efficient data structures to enhance the mining process. The
pre-large incremental high utility itemset (PRE-HUI) algorithm (Lin et al., 2014), effectively preserves
and modifies the obtained HUIs by integrating and updating the two-phase (Liu et al. 2005) and pre-large
concepts (Hong et al., 2001). An efficient tree-based algorithm named PIHUP-MOD (Pre-large-based
Incremental High Utility Pattern mining for transaction MODification) (Yun et al., 2021) is proposed
to mine HUIs from the modified datasets. This is achieved through the utilization of the pre-large con-
cept. The PIHUP-MODL-tree data structure (where L stands for lexicographic order) is designed for the
extraction of pre-large and large patterns during the mining process. However, it proves to be a chal-
lenging task for users to define and set two thresholds. While numerous iHUIM algorithms have been
introduced in the past, there exists a scarcity of documented surveys that offer a comprehensive overview
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and comparative assessment of their performance. The main purpose of this survey is to provide in-depth
knowledge concerning the iHUIM algorithms.

Differences from the existing survey
Within the existing literature, only two surveys (Gan et al., 2018; Cheng et al., 2021) concerning

iHUIM have been identified. In 2017, Gan et al. (2018) presented a survey that organized iHUIM
approaches into three primary classifications: Apriori-based, tree-based, and utility-list-based tech-
niques. It provided an extensive overview of the latest state-of-the-art methods within the iHUIM
domain. Additionally, the survey included a summary table, showing the characteristics of these state-of-
the-art approaches. In 2021, Cheng et al. (2021) presented a survey of iHUIM approaches categorized
by their storage structure. This survey categorized the available iHUIM approaches based on the man-
ner in which they store data associated with itemsets and their utility values. The survey classifies the
state-of-the-art methods into various groups, including tree-based, list-based, array-based, and alterna-
tive methods (e.g., hash-set-based approaches), based on the approach used to store information about
items. This paper included a total of 19 papers across all categories. Additionally, it provided a com-
prehensive discussion of the characteristics, strengths, and weaknesses of the existing state-of-the-art
methods. The survey outlined various potential future research directions in the field.

Our work discussed and analyzed several novel categories and features of the current state-of-the-art
methods. The key contributions of this survey can be outlined as follows:

• The survey presents a novel taxonomy and categorized the existing approaches into various
groups, including two-phase-based, pattern-growth-based, projection-based, utility-list-based,
and pre-large-based methods.

• The paper provides a comprehensive overview that includes almost all features and character-
istics of the current state-of-the-art methods.

• The survey also showcases a thorough summary table that includes outcomes, advantages,
disadvantages, and future research directions for the latest state-of-the-art methods.

• Our work includes 27 state-of-the-art iHUIM approaches. This comparative analysis provides
a more extensive and in-depth comparison compared to the other two existing surveys.

• The survey provides both a category-wise summary and a comprehensive consolidated
overview of all the currently available state-of-the-art iHUIM methods.

• It also included a brief discussion on research possibilities and prospective directions.

The remainder of this study is structured in the following manner: Section 2 provides preliminaries
and definitions that are essential for understanding the concept of iHUIM. Section 3 presents an in-depth
analysis and summary of various iHUIM approaches. Section 4 discusses the comprehensive summary
and analysis of all the current state-of-the-art methods. Section 5 presents several potential research
opportunities and future directions. Lastly, Section 6 provides the conclusion of the study.

2. Preliminaries and definitions
Let I = {i1, i2, . . . , in} be a finite set of n items. Let the transactions T1, T2, . . . , Tm take place in the
dataset D with each transaction Tq ⊆ I. An itemset X is defined as a collection of k items {i1, i2, . . . , ik},
where k denotes the length of the itemset. An itemset X is considered to be included in a transaction Tq if
X ⊆ Tq. Each item ij within the transaction Tq is linked to a purchase quantity, also called internal utility
(presented by the numbers in brackets), represented as q(ij, Tq). Each item ij has relative importance and
is also called an external utility (or unit profit) represented as EU(ij). A user-defined minimum utility
threshold is established and denoted as δ.

For instance, the transactional dataset includes six transactions T1, T2, . . . , T6 as illustrated in Table 1.
Each transaction is associated with a set of items. The dataset consists of six items: A, B, C, D, E, and
F. For instance, transaction T1 consists of four items A, C, D and F, each with internal utility of 2,3,5
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Table 1. A transactional dataset

TID Transaction
T1 (A, 2), (C, 3), (D, 5), (F, 1)
T2 (B, 3), (C, 2), (D, 4), (E, 4)
T3 (A, 4), (B, 2), (C, 1), (D, 2), (F, 3)
T4 (C, 4), (E, 5)
T5 (A, 3), (C, 3), (D, 3), (E, 2)
T6 (B, 3), (D, 2), (E, 4), (F, 2)

Table 2. External utility value

Item A B C D E F
External utility 3 7 4 3 2 5

Table 3. Transaction utility in the original dataset

TID Transaction Quantity (IU) Utility TU
T1 A, C, D, F 2, 3, 5, 1 6, 12, 15, 5 38
T2 B, C, D, E 3, 2, 4, 4 21, 8, 12, 8 49
T3 A, B, C, D, F 4, 2, 1, 2, 3 12, 14, 4, 6, 15 51
T4 C, E 4, 5 16, 10 26
T5 A, C, D, E 3, 3, 3, 2 9, 12, 9, 4 34
T6 B, D, E, F 3, 2, 4, 2 21, 6, 8, 10 45

and 1, respectively. Table 2 displays the external utility of each item. The items A, B, C, D, E, and F
have external utility of 3, 7, 4, 3, 2, and 5, respectively.

Definition 2.1. The utility of an item ij in a transaction Tq is labelled as U(ij, Tq) and is defined as:
U(ij, Tq) = q(ij, Tq) ×EU(ij)

For instance, the utility of an item A in a transaction T1 is U(A, T1) = q(A, T1) ×EU(A) = 2 × 3 = 6.
The utility of all items are displayed in the 4th column of Table 3.

Definition 2.2 The utility of an itemset X in a transaction Tq is denoted as U(X, Tq) and is defined as:
U(X, Tq) = ∑

ij∈X∧X⊆Tq
U(ij, Tq)

For instance, the utility of an itemset {A, C} in a transaction T1 is U({A, C}, T1) = U(A, T1) +U(C, T1)
= 6 + 12 = 18.

Definition 2.3 The utility of an itemset X in a dataset D is indicated as U(X) and is defined as:
U(X) = ∑

X⊆Tq∧Tq∈D U(X, Tq)

For instance, the utility of an itemset {A, C} in a dataset D is U({A, C}) = U({A, C}, T1) +U({A, C}, T5)
= 18 + 21 = 39.

Definition 2.4 The transaction utility of a transaction Tq is represented as TU(Tq) and is defined as:
TU(Tq) = ∑

U(ij, Tq)

For instance, transaction utility of a transaction T1 is TU(T1) = U(A, T1)+ U(C, T1)+ U(D, T1)+
U(F, T1) = 6 + 12 + 15 + 5 = 38. The TU of all transactions are depicted in the 5th column of Table 3.

Definition 2.5 The total utility of a dataset D is represented as TUD and is defined as:
TUD = ∑

Tq∈D TU(Tq)
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Table 4. High utility itemsets in original dataset for δ = 20%

Itemset Utility Itemset Utility
{A, B, C, D, F} 51 {B, D, E} 76
{A, C} 55 {B, D, F} 72
{A, C, D} 85 {B, E} 58
{A, C, D, F} 75 {B, F} 60
{A, C, F} 54 {C} 52
{A, D} 57 {C, D} 78
{A, D, F} 59 {C, D, E} 53
{B} 56 {C, D, F} 57
{B, C, D} 56 {C, E} 58
{B, C, D, E} 49 {D, F} 57
{B, D} 80 . . . . . .

For instance, total utility of the original dataset D is TUD = TU(T1)+ TU(T2)+ TU(T3)+ TU(T4)+
TU(T5)+ TU(T6) = 38 + 49 + 51 + 26 + 34 + 45 = 243.

Definition 2.6 A minimum utility threshold δ is determined by the percentage of the total utility of a
dataset. The minimum utility value (min_util) can be defined as:

min_util = TUD × δ

For instance, δ is 20%, then min_util = TUD × 0.2 = 243 × 0.2 = 49.

Definition 2.7 An itemset X, is designated as a high utility itemset in a dataset D if U(X) ≥ min_util,
otherwise itemset X is considered as a low utility itemset.

For instance, δ is 20% for the running example. The comprehensive list of high utility itemsets is
displayed in Table 4.

In high utility itemset mining, the utility value of an itemset does not follow the downward closure
property (DCP). For instance, suppose δ is set at 20% that is 49, then itemset {A} is a low utility itemset
because U(A) = 27 which is less than min_util. However, the superset of A, that is {A, C} is a high utility
itemset because U({A, C}) = 55. In 2005, Liu et al. (2005) proposed transaction-weighted utilization
(TWU) which can maintain DCP property.

Definition 2.8 The TWU of an itemset X is represented as TWU(X) and is defined as:
TWU(X) = ∑

X⊆Tq∧Tq∈D TU(Tq)

For instance, TWU of an itemset {A} is TWU(A) = TU(T1)+ TU(T3)+ TU(T5) = 38 + 51 + 34 = 123.
Similarity, TWU of an itemset {A, C} is TWU({A, C}) = TU(T1)+ TU(T5) = 38 + 34 = 72. TWU of all
1-itemsets are shown in 2nd column of Table 5. Hence, in this example, TWU follows the DCP property.

Property 1 (Transaction-weighted utilization based pruning) Let an itemset X, if TWU(X) is less than
min_util, then the itemset X and all of its supersets are also low utility itemsets.

In accordance with the TWU based pruning, itemsets with a TWU value lower than the min_util, are
removed from the search space and cannot be utilized to generate candidates. Later, utility-list based
algorithms are presented (Liu & Qu, 2012; Krishnamoorthy, 2015). These algorithm introduced tighter
pruning strategy than TWU-based strategy.

Definition 2.9 (Remaining utility of an itemset in a transaction). The remaining utility of itemset X
in transaction Tq denoted by RU(X, Tq) is the sum of the utilities of all the items in Tq/X in Tq where
RU(X, Tq) = ∑

i∈(Tq/X) U(i, Tq) (Liu & Qu, 2012).
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Table 5. Transaction-weighted utilization
and utility values of 1-itemsets in the original
dataset

1-Itemset TWU Utility
{A} 123 27
{B} 145 56
{C} 198 52
{D} 217 48
{E} 154 30
{F} 134 30

Table 6. New transactions

TID Transaction
T7 (A, 3), (B, 2), (D, 3), (E, 2), (F, 2)
T8 (C, 2), (E, 4), (F, 3)
T9 (A, 2), (C, 3), (E, 2), (F, 1)

Table 7. Transaction utility of the newly added transactions

TID Transaction Quantity (IU) Utility TU
T7 A, B, D, E, F 3, 2, 3, 2, 2 9, 14, 9, 4, 10 46
T8 C, E, F 2, 3, 2, 1 8, 8, 15 27
T9 A, C, E, F 2, 4, 3 6, 12, 4, 5 31

Definition 2.10 (Utility-list structure). The utility-list structure contains three fields, Tid, iutil, and rutil.
The Tid indicates the transactions containing itemset X, iutil indicates the U(X), and the rutil indicates
the remaining utility of itemset X is RU(X, Tq) (Liu & Qu 2012).

Property 2 (Pruning search-space using remaining utility). For an itemset X, if the sum of U(X) +
RU(X) is less than min_util, then itemset X and all its supersets are low utility itemsets. Otherwise, the
itemset is eligible for HUIs. The details and proof of the remaining utility upper-bound (REU)-based
upper-bound are given in Liu & Qu (2012).

In the real-world, the transactional datasets are updated frequently and new transactions are added
from time to time. Incremental datasets involve the integration of new transactions into the origi-
nal dataset, resulting in more valuable real-world applications compared to conventional transactional
datasets. Traditional algorithms require a substantial amount of time to find HUIs from incremental
datasets, primarily due to the need to re-scan the whole updated dataset. To address this challenge, Yeh
et al. (2008) designed incremental dataset-based algorithms that eliminate the need for re-scanning the
whole updated dataset.

The newly added transactions are displayed in Table 6. It comprises three transactions and includes six
items from A to F. The utility values and transaction utility values in the updated dataset are displayed in
Table 7. TWU and utility values of 1-itemsets of the whole dataset including newly added transactions,
are displayed in Table 8. The final HUIs for the whole dataset are shown in Table 9. The minimum utility
threshold δ is set to be 20% and the recalculated min_util is 70.
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Table 8. TWU and utility values of 1-
itemsets in whole dataset

1-Itemset TWU Utility
{A} 196 42
{B} 191 70
{C} 256 72
{D} 263 57
{E} 258 46
{F} 238 60

Table 9. HUIs of the whole dataset for δ = 20%

Itemset Utility Itemset Utility
{A, B, F} 74 {B, D, E} 103
{A, C} 73 {B, D, E, F} 82
{A, C, D} 85 {B, D, F} 105
{A, C, D, F} 75 {B, E} 76
{A, C, F} 77 {B, F} 84
{A, D, F} 87 {C} 72
{A, D} 75 {C, D} 78
{A, B, D, F} 89 {C, E} 90
{B} 70 {C, F} 76
{B, D} 103 {D, F} 76

3. Incremental high utility itemsets mining approaches
In literature, numerous iHUIM approaches are proposed to address the challenges posed by dynamic
datasets, particularly when new transactions are added to the original dataset. This paper focuses on
discussing the iHUIM algorithms highlighted within the taxonomy. The iHUIM algorithms are system-
atically classified into two-phase-based, pattern-growth-based, projection-based, utility-list-based, and
pre-large-based categories. This comprehensive categorization is depicted in Figure 1.

3.1 Two-phase-based approaches
Traditional FIM algorithms (Agrawal et al., 1993; Zaki, 2000) are designed to extract frequent item-
sets using an user-defined support threshold. However, these algorithms are based on the frequency of
occurrences within the dataset, which may not be adequate for identifying highly profitable itemsets. To
resolve these issues, the concept of utility mining (Liu et al., 2005; Yao & Hamilton, 2006) is introduced.
Utility mining can be viewed as an expansion of FIM, taking into account both sold quantity and unit
profit of each itemset. These algorithms generate profitable itemsets instead of simple frequent itemsets.
However, most of the traditional algorithms work on static datasets. In real-time systems, transactions
are frequently added, removed, or changed in the dynamic environments. In this subsection, we discuss
two-phase HUIM methods that mine the HUIs from the incremental datasets.

IUM and FIUM: Temporal mining is a sub-field of data mining focused on extracting interesting
patterns from large temporal datasets (Li et al., 2005b), while utility mining (Yao & Hamilton, 2006)
is used to find HUIs from transaction datasets. Both of these concepts can be integrated to produce
significant results. To achieve this, Yeh et al. (2008) conducted a study on incremental utility min-
ing, focusing on the incremental extraction of high temporal utility itemsets (HTUIs) within a given
time-period whether the TWU values of these time-periods from transactional datasets. Two effective
approaches, namely incremental utility mining (IUM) and fast incremental utility mining (FIUM), are
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Figure 1. A taxonomy of incremental high utility itemsets mining approaches

introduced to identify all the HTUIs. IUM is based on Two-phase (Liu et al., 2005) and fast share mea-
sure (FSM) (Li et al., 2005b) approaches, while FIUM is based on the ShFSM (Share-counted FSM)
approach (Li et al., 2005c). IUM initially, extracts 1-itemsets from partition 1 of the original dataset
and checks whether their TWU values are less than the min_util threshold or not. If TWU of 1-itemsets
≥ min_util, then these itemsets are saved in high TWU itemsets for partition 1. On the other hand, if
utility of 1-itemsets ≥ min_util, then these itemsets saved in HTUIs for partition 1. However, TWU of
an itemset is always no less than its utility. Also, high TWU itemsets in partition 1 is a subset of high
temporal utility itemsets in partition 1. The 1-itemsets in high TWU itemsets in partition 1 is used to
generate level-2 candidates. This process continues until no candidate is generated in partition 1. The
same procedure is applied to other partitions. Finally, it gives the complete set of HTUIs for the dataset.

FIUM follows the same procedure as the IUM algorithm, with the primary difference is in the number
of generated candidates. Both these algorithms use the TWU of the itemsets to reduce the number of
candidates. The empirical findings proved that FIUM outperforms IUM concerning runtime on various
min_util thresholds, both for real and synthetic datasets because FIUM takes less time to join the can-
didate itemsets. Both algorithms effectively search all HTUIs when new transactions are added into the
original dataset. They not only search all HTUIs for a specific time-period but also search HUIs across
the whole dataset. However, incremental utility mining finds it difficult when searching for HTUIs that
have a large portion of utility in a specific time period. Furthermore, it does not specify information on
the frequency of occurrence for itemsets within that particular period.
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ITPAU: The traditional HUIM algorithms (Liu et al., 2005; Yao & Hamilton, 2006) perform well
only for the static datasets. Nevertheless, in real-time scenarios, the dataset is changing continually
with the newly inserted transactions. Consequently, some HUIs may transition to low-utility itemsets
and vice-versa, in the updated datasets. In address these challenges, Hong et al. (2009a) proposed
an approach, called incremental two-phase average-utility mining (ITPAU), based on the Two-phase
approach (Liu et al., 2005). It’s purpose is to incrementally maintain the high average utility itemsets
(HAUIs) in the incremental dataset. Based on the FUP notion (Cheung et al., 1996), ITPAU joins the
earlier extracted knowledge from the original dataset and the new information from recently added trans-
actions to enhance mining performance. It employs a strategy, based on the Apriori approach (Agrawal
et al., 1993), to systematically identify HAUIs in a level-wise way. The DCP property is utilized to
decrease the search space by removing low-utility itemsets earlier, thereby reducing the need for can-
didate generation at each level. To manage dataset changes resulting from newly added transactions,
the concept of FUP (Cheung et al., 1996) is employed to reduce the time required for reprocessing
the whole updated dataset. ITPAU relies on four cases for the average-utility itemsets within the FUP
framework. It performs two phases of incremental mining of these average-utility itemsets. During the
first phase, average-utility upper-bound (AUUB) is employed to provide overestimated values for the
itemsets. During the second phase, it calculates real average-utility values to extract HUBAUI (High
Upper-Bound Average-Utility Itemsets).

The algorithm works as follows: first, it recomputes the minimum average-utility thresholds of new
transactions and updated database, respectively. Then, it computes the utility value for each item in
each new transaction. Afterwards, it identifies the maximal item-utility value in each new transaction.
It generates k-itemsets (where k represents the counts of items in the currently processed itemsets.) and
calculates their AUUB of k-itemsets from the new transactions. If AUUB of each k-itemset is not less than
min_util of the new transaction, then put it in the set of HUBAUI of k-itemsets for the new transactions.
If HUBAUI of k-itemsets does not appear in the new transaction, then update the AUUB. If HUBAUI of
k-itemsets does not appear in the original dataset, then re-scan the original dataset to find AUUB of k-
itemsets and update the original dataset. Repeat this procedure until no candidates are produced. In this
way, the final HAUIs for the updated dataset are found. Experiments proved that ITPAU performs better
than the state-of-the-art algorithm two-phase average-utility mining (TPAU) (Hong et al., 2009b) in
terms of runtime for updated datasets. ITPAU optimizes dataset scanning by computing the upper-bound
of HUBAUI relative to the min_util threshold.

FUP-HU: The traditional algorithms (Liu et al., 2005; Yao & Hamilton, 2006) consume a signif-
icant amount of computational time. To resolve this issue, the notion of FUP (Cheung et al. 1996) is
designed to update the obtained itemsets in the dynamic dataset. However, the process of re-scanning
the original dataset consumes a significant amount of computational time. To further increase the min-
ing performance, Lin et al. (2012) developed an incremental mining approach for record insertions,
named FUP-HU. This method is based on the Two-phase (Liu et al., 2005) and FUP concept (Cheung et
al., 1996) to effectively mine HUIs from the updated dataset. The method initially partitions the item-
sets into four parts if they belong to the high TWU values of the itemsets in the original dataset and
newly inserted transactions. To achieve this, the proposed method uses two-phase utility mining (Liu
et al., 2005) to search the TWU of itemsets and the corresponding actual utility values from the original
datasets before incorporating additional transactions. First, it calculates the utility value for each item
in every new transaction in the dataset. Then, it generates the k-itemsets and calculates their TWU from
the new transactions. If TWU of each k-itemsets for the new transaction is no less than the min_util,
then add it in the set of high TWU k-itemsets for the new transaction. Then, it generates the (k + 1)-
itemsets from the set of high TWU k-itemsets in the updated datasets. Afterward, it calculates the actual
utility value of itemsets for the new transactions. Finally, the HUIs for the whole updated database are
generated. The experiments proved that the proposed approach performs better than the state-of-the-art
approach Two-phase (Optimal) (Liu et al., 2005) for various min_util thresholds in the updated dataset.
This is because Two-phase (Optimal) performs the re-scanning of the updated dataset to discover HUIs
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Table 10. Characteristics and theoretical aspects of the Two-phase-based approaches

Algorithm
Data
structure Mining

Pruning
strategy

State-of-the-art
methods Base methods Year

IUM (Yeh
et al.,
2008) &
FIUM (Yeh
et al. 2008)

– HTUIs TWU None (first of its kind) Two-phase (Liu
et al., 2005), FSM
(Li et al., 2005b) &
ShFSM (Li et al.,
2005c)

2009

ITPAU
(Hong
et al.,
2009a)

– HAUIs AUUB
and
HUBAUI

TPAU (Hong et al.,
2009b)

Apriori (Agrawal
et al., 1993) & FUP
(Cheung et al., 1996)

2009

FUP-HU
(Lin et al.,
2012)

Utility
table

HUIs TWU Two-phase (Liu et al.,
2005) (Optimal)

FUP (Cheung et al.,
1996)

2012

in batch mode, resulting in a significant time overhead. In contrast, FUP-HU only re-scans the updated
dataset for the newly inserted transactions, which significantly reduces the running time.

Discussion
We have discussed two-phase-based HUIM algorithms (Liu et al. 2005; Yao & Hamilton 2006) for incre-
mental datasets. Although the iHUIM algorithms (Yeh et al., 2008; Hong et al., 2009a; Lin et al., 2012)
effectively address the limitations commonly associated with traditional HUIM algorithms. Nonetheless,
they suffer from the same drawbacks as Apriori (Agrawal et al. 1993) that produces more candidates
and perform multiple dataset scans. The utilization of the FUP concept (Cheung et al., 1996) reduces
the number of re-scanning the original dataset, resulting in a reduced computational costs. In some
cases, there can still be excessive re-scanning of original dataset, leading to significant computational
overhead. Table 10 provides a comprehensive summary of two-phase iHUIM algorithms, encompass-
ing key categories such as data structure, mining, pruning strategies, the state-of-the-art methods,
and base methods. Table 11 provides an in-depth exploration of the theoretical aspects of two-phase
iHUIM algorithms, including key categories such as outcomes, advantages and disadvantages, and future
remarks.

3.2 Pattern-growth-based approaches
Two-phase based iHUIM algorithms (Yeh et al., 2008; Hong et al., 2009a; Lin et al., 2012) extract
the utility information in a level-wise fashion, thus suffering from excessive candidate’s generation
and multiple dataset scans. To deal with these issues, pattern-growth-based iHUIM algorithms (Ahmed
et al., 2009b; Ahmed et al., 2009a; Yun & Ryang, 2014; Zheng & Li, 2015; Shao et al., 2016; Guo &
Gao, 2017; Kim & Yun, 2017) are introduced to efficiently extract the utility information in dynamic
environments. These algorithms reduce the number of less promising candidates by mitigating the over-
estimation of their utilities (Liu et al., 2005), thereby improving the mining performance. Efficient
data structures are employed to handle newly added information without the need to process the whole
dataset. This significantly minimizes the number of dataset scans as compared to level-wise incremental
approaches (Yeh et al. 2008; Hong et al. 2009a; Lin et al. 2012). Furthermore, these methods signifi-
cantly reduce redundant information, resulting in reduced storage space requirements and less execution
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Table 11. Pros and cons of the Two-phase-based approaches

Algorithm Outcomes Pros and Cons Future directions
IUM and
FIUM (Yeh
et al., 2008)

IUM and FIUM are
highly effective in
extracting HTUIs that
are of particular
interest to users
during specific time
periods, especially
when new
transactions are added
to the original dataset

FIUM does not require to join the
candidates, resulting in a significant
reduction in the time required to
search for high-temporal utility
itemsets. However, both the IUM and
FIUM algorithms have limitations in
capturing significant portions of
utility within specific time periods,
and they do not specify the total
number of itemsets during those
specific periods. Furthermore, a few
high-temporal utility itemsets may
not qualify as HUIs

There is room for
further exploration
within the field of
temporal
utility-frequent
mining

ITPAU (Hong
et al., 2009a)

The proposed
algorithm utilizes the
FUP concept (Cheung
et al., 1996) to mine
HAUIs in the updated
dataset with
continuously added
transactions

ITPAU outperforms the
state-of-the-art TPAU (Hong et al.,
2009b) in terms of run-time.
Nevertheless, the run-time of ITPAU
is close to that of TPAU when fewer
transactions are inserted in the
original dataset. Additionally, it
consumes a substantial amount of
memory since it retains itemset
information in the main memory.
Furthermore, it also incurs the same
drawbacks as Apriori (Agrawal et al.,
1993)

More efficient pruning
strategies could be
designed to achieve
high performance

FUP-HU (Lin
et al., 2012)

The proposed method
introduces an
incremental approach
to manage and update
the previously
acquired HUIs by
integrating the
principles of FUP
concepts (Cheung
et al. 1996) and a
Two-phase algorithm
(Liu et al., 2005)

FUP-HU runs faster than the TP-HU
(Liu et al., 2005) in the updated
dataset. However, it incurs a large
number of candidate generation and
multiple dataset scans

The proposed
approach could be
further extended to
handle issues of
HUIM in the case of
transaction deletion
and transaction
modification in the
original dataset

times for the mining process. We here give the in-depth discussion of the pattern-growth-based iHUIM
algorithms.

IIUT: Ahmed et al. (2009b) proposed an effective tree structure named IIUT (Incremental and
Interactive Utility Tree), that employed a pattern-growth method to discover high utility itemsets
without requiring the level-wise candidate generation. Incremental data can then be captured without
re-structuring the process. It uses the ‘build once, mine many’ characteristics, rendering it well-suited
for interactive mining. The IIUT structure is designed according to the order of item appearances and
performs two scans: (1) During the first scan, IIUT arranges items within a transaction based on their
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a: 193

b: 295

c: 165 d: 74

d: 52 a: 37 e: 76 a: 74

c: 28

a: 28

Step 2 - Construction Process of IIUT

a:193

Step 1

Step 3 - Incremental maintenance of IIUT

Increment database after

adding Db1 and Db2

Updated Database

After

inserted Db1 and Db2

d: 52

e: 64a:
56

b: 418 d :
84

c: 186
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c: 28

a: 176

d :
76

a: 28

b: 347

c: 89 d: 176

d: 52 a: 37
e: 38 a: 176

d: 80

e: 64

a: 44

e: 02

Update operations

Figure 2. Incremental maintenance process of IIUT

order of appearance and adds them to the leaf node of the tree. The header table is maintained in the
form of an FP-tree (Han et al., 2004). (2) During the second scan, it maintains the TWU value in the
header table and intermediate nodes of the tree. The adjacent links are preserved to efficiently traverse
the tree. This, in turn, leads to a reduction in the time required for the mining process. The proposed
tree structure is extremely efficient in the interactive and incremental mining of HUIs.

Figure 2 shows the incremental maintenance process of the proposed algorithm IIUT. In Step 1,
the transaction database with their profit value is taken as an input. It consists six transactions
(T1, T2, T3, T4, T5, T6) and five items (a, b, c, d, e). In Step 2, the transactions are inserted into the H-
table (Header-table) according to their appearance order, one at a time. The tree is constructed according
to the FP-tree (Han et al., 2004). In Step 3, two groups of transactions Db1 and Db2 are added to the
original database. The Db1 includes transactions (T7, T8), while Db2 includes (T9, T10). Then, the tree
is constructed from the updated database. In the same Step, the database is again updated by modify-
ing the transactions (T2, T3) and deleting (T5, T9). Finally, the tree is built based on its H-table from the
updated database. Experiments proved that IIUT outperforms the state-of-the-art approaches, including
Two-phase (Liu et al., 2005), FUM (Fast Utility Mining) (Li et al., 2008) and DCG+ (Li et al., 2008), an
extended version of DCG (Direct Candidate Generation) algorithm (Li et al., 2005a; Li et al., 2005c),
concerning runtime and number of promising candidates under various min_util thresholds from the
dense and sparse datasets.

IHUP: The traditional HUIM algorithms (Yen et al., 2005; Hong et al., 2008) cannot deal with
the incremental and interactive mining that includes addition, removal, or change of the transactions in
the dynamic environment. Furthermore, these algorithms do not follow the ‘build once, mine many ’
characteristics. To address these challenges, Ahmed et al. (2009a) proposed three novel tree structures,
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namely Incremental HUI lexicographic Tree (IHUPL-Tree), IHUP transaction frequency tree (IHUPTF-
Tree) and IHUP transaction-weighted utilization Tree (IHUPTWU-Tree). These structures are specifically
designed to enable incremental and interactive HUIM (High Utility Itemset Mining) while follow
‘build once, mine many ’ property. This approach results in efficient HUI mining from incremental trans-
action datasets. These tree structures are based on the FP-Growth method (Han et al., 2000) and hold the
DCP property (Agrawal et al., 1993). They incorporate TWU of a pattern, which effectively avoid can-
didate generation in a level-wise manner. The first tree structure IHUPL-Tree rely on the lexicographical
order of items. It efficiently manages incremental data without the need of restructure functions. The
second tree structure IHUPTF-Tree optimizes space by arranging items based on descending transac-
tion frequency. The third tree structure IHUPTWU-Tree, is constructed to reduce the time required for the
mining process, based on their TWU values in descending order.

In the first scan, the IHUPL-Tree is constructed, arranging items in lexicographic order. The order of
items of IHUPL-Tree is not affected by changing the frequency of the items by performing the addition,
deletion, and modification. Subsequently, the IHUPTF-Tree is derived from the IHUPL-Tree, utilizing
the path-adjusting technique (Koh & Shieh, 2004) based on the bubble-sort method. The nodes in the
IHUPTF-Tree are organized in the descending order based on their transaction frequency. The advantage
is that the items occur in numerous transaction can be placed in the upper section of the tree, resulting
in the higher prefix-sharing nodes that, in turn, significantly reduce the size of the tree. These two tree
structures face a significant drawback: they may inadvertently convert low-utility itemsets into HUIs,
and vice-versa, resulting in a significant delay in the mining process. To address this issue, IHUPTWU-Tree
is designed in a same way as IHUPTF-Tree is constructed. IHUPTF-Tree keeps all promising candidates
before the non-promising candidates. This tree structure is constructed from the IHUPL-Tree using the
path adjusting technique (Koh & Shieh, 2004) based on the bubble-sort method. The number of nodes
involved in the mining process in IHUPTWU-Tree does not exceed that of the other two tree structures,
leading to the significantly reduction in the mining time. During the second dataset scan, HUIs are
mined. The proposed algorithms require just two dataset scans, regardless of the maximum length of
candidate patterns. The experiments proved that the designed three structures perform better than Two-
phase (Liu et al. 2005), FUM (Li et al., 2008), and DCG+ (Li et al., 2008), concerning execution
time, number of promising candidates, and scalability under different min_util thresholds. However,
IHUPL-Tree consumes a considerable amount of space. Both IHUPL-Tree and IHUPTF-Tree have low-
TWU itemsets appearing before high TWU itemsets, resulting in increased time delays. IHUPTWU-Tree
overcomes the limitations of IHUPL-Tree and IHUPTF-Tree.

HUPID-Growth: Several HUIM algorithms (Ahmed et al., 2009a; Lin et al., 2012) are proposed for
incremental datasets to better emulate real-world characteristics. But, they produce excessive number of
candidates and requiring multiple dataset scans, leading to a reduction in mining efficiency. In addition,
these algorithms require excessive amount of runtime to extract candidates by their overestimated meth-
ods (Liu et al., 2005). This situation becomes increasingly challenging as datasets gradually expand in
a dynamic environment. Yun & Ryang (2014) developed an efficient algorithm called HUPID-Growth
(High Utility Patterns in Incremental Databases Growth) to extract HUIs from dynamic datasets. It
focuses on mitigating overestimated utilities in the mining process. An efficient tree structure, called
HUPID-Tree (High Utility Patterns in Incremental Datasets Tree), is proposed to effectively maintain
details of the HUIs in the updated dataset, requiring just a single dataset scan. A header table is main-
tained in the HUPID-Tree to facilitate the tree traversal. Each record in the header table includes item
name, TWU value and a link. These entries are sorted according to TWU descending order. The sorted
entries are used effectively to traverse the tree. Furthermore, a data structure named TIList (Tail-node
Information List) is employed in local trees by using the restructure method based on TWU (Ahmed
et al., 2009a; Lin et al., 2012). A TIList preserves information about the tail nodes in a global HUPID-
Tree. It is used for restructuring the HUPID-Tree, resulting in the reduced overestimate utilities that, in
turn, achieves efficient incremental HUIs mining.
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The proposed algorithm is consists of two phases: (1) The first phase includes two steps. In the initial
step, a global HUPID-Tree is built with a single scan. Subsequently, the data structure TIList is cre-
ated using the restructure method, effectively reducing overestimated utilities in decreasing order of the
TWU value. In the second step, candidates are generated, which significantly minimize the search space,
enhances mining efficiency. (2) In the second phase, actual HUIs are extracted from the generated can-
didates. When the current database is updated by appending the new information to the database. Then,
the proposed algorithm updates the existing tree with only added information without reconstructing the
tree from the scratch. The proposed algorithm sorts the items in each added transaction as per the TWU
decreasing order. Afterwards, it adds the transaction into the tree by computing the utility value to the
tree. The proposed algorithm decreases overestimate utilities of nodes both in global and local trees,
leading to the decrease in the number of candidates and search space. The proposed algorithm outper-
forms IHUP (Ahmed et al., 2009a) and FUP-HU (Lin et al., 2012) concerning execution time, memory
usage, and the number of processed candidates, as demonstrated on retail and medical datasets. HUPID-
Growth specifically performs well where datasets consist of a large number of lengthy transactions or
when a low value for the min_util threshold is employed.

iCHUM: The IHUP algorithm (Ahmed et al., 2009a) failed to perform efficiently on incremental
datasets containing a large number of itemsets. It retains redundant information, resulting in exces-
sive processing times for unpromising candidates. Furthermore, it does not maintain the tree structure
following the DCP (Liu et al., 2005). To deal with these problems, Zheng & Li (2015) designed an
efficient approach, named iCHUM (incremental Compressed High Utility Mining) to mine HUIs from
incremental datasets. It employs high TWU values of items to construct and incrementally update the
iCHUM-Tree structure, leading to a significant reduction of run-time. The iCHUM-Tree includes tree
structure and header table. The iCHUM-Tree is constructed from the original database and the header
table maintains the promising items whose TWU value is no less than min_util. The items are organized
as per TWU decreasing order. Then, each reodered transaction is added in iCHUM-Tree.

The proposed algorithm updates the iCHUM-Tree when a new dataset is added to the original one.
A recall item is one whose TWU value is no less than min_util in both original and updated databases.
The nodes are reorder in the iCHUM-Tree and its header table by using bubble sort method (Koh &
Shieh, 2004). The iCHUM-Tree is updated when all the items and the corresponding nodes are sorted
in the iCHUM-Tree. The proposed algorithm includes four steps. Firstly, the algorithm constructs the
iCHUM-Tree from the original dataset and collects the high TWU values of itemsets within that dataset.
Secondly, when a new dataset is appended to the original dataset, the iCHUM-Tree undergoes an update
process. Thirdly, the updated iCHUM-Tree becomes the input for the mining process, generates high
TWU itemsets. Finally, it identifies actual HUIs from the candidates in the whole dataset. Experiments
proved that iCHUM performs better than IHUP (Ahmed et al., 2009a) concerning execution time on
benchmark datasets, specifically for long transactions. However, the performance of iCHUM degrades
as the number of recollected items increases.

MUAP: In real-world scenarios, managers aim to maximize profits by considering actionable prod-
uct. However, some of these products may not exhibit high frequency or utility in the datasets and
are often considered for rejection. However, these actionable patterns are of great significance. Hence,
extracting these itemsets as high-frequency or high utility patterns poses a challenging task. To resolve
this challenge, Shao et al. (2016) developed a new structure for mining actionable patterns, namely,
mining utility associated patterns (MUAP), the first of its kind, to discover the high utility incremen-
tal patterns and closely related itemsets by using a combination of criteria. The proposed algorithm
utilizes a tree structure that combines utility growth and association rule mining. The proposed tree
structure, named utility graph-tree (UG-tree), orderly analyses the connection between fundamental and
derivative itemsets based on frequency and utility concepts. All branches whose utility decreases are
discarded first time from the proposed UG-tree because the utility of the nodes may vary which means
that the increment of the utility may be negative. The UG-tree involves two dataset scans. During the
first scan, it generates itemsets and their corresponding TWU values based on transaction utility. In the
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second scan, it reorders transactions and generates their rebuilt transaction utility (RTU). RTU is the
transaction utility of the rebuilt transaction.

Two efficient strategies are also designed to enhance the efficiency of the proposed structure. The
global pruning strategy is designed to produce utility increase patterns with clusters from the given
itemsets. The local strategy is designed for each cluster to identify patterns with the highest weighted
value, considering a composite measure for utility growth and dependence computation. A combined
mining approach is proposed to find the interesting patterns from the clusters of patterns. Two parameters
namely, impact and confidence, are proposed to measure the interestingness of each combined pattern.
The impact of the additional itemset is the impact factor to value the utility growth within each actionable
combined pattern from the utility of the underlying itemset to the derivative itemset. On the other hand,
the confidence is the measurement of the association relationship between the underlying itemset and
the additional itemset. The results achieved by MUAP are satisfactory in terms of pattern utility from
the dense and sparse datasets.

IHUI-Miner: IHUP approach (Ahmed et al., 2009a) is developed to mine rule from incremental
datasets while mitigating overestimated utility values. However, it suffers from two limitations: (1)
Generates an excessive number of candidates and (2) Consumes more time to validate these candi-
dates. To solve these limitations, Guo et al. developed an approach, called IHUI-Miner (Guo & Gao,
2017) to extract HUIs without requiring for candidate generation. A novel tree structure, called IHUI-
Tree (Incremental High Utility Itemset Tree), organizes items in lexicographic order (IHUIL-Tree), using
the pattern-growth method and is traversed in a bottom-up manner. The details of the original dataset
are represented using a 2D-array utility dataset (Zihayat & An, 2014). The global IHUIL-Tree and the
global utility dataset are initially constructed by scanning the original dataset. The DCP property of the
dataset’s item prefix utility effectively reducing the search space. Prefix utility of an item is the summa-
tion of utility of the items of the prefix set in the database. It is used to estimate the true utility of an
itemset in the database.

If the prefix utility for an itemset is equal to or greater than min_util, then the following three steps are
performed to compute the HUIs: (1) A conditional dataset is generated, and subsequently, conditional
pattern tree and conditional utility dataset are constructed. (2) HUIs are extracted iteratively from the
conditional pattern tree and the conditional utility dataset. (3) The information in global IHUIL-Tree and
global utility dataset is updated. If the prefix utility of itemset is less than min_util then only 3rd step
is performed. To generate the conditional dataset for an item in the global IHUIL-Tree, the following
steps are performed: (1) Node links are traced corresponding to an item in the global tree. (2) The
obtained nodes are traced to their root, and all the paths corresponding to that item can be retrieved and
collected into the item’s conditional dataset. Moreover, the utilities of items in the paths can also be
collected from the global utility dataset with the node-link of the obtained nodes. The results proved
that the IHUI-Miner performs better than IHUP (Ahmed et al., 2009a) concerning the execution time. It
is observed that the proposed approach is 1 to 2 orders of magnitude quicker than IHUP (Ahmed et al.,
2009a).

IMHAUI: High average-utility itemsets mining (HAUIM) approaches (Hong et al., 2011; Kim &
Yun, 2016) address the limitations of conventional HUIM methods by incorporating the concept of
average-utility measure, thereby providing meaningful results to the users. However, these approaches
scan the dataset twice and are suitable only for static datasets. To resolve these limitations, Kim & Yun
(2017) designed an approach, called incremental mining of high average-utility itemsets (IMHAUI),
utilizing the pattern-growth approach, to extract HAUIs from incremental datasets. A novel tree struc-
ture, called incremental high average utility itemset tree (IHAUI-Tree), is proposed to efficiently retain
relevant information in incremental datasets while minimizing the number of dataset scans through the
utilization of the node sharing effect. The algorithm also utilizes the path adjusting method (Koh &
Shieh, 2004) following restructuring techniques to generate a compressed IHAUI-Tree. It includes three
basic steps: (1) node insert; (2) node exchange; and (3) node merge. In IHAUI-Tree, the AUUB value
of any node is always no less than its child nodes. The path adjusting method is updated to restructure
the IHAUI-Tree as per the descending order of AUUB, resulting in removing the irrelevant items from
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the construction of local trees and reducing the computational overhead in the mining process. This will
result into the significant memory consumption to store the data in the IHAUI-Tree.

The proposed approach comprises the following functions: (1) IMHAUI function: This function is
responsible for continuously processing the input transaction data. It calls for two other essential func-
tions: ‘Restructure’ and ‘Mining,’ which restructure IHAUI-Tree and performs the mining process. (2)
Restructure function: This function focuses on restructuring the IHAUI-Tree by decreasing the order of
the optimum AUUB value. (3) Mining function: This function focuses on the mining candidate HAUIs
using the pattern-growth method. It is observed that IMHAUI performs better than ITPAU (Hong et al.,
2009a) and HUPID-Growth (Yun & Ryang, 2014), concerning execution time and memory consump-
tion. However, it requires additional processing time for candidate validation. There are lots of challenges
to accelerating the mining process when new transactions are generated. The proposed approach extract
conditional pattern base for each prefix itemset and constructs its local tree recursively. However, this
recursive approach is negatively affects the execution efficiency.

Discussion
We have discussed pattern-growth-based iHUIM algorithms designed to extract relevant utility infor-
mation in incremental environment. These algorithms overcome the limitations of two-phase-based
iHUIM approaches by providing compact data structures and reducing redundant information, resulting
in a significantly enhancing the mining performance. However, there are several issues: (1) It generates
excessive number of candidates when dataset has long transactions or min_util threshold is set quite low.
(2) The substantial time required for candidate verification. (3) The performance of these algorithms
can vary depending on the dataset size. Table 12 gives an overview of pattern-growth-based HUIM
algorithms from the incremental datasets. The theoretical aspects of pattern-growth iHUIM algorithms,
including their outcomes, advantages, disadvantages, and future considerations, are shown in Table 13.

3.3 Projection-based approaches
The pattern-growth-based iHUIM algorithms utilize tree-based structures to store previous mining infor-
mation and avoid redundant re-computation when the original dataset is updated. However, this process
consumes a high amount of memory as it produces a large number of tree nodes, resulting in consid-
erable time overhead. Furthermore, the designed upper-bounds are not tighter, resulting in poor mining
efficiency since they fail to efficiently prune the search space and reduce the number of less promising
candidates. To address these challenges, projection-based iHUIM algorithms (Wang & Huang, 2016;
Wang & Huang, 2018; Yildirim & Celik, 2018; Saleti, 2021) are designed to extract profitable items
from the incremental datasets. These approaches use tighter upper-bounds to reduce the less promising
candidates, leading to improved mining performance. Moreover, they implement compact data structures
for optimized storage space. Here we present in-depth overview of projection-based iHUIM algorithms,
including their strengths and weaknesses.

IncUSP-Miner: Traditional HUSPM (High Utility Sequence Pattern mining) approaches (Yin et al.,
2012; Yin et al., 2013) face challenges to address the mining issues of HUSPs (High Utility Sequence
Patterns) from incremental datasets. When these algorithms are applied to incremental datasets, they
encounter several challenges: (1) The utility of sequence does not follow DCP property. (2) A sequence
may consist of multiple instances in each super-sequence, each with its utility. The tree structure stores
redundant information when the dataset is updated, leading to excessive memory consumption and
decreased runtime efficiency. (3) It requires scanning of whole dataset each time to identify new HUSPs.
(4) The tree structure needs to be adjusted with each dataset update to guarantee the accuracy of the
mining outcomes. To address these challenges, Wang & Huang (2016) developed an algorithm named
IncUSP-Mine for incremental mining of HUSPs. A tight upper-bound, TSU (Tight Sequence Utility),
is presented to enhance mining performance. TSU is tighter than PEU (Prefix-Extension Utility) (Wang
et al. 2016) and RSU (Reduced Sequence Utility) (Wang et al., 2016) and it enhances the efficiency
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Table 12. Characteristics and theoretical aspects of the pattern-growth-based approaches

Algorithm Data structure Mining Pruning strategy State-of-the-art methods Base methods Year
IIUT (Ahmed et al.,
2009b)

IIUT HUIs TWU Two-phase (Liu et al., 2005),
FUM (Li et al., 2008) &
DCG+ (Li et al., 2008)

FP-tree (Han et al., 2004) 2009

IHUP (Ahmed et al.,
2009a)

IHUPL-Tree,
IHUPTF-Tree,
IHUPTWU-Tree

HUIs TWU Two-phase (Liu et al., 2005),
FUM (Li et al., 2008) &
DCG+ (Li et al., 2008)

FP-Growth (Han et al.,
2000)

2009

HUPID-Growth
(Yun & Ryang, 2014)

HUPID-Tree
and TIList

HUIs TWU IHUP (Ahmed et al.
2009a) & FUP-HU (Lin et al.
2012)

FP-Growth (Han et al.,
2000)

2015

iCHUM (Zheng & Li
2015)

iCHUM-Tree HUIs TWU IHUP (Ahmed et al., 2009a) FP-Growth (Han et al.,
2000)

2015

MUAP (Shao et al.,
2016)

UG-Tree Actionable high
utility incremental
and strongly
associated
patterns

Global and local
strategy

None UP-Growth (Tseng et al.,
2010)

2016

IHUI-Miner (Guo &
Gao, 2017)

IHUIL-Tree &
utility dataset

HUIs Prefix utility IHUP (Ahmed et al., 2009a) UP-Growth (Tseng et al.,
2010)

2017

IMHAUI (Kim & Yun,
2017)

IHAUI-Tree HAUIs AUUB ITPAU (Hong et al.,
2009a) & HUPID-Growth
(Yun & Ryang, 2014)

FP-tree (Han et al., 2004) 2017
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Table 13. Pros and cons of the pattern-growth-based approaches

Algorithm Outcomes Pros and Cons Future directions
IIUT (Ahmed
et al., 2009a)

The proposed
algorithm utilizes a
pattern-growth
approach to address
the problem of
candidate generation
in a level-wise manner

The proposed tree structure is highly
efficient in the incremental and
interactive HUIM approach,
requiring at most two dataset scans.
However, the execution time of the
proposed algorithm increases as the
dataset size increases

To improve mining
efficiency, there is
potential for exploring
and implementing
more effective
pruning strategies

IHUP (Ahmed
et al., 2009a)

For incremental and
interactive HUIM,
novel tree structures,
specifically
IHUPL-Tree,
IHUPTF-Tree, and
IHUPTWU-Tree, have
been proposed. These
structures are
designed to mine
HUIs from
incremental datasets
without the need for
generating and testing
candidates in a
level-wise manner

IHUPL-Tree is simple and easy to
build. IHUPTF-Tree consumes less
memory, and IHUPTWU-Tree takes
less execution time. These tree
structures require the maximum of
two scans for their operation.
However, IHUP generates excessive
candidates, especially when the
datasets consist of long transactions
or min_util is set very low. Moreover,
the IHUP-tree is redundant and
relatively inefficient, as it needs the
unnecessary generation of low-utility
itemsets which take considerable
time to prune these itemsets

More efficient tree
structures could be
further designed to
provide compact
storage space and
reduce the time
required to visit the
tree nodes

HUPID-
Growth
(Yun &
Ryang, 2014)

An algorithm has
been proposed to
efficiently mine HUIs
from incremental
datasets, significantly
reducing
overestimated utilities
and achieving this
with just a single
dataset scan

HUPID-Growth shows significant
results when the dataset consists of a
large number of long transactions or
the min_util is set quite low.
However, it requires an additional
phase to identify the actual HUIs
from the generated candidates

The compact data
structures and efficient
pruning strategies
could be further
developed to achieve
high performance in
incremental mining.

iCHUM
(Zheng & Li,
2015)

The iCHUM
algorithm compresses
the dataset into a
compact iCHUM-Tree
structure, which is
updated to keep all
promising itemsets,
ensuring the
extraction of all HUIs

The proposed algorithm performs
well when the datasets consist of a
large number of longer transactions.
However, the performance of the
iCHUM is degraded as the number of
recalled items increases.
Furthermore, additional data is
required to update information about
both unpromising and promising
candidates as the data is gradually
added

The knowledge-based
method could be used
to further enhance the
discovery of
promising itemsets.
Additionally, the
utilization of a B+ tree
can improve the
mining process for the
proposed method.
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Table 13. Continued

Algorithm Outcomes Pros and Cons Future directions
MUAP (Shao
et al., 2016)

The proposed method
employs two
strategies, namely
global strategy and
local strategy, to
discover the
actionable high utility
incremental and
strongly associated
patterns

The proposed algorithm is quite
useful for retail managers aiming to
optimize product strategies for the
generation of high-frequency and
utility patterns

The derivative itemset
could be considered
as the new underlying
itemset in the
chain-store dataset

IHUI-Miner
(Guo & Gao,
2017)

The interactive and
incremental HUIM
approach is designed
to extract HUIs
without candidate
generation

The performance of IHUI-Miner
remains efficient across datasets of
different sizes. It is more than one
order magnitude faster than that of
IHUP Ahmed et al. (2009a).
However, only two datasets and the
IHUP method Ahmed et al. (2009a)
are considered for evaluating the
performance of the proposed
algorithm

It would be valuable
to include more
datasets and
benchmark algorithms
to further considered
to establish the
correctness and
superiority of the
proposed algorithm

IMHAUI
(Kim & Yun,
2017)

The proposed
algorithm effectively
extracts HAUIs from
incremental datasets
using compact data
structures and the
pattern-growth
method

IMHAUI consumes less memory by
maintaining the decreasing order of
optimum AUUB even as the size of
incremental datasets grows. However,
it recursively obtains conditional
patterns and builds the local trees in
the mining process. Moreover, it
takes excessive execution time to
verify the candidates

The proposed
algorithm could be
further expanded to
extract HAUIs from
incremental datasets
without the need for
candidate generation

of the mining process. This approach eliminates sequences with low utility during the mining process.
It comprises two main phases. The initial phase designed IncUSP-Miner algorithm (Wang & Huang,
2016) utilizes TSU and PEU to discover HUSPs in the original dataset. It constructs all the nodes of the
candidate pattern tree and extracts HUSPs from the root in a depth first search. During the incremen-
tal phase, a compact candidate pattern tree is used to further enhance mining efficiency. A candidate
pattern tree is the expansion of the lexicographic tree that buffers a set of sequences in the database for
incremental HUSP mining.

The proposed approach visits each node of candidate pattern tree using depth-first search and avoids
nodes that do not appear in the updated sequences. To simplify the incremental HUSP mining process,
a candidate pattern tree data structure retains all sequences with TSU values no less than the min_util.
A compressed tree node structure is also presented to keep key details of the corresponding sequence
that minimizes the need of additional computations. This strategy, based on the candidate pattern tree,
is designed to minimize the computational load when a node is modified, thus the mining performance
is improved. A node skipping strategy is also proposed that is used to safely skip some nodes in the tree
structure without updating the database. Extensive experiments proved that IncUSP-Miner performs
better than HUSP mining methods, USpan (Yin et al., 2012) and HUS-Span (Wang et al., 2016), con-
cerning the run-time under various min_util thresholds from the incremental datasets. The candidate
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pattern tree efficiently computes the utility and the proposed node skipping strategy avoids some nodes
not necessary to be visited. However, it needs extra memory to construct the candidate pattern tree,
leading to increased computational costs.

IncUSP-Miner+: IncUSP-Miner (Wang & Huang, 2016) is the first projection-based work on incre-
mental HUSP mining. The algorithm is further expanded by the same set of authors (Wang & Huang,
2018). IncUSP-Miner+ (Wang & Huang, 2018) approach is developed to extract HUSPs from the incre-
mental datasets and visits each node in the tree at the root in a depth first search way and skips those
nodes that are not appearing in the updated sequences. The method provides a tighter upper-bound for
sequence utility, named TSU (Tight Sequence Utility), to eliminate redundant recalculations in the min-
ing process. TSU is tighter than the upper-bounds, PEU (Wang et al. 2016) and RSU (Wang et al. 2016),
resulting in more efficient mining. A novel compact tree data structure named Candidate Pattern Tree,
an extension of Lexicographic tree (Yin et al. 2012), is designed to store sequences with TSU values
no less than min_util in the original dataset. A candidate pattern tree supports the multiple database
updates. Several pruning strategies, namely Auxiliary information update, Node skipping strategy, and
Database scan reduction, are designed to reduce the need of dataset scans and computations whenever
a node is inserted. Auxiliary information update strategy supports the multiple database updates. Node
skipping strategy safely skips tree nodes that are not the instances of all sequences in database without
updating the database. Database scan reduction strategy eliminates the need of multiple database scans
These strategies significantly improves mining efficiency.

Extensive experiments are conducted to prove that IncUSP-Miner+ outperforms USpan (Yin et al.,
2012) and HUS-Span (Wang et al., 2016), concerning both run-time and scalability from the dense and
sparse datasets. IncUSP-Miner+ performs better than IncUSP-Miner (Wang & Huang, 2016), especially
for dense datasets. However, both algorithms are not memory-efficient as compared to HUS-Span. This
is due to the necessity of construction of candidate pattern trees and execution multiple dataset updates,
which ultimately leading to higher computational demands as a new node inserted.

FIMHAUI: The IMHAUI approach (Kim & Yun, 2017), based on the IHAUI-Tree, is designed to
extract HAUIs from incremental datasets. However, it recursively generates conditional pattern tree
bases to build conditional local trees for candidate mining during the mining process. This extends
the time needed to locate candidates and necessitates candidate verification during mining. To solve
these problems, Yildirim & Celik (2018) developed FIMHAUI (Fast Incremental Mining of HAUIs)
approach to extract HAUIs in incremental datasets. A new tree data structure named mIHAUI-Tree
(modified IHAUI-Tree) is designed, an extension of IHAUI-Tree (Kim & Yun, 2017), to keep the rele-
vant details of transactions. Whenever a mining request occurs, the algorithm adjusts mIHAUI-Tree to
maximize the node-sharing effect of mIHAUI-Tree. In subsequent step, it obtains the projected dataset
in the next step. Finally, it employs transaction merging and dataset projection techniques to efficiently
identify candidate itemsets.

FIMHAUI effectively decreases the required time to generate the candidates because each node N
within IHAUI-Tree keeps relevant details about the transactions that intersect the path from root to node
N . However, in mIHAUI-Tree, the AUUB value is only stored on the leaf nodes. The mIHAUI-Tree begins
with empty root node and transactions are added in the alphabetical order of items. Then, a restructuring
technique, based on the path-adjusting method (Kim & Yun 2017), is applied to enhance the node-
sharing effect of the tree. The algorithm employs merging techniques and dataset projection to efficiently
identify candidate itemsets. A database sorting method is utilized to find the similar transactions in a
linear time. It sorts the transaction in a lexicographic order in backwards way. Then, the projected dataset
is extracted to combine the similar transactions by performing a single dataset scan.

Figure 3 shows the construction process of mIHAUI-Tree. In Step 1, the original database is taken
that consists of seven transactions and a profit table is also taken with profit values of items. In Step 2,
the utility of each transaction is considered according to their appearance order one by one and inserted
into the header table. Then, the mIHAUI-Tree is constructed based on the alphabetic order of items
(A > B > C > D > E > F). As the transaction utility is not appeared in the increasing order. To make in
the ascending order, the items are rearranged (A > C > B > D > E > F). In Step 3, the mIHAUI-Tree is
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Step 1

Step 4

Step 5

mIHAUI-Tree of updated database

Step 3

Restructured mIHAUI-Tree
Step 2

mIHAUI-Tree of original database

Figure 3. Construction process of mIHAUI-Tree

restructured based on the header table. In Step 4, the database is updated by modifying the transactions
T1, T2, T3 in the original database. In the final Step, the mIHAUI-Tree is built from the restructured
mIHAUI-Tree (Step 3) and updated database (Step 4). It has been observed that FIMHAUI performs
better than IMHAUI (Kim & Yun, 2017) concerning run-time under various min_util thresholds from the
dense and sparse datasets. However, it relies on the traditional AUUB model, thus required a validation
phase to identify intended HAUIs.

MR-INCHUSP: MapReduce is a distributed framework that follows a divide-and-conquer approach
to deal with big data. A two-phase approach, named MR-INCSPM (MapReduce solution for Incremental
Mining of Sequential Pattern Mining) (Saleti & Subramanyam, 2019), is proposed to extract sequen-
tial patterns without the need for a complete dataset rescan. However, it does not include utility value,
leading to failure to generate high profits in dynamic datasets. To address this limitation, Saleti (2021)
developed three-phase method, called MR-INCHUSP (INcremental algorithm for HUSP mining using
MapReduce paradigm), the first of its kind, to find HUSPs from incremental datasets. MR-INCHUSP
employs backward mining method, BSPinc (Backward mining for Incremental Sequential Patterns) (Lin
et al., 2009), to efficiently utilize the information obtained during previous mining processes. During
the backward mining process, a new sequence is created by incorporating the item as a prefix to the
existing pattern.

Two new data structures, namely RUTree (Reverse Utility Tree) and CURMAP (Co-occurrence
Utility Reverse MAP), are proposed. RUTree quickly discovers utility information, thereby significantly
minimizing the re-computation cost. On the other hand, CURMAP, based on the CMAP (Co-occurrence
MAP) data structure (Fournier Viger et al., 2014), significantly minimizes the number of unpromis-
ing candidate sequences present in the input dataset. A pruning strategy, named TSU (Tight Sequence
Utility), is adopted from Wang and Huang (2018) to extract HUSP from the incremental datasets.
TSU represents the tighter upper-bound of sequence utility. A novel upper-bound, named CUUB
(Co-occurrence Utility Upper-Bound), is designed to reduce the number of sequences prior to the
utility computation. The novel sequence extension rules are further developed to enhance the mining
performance.

MR-INCHUSP includes three MapReduce phases: (1) During the first phase, global utility and
promising itemsets are kept in the distributed cache. (2) During the second phase, CURMAP structure
is designed to generate candidates by using the backward extension approach. It also constructs RUTree
nodes to efficiently generate all the local HUSPs using BSPinc approach. In RUTree, a sequence can
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manifest as either be itemset-extension or sequence-extension. An itemset-extension is created by pre-
fixing an item to the initial itemset of the parent sequence. A sequence-extension relies on the backward
extension method. The CURMAP structure based on the backward extension generates less number
of candidate sequences. (3) During the third phase, the algorithm extracts the complete set of global
HUSPs. Experiments proved the effectiveness of MR-INCHUSP as contrast to the non-incremental
methods BigHUSP (Zihayat et al., 2016) and HUSP-Spark (Srivastava et al., 2021) concerning the run-
time, memory consumption, and scalability. MR-INCHUSP takes less memory because of the inclusion
of CURMAP structure. The efficient pruning strategies and sequence extension rules lead to significant
scalability results.

Discussion
The projection-based iHUIM algorithms extract the useful, high utility information of itemsets from
incremental datasets. These algorithms outperform the two-phase iHUIM and pattern-growth-based
iHUIM algorithms concerning dataset scans, number of processed candidates, execution time, and scal-
ability. However, they face several challenges: (1) Maintaining additional memory to store information
about candidates’ pattern trees. (2) Requiring validation of candidates, which consumes a significant
amount of time. (3) Applicable only for incremental datasets, while in real-world scenarios, transactions
can also be removed or changed. (4) Designed to work with positive utility only, even though transac-
tions in the business world can also have negative utility. The overview of the projection-based iHUIM
algorithm is shown in Table 14, which includes details about data structures, output mining, pruning
strategies, benchmark datasets, and base algorithms used in these approaches. Table 15 provides an
overview of the theoretical aspects of projection-based HUIM methods when applied to incremental
datasets.

3.4 Utility-list-based approaches
The projection-based iHUIM algorithms suffer from high memory overhead and more re-computational
cost. Furthermore, candidate verification is performed to identify the low or high utility itemsets.
Subsequently, the low-utility itemsets are pruned from the search space, which is a time-consuming
process. To address these challenges, the utility-list-based iHUIM algorithms (Fournier-Viger et al.,
2015; Yun et al., 2017; Yun et al., 2019; Liu et al., 2019; Pushp & Chand, . 2021) are proposed. These
algorithms aim to efficiently extract highly profitable itemsets from incremental datasets without the
need for level-wise candidate generation. These algorithms utilize efficient data structures to reflect the
newly added data using a restructuring technique. In this sub-section, we present utility-list-based and
similar structure-based iHUIM algorithms and discuss their advantages and disadvantages along with a
brief analysis.

HUI-list-INS: The traditional HUIM algorithms with transaction insertion (Ahmed et al. 2009a;
Lin et al., 2012; Lin et al., 2014) are designed to extract HUIs from incremental datasets. However,
they require re-scanning the original dataset to maintain and update the HUIs. Furthermore, these level-
wise-based approaches have a critical issue of the combinatorial explosion. To address these challenges,
Lin et al. (2014) proposed a memory-based incremental approach, named HUI-list-INS to reduce the
computation without the need for candidate generation. This approach is based on the HUI-Miner algo-
rithm (Liu & Qu, 2012) to construct the utility-list structures to mine HUIs with transaction insertion.
It employs an EUCS (Estimated Utility Co-occurrence Structure) to enhance its efficiency. The EUCS
structure keeps the relationship between 2-itemsets, leading to speed-up the computational speed. It is
also used to prune the unpromising candidates, resulting in reduced search space for mining HUIs.

The utility-list structure is constructed prior to adding transactions to the original dataset. It stores
both high transactional utility itemsets HTWUIs and the itemsets that are not high TWU itemsets from
the original dataset. This allows for skipping the re-scanning of the dataset when new transactions are
inserted. The utility-list structure efficiently stores the related information in a compressed way from the
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Table 14. Characteristics and theoretical aspects of the projection-based approaches

Algorithm Data structure Mining Pruning strategy State-of-the-art methods Base methods Year
IncUSP-Miner (Wang &
Huang, 2016)

Candidate
pattern tree

HUSPs TSU USpan (Yin et al., 2012),
HUS-Span (Wang et al.,
2016) & USP-Miner [Self]
(Wang & Huang, 2016)

USpan (Yin et al., 2012) &
HUS-Span (Wang et al.,
2016)

2016

IncUSP-Miner+

(Wang & Huang 2018)
Candidate
pattern tree

HUSPs TSU USpan (Yin et al., 2012),
HUS-Span (Wang et al.,
2016), USP-Miner [Self]
(Wang & Huang, 2018) &
IncUSP-Miner (Wang &
Huang, 2016)

USpan (Yin et al. 2012) &
HUS-Span (Wang et al. 2016)

2018

FIMHAUI (Yildirim &
Celik, 2018)

mIHAUI-Tree HAUIs AUUB & HAUUBI IMHAUI (Kim & Yun,
2017)

IMHAUI (Kim & Yun, 2017) 2018

MR-INCHUSP (Saleti
2021)

RUTree &
CURMAP

HUSPs TSU & CUUB BigHUSP (Zihayat et al.,
2016) & HUSP-Spark
(Srivastava et al., 2021)

BSPinc (Lin et al., 2009) &
MapReduce

2022
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Table 15. Pros and cons of the projection-based approaches

Algorithm Outcomes Pros and Cons Future Directions
IncUSP-Miner
(Wang &
Huang, 2016)

An efficient approach
is designed to
incrementally extract
HUSPs using the
candidate’s pattern
tree

IncUSP-Miner outperforms other
HUSP algorithms (Yin et al., 2012;
Wang et al., 2016). However, it
incurs high computational costs due
to the additional memory required for
maintaining the candidate pattern
tree

More efficient pruning
strategies could be
further designed to
enhance mining
efficiency

IncUSP-
Miner+

(Wang &
Huang, 2018)

The proposed
algorithm addresses
the problem of
incremental mining of
HUSPs

IncUSP-Miner+ traverses each node
from the root in a depth-first manner
and skips those nodes not appearing
in the updated sequences. However, it
requires extra memory to keep the
information in the candidate pattern
tree and to perform multiple dataset
updates

IncUSP-Miner+ could
be re-design by
adopting MapReduce
to support incremental
HUSP mining in the
big data and
distributed
environments

FIMHAUI
(Yildirim &
Celik, 2018)

The FIMHAUI
algorithm employs the
novel tree structure
mIHAUI-Tree, a
modified version of
IHAUI-Tree (Kim &
Yun, 2017), for the
extraction of HAUIs
from incremental
datasets.

FIMHAUI stores the candidates set
only on the leaf nodes of the tree,
resulting in a significant reduction of
the search space. However, it requires
validation of the candidates

The proposed
approach could be
further integrated
with other promising
existing techniques
available in the
literature

MR-
INCHUSP
Saleti (2021)

A three-phase
MapReduce algorithm
is developed to deal
with the issue of the
incremental
maintenance of
sequential patterns
using the MapReduce
paradigm.

Efficient sequence extension rules
and pruning properties lead to the
high speed and scalability of
MR-INCHUSP.

The proposed work
could be further
expanded to handle
negative utility.

original dataset. The itemsets are stored in the increasing order of their TWU value using a depth-first
manner. The enumeration tree and connections between 2-itemsets are utilized to accelerate compu-
tations. The pruning strategy, named EUCP (Estimated Utility Co-occurrence Pruning), is utilized to
further maintain the relationship of 2-itemsets. This results the reduction of extended itemsets with
lower utility without the need to reconstruct the utility-list structure.

HUI-list-INS shows high performance compared to Two-phase (Liu et al., 2005) and the state-of-
the-art FHM (Fournier-Viger et al., 2014) in the batch mode and other incremental approaches, namely
FUP-HUI-INS (Lin et al., 2012) and PRE-HUI-INS (Lin et al., 2014) in the dynamic mode, with regards
to the run-time, memory usage, and the generated patterns on the benchmark datasets. The proposed
approach uses the pruning strategy to eliminate the unpromising candidates at the early stage, leading
to high computational speed. It is observed that the proposed algorithm finds HUIs in an incremental
dataset without the need to generate-and-test candidates in a level-wise way. However, the proposed
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Figure 4. Construction process of HUI-trie structure

algorithm requires a significant amount of memory in some cases because it stores more itemsets for
the subsequent incremental datasets.

EIHI: The existing incremental algorithms (Ahmed et al., 2009a; Lin et al., 2014) are very costly in
terms of execution time. To address this issue, Fournier-Viger et al. (2015) proposed an approach named
EIHI (Efficient Increment high utility Itemset miner) to extract HUIs from the incremental datasets. The
main procedure works in the batches of the transactions, inspired by the FHM approach (Fournier-Viger
et al., 2014). It receives input from the dataset along with min_util threshold and utility values. The
proposed approach proceeds to scan the dataset to compute the TWU of each item. It subsequently
recognizes itemsets having TWU, which is no less than min_util. The dataset is scanned to calculate the
TWU values for these items and sorted in ascending order according to their TWU values. The dataset
is again scanned, and the items within transactions are reorganized according to the increasing order of
their TWU values. The utility-list of each item of an itemset is constructed and this creates the EUCS
structure (Fournier-Viger et al., 2014). The depth first search method is used to find the itemsets in a
recursive manner and explores the search space to discover the complete set of HUIs.

The proposed algorithm stores all itemsets in a trie-like structure called HUI-trie. In this structure,
each itemset is represented by a path that originates from the root node and terminates at an interme-
diate or leaf node. Moreover, each node representing the last item of an itemset is associated with the
utility of that itemset. Figure 4 shows the construction process of HUI-trie structure. Firstly, the original
database consists of five transactions and seven items is taken as an input. Then, the user-defined min_util
threshold is set to 30. Secondly, the complete set of HUIs are found. Finally, the HUI-tree structure is
constructed where each item of a HUI is stored alphabetically. The searching of an item in a HUI-trie
structure is efficient because it requires to visit only one path of the tree. The binary search method is
used at each node when searching for the child node corresponding to the given item. EIHI is around
two orders of magnitude faster as compared to the state-of-the-art algorithm HUI-list-INS (Lin et al.
2014) with regards to the run-time under various min_util thresholds. It is observed that EIHI exhibits
greater scalability when it comes to handling a higher number of updates. However, it faces significant
challenges in maintaining patterns within dynamic datasets.

LIHUP: The traditional iHUIM algorithms suffer from excessive candidate generation and multi-
ple dataset scans. These challenges have been effectively mitigated through utility-list-based methods
(Lin et al. 2014; Fournier-Viger et al., 2015). These approaches enable the extraction of HUIs from the
incremental dataset without the need for candidate generation. However, they are required to scan the
dataset twice to determine the optimal order of TWU values, resulting in a time-consuming process.
Yun et al. (2017) proposed an approach, named LIHUP, to mine HUIs from incremental datasets with
just a single dataset scan. It is based on a utility-list structure that does not involve candidate genera-
tion. LIHUP solves the following challenges of the existing utility-list-based iHUIM approaches (Lin
et al. 2014; Fournier-Viger et al., 2015): (1) The concept of overestimation (Liu et al., 2005) causes

https://doi.org/10.1017/S0269888925000013 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000013


26 Rajiv Kumar and Kuldeep Singh

performance degradation. (2) The approaches (Liu & Qu 2012; Fournier-Viger et al., 2014), based on
utility-list structure, scan the dataset twice to mine the HUIs without generating candidates.

The proposed algorithm first builds the global-list data structure during a single dataset scan. It effi-
ciently acquires the same pattern information by reorganizing the existing data structure according to
the optimal sorting order, all without the need for additional database scans. If any new transaction is
included in the previous database, the proposed algorithm scans the included data once, updates and
restructures the data structure as per the TWU ascending order. Then, it mines all HUIs that satisfies
the min_util threshold recursively from the data structure without candidate generation. The global-list
structure includes details about the utility of candidate patterns, which are organized and maintained
within a set of utility-lists based on the ascending order of the TWU value. After the construction and
restructure of the global data structure, the proposed algorithm calculates the minimum utility by multi-
plying the total utility and user-defined threshold. It performs a series of operations to find the promising
candidate pattern from the mining process. These series of operations are based on HUI-Miner (Liu &
Qu, 2012) with utility-lists.

The utility-list is generated for each candidate itemset {ip} with a length of 1. Subsequently, the
algorithm performs recursive mining of all HUIs, eliminating the need for candidates generation.
The utility-list consists of entries that have the utility of patterns in the transactions containing {ip}.
Consequently, the number of entries within the utility-list for {ip} is similar to the number of transac-
tions consisting of {ip} in the given dataset. For each transaction, Td containing {ip}, an entry having
details of the utility of {ip} exists in the following three elements: (1) Transaction TD (TID) of the Td. (2)
Td having {ip} pattern utility represented as u(ip, Td). (3) Remaining utility in the Td after {ip} represented
as ru(ip, Td). The experimental results showed that the proposed LIHUP algorithm works better than the
existing state-of-the-art methods, IHUP (Ahmed et al., 2009a) and HUPID (Yun & Ryang 2014), with
regard to the run-time, memory usage, and scalability for the real and synthetic datasets.

IIHUM: Tree-based iHUIM algorithms (Ahmed et al., 2009a; Yun & Ryang, 2014) are designed to
mine HUIs with less number of candidates and dataset scans. However, these algorithms suffer from
high computation overhead because of the unpromising candidate generation in the mining process.
Moreover, these approaches are not suitable for the large-scale incremental data because this is required
to set the threshold value that may result into the generation of more number of candidate patterns.
Furthermore, these tree-based approaches require two database scans to restructure the tree data struc-
ture which is a time-consuming process. To address these challenges, Yun et al. (2019) proposed an
efficient index-list based algorithm named IIHUM (Indexed-list-based Incremental High Utility pattern
Mining) to effectively mine HUIs without the need of candidate generation. It uses the re-construct
technique to accommodate incremental data with just a single dataset scan. The original dataset is first
scanned to build the global-list structure. The list structures are then reorganized based on the ascending
order of TWU, and the index information is appropriately reset. The proposed method reflects the new
transactions data into the data structures constructed previously without the need to rescan the earlier
processed data. This involves the recalculation of TWU values for items to construct the overall global
structure. The updated data structures are then reorganized based on the modified TWU increasing order.
Subsequently, the user specifies a threshold value, which is used to obtain the results for HUIs for the
current incremental dataset. The proposed approach recursively generates the conditional list data struc-
tures from global data structures. Once all these recursive steps are completed, the user gets the complete
set of HUIs without the need to verify candidates.

A novel data structure, named IIU-List (Incremental Indexed Utility-List), is designed to store the
global data structures in the proposed algorithm. A global IIU-Lists is associated with each item in
the original database. These global IIU-Lists are then restructured according to the ascending order of
TWU, ensuring efficient extraction of HUIs from incremental data. If any new transaction is added to the
original database, the proposed algorithm reads only added part and then reflects back into the previously
constructed global IIU-Lists. The Remaining Utility values are accurately calculated for the computation
of upper-bounds for the IIU-Lists to assess the validity of the respective patterns. The restructuring is
performed to get the utility information of IIU-Lists whenever new transactions are added. Failure to
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update the remaining utility values during the restructuring of the IIU-List can lead to fatal pattern losses.
The current global IIU-Lists are restructured when a request for the mining process comes, then the
proposed algorithm obtains all the HUIs that satisfy the given threshold from the IIU-List data structure.
As the data increases progressively, the low utlity patterns become HUIs and vice-versa. Furthermore,
the min_util threshold may be changed by the users. Therefore, the proposed algorithm maintains and
sorts all the items in the updated incremental database that are stored in the global IIU-Lists regardless
of their TWU values.

The IIHUM algorithm performs well, compared to the state-of-the-art methods FUP-HU (Lin et al.,
2012), HUPID (Yun & Ryang, 2014) and LIHUP (Yun et al., 2017) with regards to the run-time, memory
usage, and scalability for the various min_util thresholds. IIHUM gives a guarantee of stable memory
usage as it does not perform any operations to generate the candidates and to verify them. IIHUM
is highly efficient in extracting HUIs on non-binary incremental datasets, because of the indexed-list
data structures. The proposed algorithm generates IIU-Lists data structures more efficiently during the
recursive process and extracts no candidate patterns, leading to quickly extraction of HUIs.

Id2HUP+: Two-phase iHUIM algorithms suffer from excessive candidate generation that leads to
poor efficiency and scalability issues. On the other hand, one-phase incremental HUIM algorithms (Lin
et al., 2014; Fournier-Viger et al., 2015; Yun et al., 2017) perform costly join operations on the vertical
data structure (Liu & Qu, 2012; Fournier-Viger et al., 2014), which are time-consuming and create bot-
tlenecks in mining efficiency. To resolve these challenges, Liu et al. (2019) proposed an approach named
Id2HUP+ (Incremental Direct Discovery of High Utility Patterns), based on the one-phase paradigm
d2HUP (Liu et al., 2016) to mine for incremental HUI mining. The algorithm proposed four pruning
strategies, namely relevance-based pruning, upper-bound-based pruning, absence-based pruning, and
legacy-based pruning. Relevance-based pruning strategy eliminates the redundant items of a pattern
when exploring the prefix extensions of that pattern. The utility of any prefix extension of a pattern
is no more than the sum of the utility of the full prefix extension of that pattern with respect to every
transaction in that transaction set of the database. This strategy suggests speedily recognizing all of the
extensions of those patterns that are not new to the transactions, are pruned. Upper-bound-based pruning
strategy prunes the prefix extensions of a pattern that do not belong to the HUIs. Absence-based pruning
strategy prunes all the prefix extensions of a pattern that are absent in the incremental databases. This
strategy efficiently determines whether a pattern is a HUIs in the original database or not, resulting in
solving the scalability issues. Legacy-based pruning strategy quickly finds the patterns which are not in
incremental databases and hence can be pruned.

The procedure adopts hash tables to quickly merge the transactions because the hash tables orga-
nize all the utility-lists in such a way that the transactions consist the identical itemsets that are found
in constant time and merge them into one utility-list. A novel data structure named niCAUL (newly
improved Chain of Accurate utility-lists) is designed to efficiently update the dynamic dataset. The pro-
posed niCAUL data structure improves CAUL(Chain of Accurate utility-lists) (Liu et al., 2012; Liu
et al., 2016) for quickly computing the utility-lists by employing the hash tables to significantly merge
the identical transactions and restoration of niCAUL after pseudo projection. The basic scheme revolves
around enumerating patterns through prefix extensions of other patterns. These enumerated patterns are
evaluated using upper-bound-based pruning, leading to a significant reduction in computational effort.
This is useful for efficiently determining the utility of each enumerated pattern and identifying HUIs.
In order to avoid redundant pattern enumeration, an imposed ordering is presented. This ordering enu-
merates the patterns that are of length 1 as the prefix extensions of the empty pattern (represented as
{}), patterns of length 2 as the prefix extensions of length 1 patterns, and so forth. Pattern enumeration
follows a depth-first approach through prefix extensions. The niCAUL data structure is used to represent
transaction sets that are supported by enumerated patterns, leading to effective pruning of the search
space. This indicates that Id2HUP+ visits significantly fewer candidates compared to EIHI (Fournier-
Viger et al., 2015), HUI-list-INS (Lin et al., 2014), and LIHUP (Yun et al., 2017). This is because
niCAUI efficiently computes and quickly updates the dynamic datasets. This is accomplished through
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the merging of identical transactions. Id2HUP+ exhibits the lowest memory consumption due to the
utilization of pseudo-projection for computing the transaction set for each enumerated pattern.

The experimental results showed that Id2HUP+ performs much better than the EIHI (Fournier-Viger
et al., 2015), HUI-list-INS (Lin et al., 2014), and LIHUP (Yun et al., 2017) algorithms with respect to the
execution time, memory consumption, varying IR (Insertion Rate), number of visited candidates, and
scalability on the benchmark datasets. The proposed algorithm is up to 2 orders of magnitude faster than
the benchmark approached on the dense and sparse datasets. It is 3–4 orders of magnitude more efficient
than compared algorithms. The proposed algorithm is 2 times faster as compared to the NoAbsence strat-
egy, while it is up to 2–6 times faster when compared with NoLegancy strategy. It shows that Id2HUP+
is the most efficient and scalable algorithm. This observation is based on the fact that scalability and effi-
ciency are improved if legacy patterns are determined by contrasting the utilities rather than searching
for saved patterns.

IncCHUI: In the literature, various CHUIM (Closed HUIM) algorithms (Wu et al., 2015; Fournier-
Viger et al., 2016; Dam et al., 2018) are designed to efficiently extract CHUIs (Closed HUIs) from
transactional datasets. However, these algorithms cannot deal with incremental datasets where new
transactions are inserted in the original dataset. To solve this issue, Dam et al., (2019) designed an
approach named IncCHUI (Incremental Closed high utility Itemset miner), the first of its kind, to extract
CHUIs from incremental datasets. The authors presented an incremental utility-list structure based on
the traditional utility-list structure (Liu & Qu, 2012). This list structure consists of two traditional utility-
lists that store information about itemset with respect to the original database and an updated database.
The incremental utility-list of an itemset is constructed by intersecting the incremental utility-list of its
subsets without the database scan. Therefore, it requires just one dataset scan to keep the relevant details
of every single item present in the updated dataset. This procedure performs the operations in the linear
time, resulting in a fast pruning process.

The proposed approach is based on the modified traditional utility-list. The updated dataset processes
only those transactions that are newly inserted in the mining process. Furthermore, the proposed method
implements early pruning of itemsets that haven’t been updated in the dataset. Another method is pre-
sented to ensure the integrity of lists by reconstructing them when a new transactions are inserted. The
utility-list of the original dataset and the added transactions are integrated to form a single utility-list
after each mining step. This list is subsequently utilized in another execution process for the next incre-
mented dataset. The proposed algorithm effectively mines CHUIs from incremental datasets by using a
utility-list structure. It scans the original dataset or modified parts only once to generate a list of single
items. A global data structure, named global list is built that contains a set of incremental utility-lists
where each list stores information of one single item in the incremental database. A CHT (Closed Hash
Table) is used to store the discovered CHUIs. During the mining process, when a CHUI of an itemset P is
obtained on the incremental dataset, the algorithm initially checks whether the itemset is already present
in the CHT or not. If the itemset P is already in the CHT, then itemset P is obtained, and the algorithm
proceeds to the original dataset. Subsequently, both its support and utility are updated. Conversely, if
itemset P is not present in the CHT, it is inserted as a new CHUI.

The proposed algorithm outperforms existing methods (Lin et al., 2014; Yun et al., 2017) for several
reasons: (1) The HUI-list-INS algorithm (Lin et al., 2014) used the existing utility-list and constructed
utility-lists of single items separately. The proposed utility-list structure consists of two parts: one is for
the original dataset, and the other for the newly inserted transactions. (2) The proposed algorithm con-
structs the utility-list with a single dataset scan, whereas HUI-list-INS (Lin et al., 2014) required to scan
the dataset twice to build its utility-list. (3) The proposed algorithm employs the fast and incremental
utility-list construction procedure, contrasting with HUI-list-INS (Lin et al., 2014) and IHUP (Ahmed
et al., 2009a) which followed older and more costly construction methods for utility-lists. (4) The pro-
posed method uses the modified utility-list to prune the candidates early. (5) A hash table is introduced
to modify or add unique CHUIs in the mining process. The proposed method is more efficient than that
of EIHI (Fournier-Viger et al., 2015). The proposed algorithm maintains the rank order of single items
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to preserve the HUI-tree in the original dataset. It uses the following three stages: (1) During the first
stage, the original dataset and the newly added transactions are scanned. If required, the global list of one
item and the closed hash table CHT are initialized. Subsequently, it establishes the overall order of the
items. (2) During the second stage, the global list is stored according to the updated item order derived
from the first stage. Subsequently, the list is validated through the appropriate procedure. (3) During
the final stage, a recursive search technique is performed to effectively extract CHUIs. The resulting
CHUIs are then appropriately stored in a closed table, along with the corresponding maintenance rule.
IncCHUI outperforms the state-of-the-art batch algorithms, including CHUI-Miner (Wu et al. 2015),
CLS-Miner (Dam et al., 2018), and EFIM-Closed (Fournier-Viger et al., 2016), in terms of runtime,
min_util value, the number of added transactions, and scalability for both real and synthetic datasets.
However, it consumes a lot of memory as compared to benchmark algorithms on some datasets.

E-HUIM: The iHUIM algorithms (Ahmed et al., 2009a; Lin et al., 2012; Lin et al., 2014) are pro-
posed to extract HUIs from incremental datasets. However, the original dataset needs to be re-scanned to
maintain and update the HUIs. Furthermore, these Apriori-based approaches suffer from a large number
of candidate generations and multiple dataset scans. To address these issues, Pushp and Chand ( 2021)
proposed an efficient algorithm named E-HUIM (Extended HUI-Miner) for mining HUIs from incre-
mental datasets. The algorithm first scans the dataset to identify the single items that have high utility
by constructing the utility-lists (Liu & Qu, 2012) and EUCS data structure (Fournier-Viger et al., 2014).
Each utility-list consists of the following three things for the transaction under consideration: (1) TID
(Transaction ID), (2) iutil (Utility of itemset), and (3) rutil (Remaining utility). EUCS is constructed
using an upper triangular matrix containing TWU values for itemsets.

The proposed approach takes the extensions of the itemsets that are promising candidates for HUIs
mining. If the sum of the utility values of an itemset is no less than min_util, then it is considered as
HUI and inserted into a trie-structure (Fournier-Viger et al., 2015). The itemset is further searched for
the extensions only if the sum of iutil and rutil is no less than min_util. It uses EUCS data structure to
ensure that only those pairs of itemsets are considered for the extensions that have TWU values more than
min_util. The EUCS data structure is based on the property which states that if the TWU of an itemset
is less than min_util, then that itemset and its super-sets are to low utility itemsets. However, these
itemsets may lead to overestimation and loss of accuracy in the final results. Therefore, a novel pruning
technique is designed to prune the unpromising candidates to achieve optimization and improved mining
efficiency. It adds the itemset to the extensions if and only if its utility is no less than min_util. Moreover,
the utility value is directly obtained from the utility-list of the itemset, resulting in the improved mining
process without extra memory usage and run-time. E-HUIM utilizes the EIHI algorithm (Fournier-
Viger et al., 2015) to handle incremental datasets. The experimental results showed the effectiveness of
the proposed algorithm compared to the state-of-the-art EIHI (Fournier-Viger et al., 2015) method in
terms of execution time, memory usage, number of processed transactions, and new HUI count from
incremental datasets. The proposed algorithm demonstrated a substantial 60 percent improvement over
the EIHI approach.

Discussion
We have discussed the utility-list-based iHUIM algorithms to find the highly profitable itemsets in
expanding datasets. However, several issues need to be addressed: (1) Additional utility-lists are needed
to incorporate the added data into the original datasets, incurring high costs. (2) Variations in the per-
formance of the proposed algorithms can occur as the dataset size changes. (3) These algorithms work
only on the incremental datasets; however, there are lots of issues that occur when the transactions are
deleted or modified in a dynamic environment. Table 16 gives the overview of utility-list-based iHUIM
algorithms, while Table 17 presents the theoretical aspects of utility-list-based HUIM algorithms from
the incremental datasets.
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Table 16. Characteristics and theoretical aspects of the utility-list-based approaches

Algorithm Data structure Mining Pruning strategy State-of-the-art algorithms Base algorithms Year
HUI-list-INS (Lin
et al., 2014; Lin
et al., 2015)

Utility-list
and EUCS

HUIs EUCP Two-phase (Liu et al., 2005),
FHM (Fournier-Viger et al.,
2014), FUP-HUI-INS (Lin
et al., 2012) and
PRE-HUI-INS (Lin et al.,
2014)

HUI-Miner (Liu & Qu,
2012) and FHM
(Fournier-Viger et al., 2014)

2015

EIHI (Fournier-Viger
et al., 2015)

EUCS and
HUI-trie

HUIs TWU HUI-list-INS (Lin et al.,
2014)

FHM (Fournier-Viger et al.,
2014)

2015

LIHUP (Yun et al.,
2017)

Utility-list HUIs TWU HUPID (Yun & Ryang, 2014)
and IHUP (Ahmed et al.,
2009a)

HUI-Miner (Liu & Qu,
2012)

2017

IIHUM (Yun et al.,
2019)

IIU-List HUIs TWU FUP-HU (Lin et al., 2012),
HUPID (Yun & Ryang, 2014)
and LIHUP (Yun et al., 2017)

2019

Id2HUP+ (Liu et al.,
2019)

niCAUL HUIs Relevance-based,
Upper-bound-
based,
Absence-based
and Legacy-based

EIHI (Fournier-Viger et al.,
2015), HUI-list-INS (Lin
et al., 2014; Lin et al., 2015)
and LIHUP (Yun et al., 2017)

d2HUP (Liu et al., 2012; Liu
et al., 2016)

2019

IncCHUI (Dam
et al., 2019)

Global
utility-list and
CHT

CHUIs TWU CHUI-Miner (Wu et al.,
2015), CLS-Miner (Dam
et al., 2018) and
EFIM-Closed (Fournier-Viger
et al., 2016)

HUI-Miner (Liu & Qu,
2012)

2019

E-HUIM (Pushp &
Chand, 2021)

Utility-list
and EUCS

HUIs TWU EIHI (Fournier-Viger et al.,
2015)

HUI-Miner (Fournier-Viger
et al., 2015) and FHM
(Fournier-Viger et al., 2014)

2021
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Table 17. Pros and cons of the utility-list-based approaches

Algorithm Outcomes Pros and Cons Future directions
HUI-list-INS
(Lin et al.,
2014; Lin
et al., 2015)

The proposed
algorithm maintains
and preserves the
utility-list structures
to mine HUIs with
transaction insertion

The proposed algorithm identifies
HUIs in the incremental dataset
without the need for level-wise
candidate generation. However, it
needs more memory for the
itemsets in some cases for the later
transaction’s insertion in the
dataset. Furthermore, it requires
two dataset scans to identify the
optimal order of TWU values

More
memory-efficient
techniques could be
applied for
compressing the
original dataset with
transaction insertion.
There is still room to
improve the pruning
strategies to
effectively reduce the
search space

EIHI
(Fournier-
Viger et al.,
2015)

An efficient algorithm
is designed to
maintain HUIs in the
dynamic dataset

EIHI is always quicker than
HUI-list-INS Lin et al. (2014).
However, it is still a challenge to
maintain the patterns in the
updated datasets. It needs to
perform additional operations to
construct new utility-lists for the
new data to merge it into the
original datasets. Furthermore, it is
costly to insert HUIs into the
HUI-trie structure because the
order of single items changes due
to added transactions

The HUSPs and
sequential rules could
be explored for
dynamic datasets

LIHUP (Yun
et al., 2017)

LIHUP builds a
global list-based
structure with a single
scan of the original
dataset and
restructures the data
structure by using the
sorting lists according
to the increasing TWU
values

LIHUP scans the added data once
to update its data structure through
a restructuring process. However,
as the dataset size grows, the
execution time and memory usage
of the algorithm also increase.
Furthermore, the remaining utility
upper-bound is still loose and
costly to prune

Efficient structures,
such as
indexed-list-based
data structures, could
be further designed
for enhancing mining
efficiency

IIHUM (Yun
et al., 2019)

An efficient iHUIM
algorithm and novel
indexed-list-based
structure are proposed
to incrementally mine
HUIs without the
need for candidate
generation

IIHUM extracts HUIs without the
need to verify the candidates

The proposed
algorithm could be
further applied to the
sliding-window and
damped-window
models of stream
pattern mining
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Table 17. Continued

Algorithm Outcomes Pros and Cons Future directions
Id2HUP+ (Liu
et al., 2019)

The authors propose
Id2HUP+ algorithm,
adopt one-phase
paradigm, for
incremental mining of
HUIs from
incremental datasets

Id2HUP+ is one to three times
quicker than the state-of-the-art
methods, EIHI (Fournier-Viger et al.,
2015), HUI-list-INS (Lin et al.,
2014) and LIHUP (Yun et al., 2017)

Further investigation
can focus on
transaction deletion in
dynamic datasets,
taking into account
both relative and
absolute min_util
thresholds

IncCHUI
(Dam et al.,
2019)

The authors propose
an incremental
utility-list structure
that is built and
restructured with a
single dataset scan

IncCHUI outperforms the existing
methods (Wu et al., 2015;
Fournier-Viger et al., 2016; Dam
et al. 2018) concerning the run-time,
number of added transactions, and
scalability as the dataset size
increases. However, it exhibits
inefficient memory utilization on
some benchmark datasets

More effective
pruning strategies
could be further
designed to extract
HUIs in dynamic
datasets

E-HUIM
(Pushp &
Chand, 2021)

An efficient
algorithm, based on
novel mining
strategies, is proposed
to generate and
maintain the HUIs
from incremental
datasets

The proposed algorithm shows a 60
percent improvement in performance
compared to EIHI (Fournier-Viger
et al., 2015)

More efficient data
structures could be
further designed to
enhance storage and
accelerate the mining
process

3.5 Pre-large-based approaches
The utility-list-based iHUIM algorithms perform better than the two-phase iHUIM, pattern-growth-
based iHUIM, and projection-based iHUIM approaches concerning the number of dataset scans,
efficient data structures, pruning strategies, number of processed candidates, and scalability in incre-
mental environments. Nevertheless, the performance of the proposed algorithms exhibits substantial
variability as the dataset size changes. Furthermore, when new data is added into the original dataset,
the updated portion of the dataset needs to be scanned each time, resulting in significant time consump-
tion. To solve the issues, pre-large-based iHUIM approaches (Lin et al., 2014; Lee et al., 2018; Lin et al.,
2020; Wu et al., 2020c; Wu et al., 2020b) are developed to extract useful knowledge from incremental
datasets. The pre-large notion (Hong et al., 2001) is employed to avoid dataset scans in some cases when
newly added data is inserted into the original dataset. In this sub-section, we provide an in-depth analysis
about pre-large-based iHUIM approaches for the incremental datasets.

PRE-HUI: The pre-large notion (Hong et al., 2001) is introduced to identify pre-large itemsets using
upper-bound and lower-bound thresholds to prune unpromising candidates, resulting in reduced dataset
scans. However, this approach incurs high computation and maintenance costs associated with dataset
scans. The FUP-HUI algorithm (Lin et al., 2012), based on the FUP method (Cheung et al., 1996)
discovered HUIs in an incremental way. However, it required more number of database scans if some
itemsets are small in the original database, but large in a new added transaction. To solve the challenges,
Lin et al. (2014) developed a Two-phase based incremental mining approach called PRE-HUI, based
on the pre-large notion (Hong et al., 2001). This approach is also designed to efficiently discover HUIs
from incremental datasets. The DCP property of Two-phase approach (Liu et al., 2005) is also utilized to
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Figure 5. Process of the proposed algorithm for transaction insertion

decrease the number of candidates to accelerate the mining process. When new transactions are inserted
in the original database, the proposed approach updates the obtained HUIs. The candidate 1-itemsets
are first obtained with their TWUs and utility values. In PRE-HUI, a limited number of itemsets are
re-scanned to maintain HUIs, reducing computational overhead compared to the batch method (Liu
et al., 2005). Additionally, upper-bound and lower-bound utility thresholds (Su and Sl) are employed to
identify large and pre-large utility itemsets, respectively, leading to the optimization of the mining pro-
cess. PRE-HUI efficiently manages both HTWU (High TWU) and PTWU (Pre-large TWU) to enhance
the run-time of the mining process. Whenever new transactions are inserted into the original dataset,
PRE-HUI categorizes itemsets into three parts, with a total of nine cases catering to large, pre-large, or
small TWU in the original dataset. Each of these parts is managed individually to maintain the HUIs
discovered thus far. Simultaneously, the TWUs and AU (Actual Utility) values of the generated can-
didates undergo updates concurrently. The candidate 2-itemsets are obtained from HTWU and PTWU
candidate 1-itemsets. The same procedure is repeated until all HUIs are obtained.

Figure 5 shows the process of the proposed algorithm for the transaction insertion. In Step 1, the
original database includes eight transactions and five items. The items A, B, C, D and E have profit values
6,2,15,7 and 10, respectively. The total actual utility of all the transactions is 350 in the original database.
The values of Su and Sl are set 30% and 20%, respectively. In Step 2, both HTWU and PTWU itemsets
are calculated based on the value of Su and Sl in the original database. In Step 3, four transactions t9

to t12 are inserted into the original database. The actual utility of these new transactions is 210. The
total actual utility of the updated database is 350 + 210 = 560. In Step 4, HTWU 1-itemsets and PTWU
1-itemsets are calculated based on the nine cases of the original and updated databases. For example, an
itemset {A} is put into a small itemset because its ratio is 108/560 = 19.30%. On the other hand, {E} is
put into pre-large itemset because its ratio is 162/560 = 28.90%. However, both itemsets are HTWU in
the original database. There are four cases: (1) If the ratio value of an 1-itemset is more than that of Su,
then it is considered as large itemset. (2) If it is a smaller than Sl, then it will be small itemset. (3) If it is
between Su and Sl, then it will be pre-large itemset. (4) The remaining 1-itemsets are added to the re-scan
itemsets which have larger value than that of Su. Note that the remaining 1-itemsets are small itemsets in
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the original database. In Step 5, all the HTWU 1-itemsets and PTWU 1-itemsets are obtained along with
their utility values. In Step 6, the same procedure is applied to obtain the complete set of HTWU and
PTWU itemsets of the updated database. In the final Step, the HUIs are calculated based on the value of
actual utility. For example, the itemset {B} is low-utility itemset because 44/560 = 7.90% which is less
than Sl. On the other hand, the itemset {BCD} is HUI because 173/560 = 30.90% which is more than
Su. Experiments proved that PRE-HUI performs better than FUP-HUI (Lin et al., 2012) and Two-phase
(Liu et al., 2005) with regard to the run-time for the incremental datasets. The reason is that the proposed
algorithm keeps both HTWU and PTWU to speed-up the running time. More PTWU can reduce more
runtime when compared to the FUP-HUI and Two-Phase. Furthermore, PRE-HUI has been formally
proven to be both complete and correct. However, the memory consumption of PRE-HUI is increased
when the threshold value is decreased.

PIHUP: Lee et al. (2018) developed an efficient method called PIHUP (Pre-large Incremental High
Utility Patterns), based on pre-large notion (Hong et al., 2001) to efficiently extract patterns from incre-
mental datasets. During the first database scan, it builds initial-tree, header-list and tail-list. The tree is
lexicographically ordered (named PIHUPL-tree). The header stores TWU of 1-itemsets, while tail-list
creates links pointing to the nodes of PIHUPL-tree. Every node displays the most recent items from the
newly added transactions. After constructing the tree, the header is rearranged in descending order based
on TWU. After this, PIHUPL-tree is reorganized. The tail-list signifies that transactions with identical
items constitute a single path. After obtaining a path, the extracted data is deleted from the tree. The
path is rearranged and inserted into the tree without establishing a link from the tail-list. The mining
process employs a divide-and-conquer method to extract large and pre-large candidate patterns from the
PIHUPL-tree. A pattern tree is constructed from these candidate patterns. This pattern tree consists of
the actual utility value of patterns. The patterns are categorized into three types: (1) large, (2) pre-large,
and (3) small. Two values, namely upper-threshold (Su) and lower-threshold (Sl), are used to measure
the threshold. Su is used to extract HUIs, whereas Sl is used to shrink the process of re-scanning when
incremental data is processed. After building the tree, the headers are arranged in descending order
according to TWU. Subsequently, the tree is reorganized in alignment with the sorted header. The pat-
terns can be located more quickly in comparison to utilizing the list. The generated pattern tree is used
to mine the HUIs.

The mining process is carried out by systematically examining the prefix pattern one at a time. It
builds the novel conditional pattern trees derived from the respective prefixes by selecting the items
from the header sequentially. If the TWU value of an item is greater than or equal to Su × tu(D), where
tu(D) is a transaction in the database D, the item is stored as a large pattern, otherwise, it is recorded as
pre-large pattern. The au (actual utility) values are computed and associated with the patterns during the
database scan conducted after extracting all large and pre-large patterns. If au values of the generated
large patterns is no less than Su × tu(D), then these patterns are HUIs. PIHUP performs better than
PRE-HUI (Lin et al. 2014) method concerning execution time, memory consumption, the number of
itemsets, and scalability. PIHUP reduces redundant operations, resulting in a significant improvement in
mining efficiency. However, it employs the anti-monotone property to generate candidate patterns. Even
though overestimation techniques (Liu et al. 2005) are employed to avoid the anti-monotone property,
they may still generate unnecessary candidate patterns.

PRE-HAUIMI: The traditional HUIM algorithms suffer from two major problems: (1) the need to re-
scan the dataset and (2) maintaining itemsets in the updated dataset. To address these issues, a level-wise
HAUIM algorithm (Wu et al., 2020a) is proposed, adopting pre-large notion (Hong et al., 2001), to mine
HAUIs in incremental datasets. Nevertheless, it incurs significant computational costs and lacks a the-
oretical proof of correctness and completeness for maintaining HAUIs throughout the mining process.
To solve the challenges, Lin et al. (2020) designed PRE-HAUIMI, relies on AUL (Average Utility-List)
structure and pre-large notion (Hong et al., 2001) of HAUIM, to find HAUIs from incremental datasets.
The PAUUBI (Pre-large AUUB Itemsets) are utilized to show the correctness and completeness of dis-
covered HAUIs. The AUL framework is implemented for the 1-HAUUBIs, and serves as a repository
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for the 1-PAUUBIs to aid in maintenance tasks. A join operation can be conveniently applied to generate
k-itemsets of HAUIs, thereby surpassing level-wise methods.

The algorithm effectively manages the sets of 1-HAUUBIs and 1-PAUUBIs based on AUL structure
and pre-large concept (Hong et al., 2001). Furthermore, 1-PAUUBIs can serve as a buffer, reducing cer-
tain conditions, For example, making a direct transition from HAUUBI to minor patterns and vice-versa.
The algorithm sets Su as upper-utility threshold and Sl as lower-utility threshold for PRE-HAUIMI. The
AUL structure not only holds the 1-HAUUBIs, but also the 1-PAUUBIs. Although, it consumes extra
memory, but it significantly reduces the number of database scans. If AUUB is no less than Su, then it
is represented as 1-HAUUBI. If the value of AUUB is lies between Sl and Su, then it is considered as 1-
PAUUBI. The AUL structure significantly improves efficiency of the mining process. The maintenance
phase includes a safety bound to eliminate the necessity for dataset re-scans.

To determine k-itemsets (k ≥ 2) of promising candidates, the enumeration tree is built to reduce join
operations by depth first search (DFS) method. The process of DFS is performed to decide whether to
proceed with the superset (k + 1)-itemsets of k-itemsets or not. An iterative join process is performed to
create the AUL structure of k-itemsets to meet the requirement of their superset. This process is applied
to all the remaining candidates. In this way, the final HUAIs are obtained by scanning the database.
The experiments proved that PRE-HAUIMI outperforms HAUI-Miner (Lin et al., 2016), IHAUPM
(Incremental HAUPM) (Lin et al., 2018), and FUP (Cheung et al., 1996) for the execution time, memory
consumption, access patterns, and scalability. However, in some cases, where there are a significant num-
ber of processed itemsets within newly inserted transactions, constructing an AUL structure specifically
for itemsets can be time-consuming, resulting in a high computational cost.

APHAUP: Wu et al. (2020b); Wu et al. (2020c) proposed an approach named APHAUP (Apriori-
based HAUP with a pre-large concept), relies on the pre-large notion (Hong et al., 2001) that is utilized
to update the HAUIs obtained in the newly added transactions. APHAUP uses the pre-large concept
to modify the new HAUIs discovered and decreases the time of the re-scanning process. It uses two
novel upper-bounds to minimize the number of candidates, resulting in increased mining performance.
A linked-list is introduced for incremental insertion of transactions, with each round requiring a max-
imum of one-time scanning. This structure ensures to decrease in the multiple database scans during
the maintenance process. APHAUP includes two distinct cases: (1) First, it utilizes pre-large notion,
which is performed for the incremental process. (2) Second, when the dataset dimension is expanded
with additional transactions, necessitating a re-scan of the whole dataset.

A strict upper limit, referred to as pub (partial upper-bound), is introduced to reduce the upper-bound
utility value of the itemsets. Also, a smaller upper-bound, named lpub is designed to decrease the size
of candidates in the search space. The pmuub (partial maximal utility upper-bound), which is a tighter
upper-bound than the AUUB, is designed to reduce the size of the component itemsets. Additionally, a
sub-itemset called hpmuubi (High pmuub itemset) is introduced, which has a utility threshold higher
than that of pmuub. The proposed algorithm selects a subset from hpmuubi, called lhpmuubi (lead-
pmuub), and this selection is made using APHAUP. This lhpmuubi subset is highly efficient in reducing
the size of candidate itemsets. Experimental results proved that APHAUP with lead-pmuub can decrease
the run-time significantly when updating the obtained HAUIs as contrast to APHAUP with pmuub in
dense datasets. Furthermore, APHAUP with pmuub is more than the number of determined candidates.
It signifies that pre-large notion has great potential to increase the mining performance of HAUIs.

PIHUP-MOD: The utility pattern is quite useful in analyzing the time-series data in the IoT envi-
ronment, where transaction modifications occur in dynamic datasets. The Apriori-based method using
pre-large notion (Lin et al., 2015), needs to scan the database continuously, leading to taking lots of time
when considering all cases to extract the pattern. To deal with the problems, Yun et al. (2021) developed
tree-based approach called PIHUP-MOD (Pre-large-based Incremental HUIs mining for transaction
MODification). This algorithm uncovers HUIs within the context of modified datasets. The PIHUP-
MODL-tree data structure (where T stands for transaction) is designed to extract the pre-large and large
patterns for the mining process. A global PIHUP-MODT-tree is formed by scanning the database once.
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Each transaction is in lexicographic order and inserts into the global PIHUP-MODT-tree with their TWU
value.

PIHUP-MOD includes three steps: (1) Firstly, during the full-scan step, the proposed algorithm scans
the original dataset and builds the PIHUP-MODT-tree data structure. (2) Secondly, during the mining
step, it extracts pre-large and large patterns from PIHUP-MODT-tree. Afterward, it generates a new
pattern tree based on the TWU value and inserts it into the tree. It re-scans the original dataset to find
the actual HUIs in the tree, which becomes the current pattern tree. (3) Finally, during the modification
step, if there is any modification in the records, then it recalculates the utility values and updates the
data structure. Subsequently, a new pattern tree is reconstructed for the whole dataset by scanning only
the modified records. The proposed algorithm discovers the actual HUIs within the current pattern tree
using the whole modified dataset. PIHUP-MOD performs better than UP-Growth+ (Tseng et al., 2013)
and PRE-HUI-MOD (Lin et al., 2015) concerning the run-time, memory consumption, and scalability
for dense and sparse datasets. However, it is difficult to set two thresholds Su and Sl of pre-large concept
(Hong et al., 2001) for efficient mining.

PIHUPM: The existing pre-large-based HUIM algorithm, named PIHUP (Lin et al., 2014), relies
on Apriori method or utilized tree structure. However, generating a large number of candidate patterns
requires a substantial amount of time. Moreover, mining the desired patterns necessitates additional
scans of the database. To overcome these problems, Kim et al. (2023) developed an efficient pre-large-
based approach called PIHUPM, first of its kind, to extract the HUIs without the need of candidate
generation and additional database scans from the incremental database. The novel list data struc-
ture, named PIHUP-List, is developed to extract HUIs when new transactions are added to incremental
database. PIHUP-List is divided into the following two lists: (1) During the database scan, a global
PIHUP-List is generated to store data for 1-length items. (2) Combining two patterns results in the cre-
ation of a conditional PIHUP-List, which stores the data of patterns with a length greater than 1. The
proposed PIHUP-List significantly reduces the number of database scans needed to produce the desired
results. The PIHUP-List constructs the global PIHUP-List by scanning the original database just once.
The global PIHUP-List is maintained to mine the large and pre-large patterns. The PIHUP-List is deleted
after the completion of the mining process to utilize the memory in an efficient way. The DFS method
is used for efficient memory consumption and pattern expansions.

PIHUPM includes the following four steps: (1) Construction: During this step, global list are con-
structed as per the lexicographic order when the original database is scanned. (2) Reconstruction: In this
step, the previously configured global list structures are arranged in ascending order according to TWU
value. (3) Mining: During this step, the large and pre-large patterns are obtained. (4) Pattern tree update:
During this step, HUIs are obtained from the pattern tree. The proposed algorithm employs an improved
pattern classification approach based on the actual utility calculation to efficiently manage the large and
pre-large patterns. The algorithm suggested here employs a DFS-based pattern extension method incor-
porates pruning techniques for unpromising patterns and utilizes compact utility information storage to
attain efficient and accurate patterns in a dynamic environment. The proposed approach is compared
with PIHUP (Lin et al., 2014), LIHUP (Yun et al., 2017), and EHMIN (Kim et al., 2022), concerning
the run-time, threshold values, memory consumption, and scalability from benchmark datasets. The out-
comes demonstrated the efficiency of the proposed algorithm in comparison to state-of-the-art methods.
The proposed approach is more suitable for real-world problems. However, it takes more time during
the re-scan process. Moreover, it takes more parameters to obtain the desired patterns.

Discussion
We have discussed in-depth the pre-large-based iHUIM algorithms to extract high utility information
by using pre-large notion that avoids to re-scan the updated dataset in some cases when the new data is
inserted into the original dataset. However, two thresholds, Su and Sl need to be maintained, which is
difficult to set for the users. In some cases, the newly added data is very large compared to the original
dataset, leading to a degradation in mining performance. Table 18 outlines the detailed description of
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Table 18. Characteristics and theoretical aspects of the pre-large-based approaches

Algorithm Data structure Mining Pruning strategy State-of-the-art methods Base methods Year
PRE-HUI (Lin et al.,
2014)

HUIs HTWU & PTWU Two-phase (Liu et al.,
2005) & FUP-HU (Lin
et al., 2012)

Two-phase (Liu et al.,
2005) & Pre-large (Hong
et al., 2001)

2014

PIHUP (Lee et al.,
2018)

Pattern tree &
PIHUPL-tree

HUIs TWU PRE-HUI (Lin et al., 2015) Pre-large (Hong et al., 2001) 2018

PRE-HAUIMI (Lin
et al., 2020)

AUL HAUIs HAUUBI &
PAUUBI

HAUI-Miner (Lin et al.,
2016), IHAUPM (Lin et al.,
2018) & FUP (Cheung et
al., 1996)

HAUI-Miner (Lin et al.,
2016) & Pre-Large (Hong
et al., 2001)

2020

APHAUP (Wu et al.,
2020c; Wu et al.,
2020b)

HAUIs pmuub,
hpmuubi &
lhpmuubi

APHAUP [Self] Apriori (Agrawal et al.,
1993) & Pre-large (Hong
et al., 2001)

2020

PIHUP-MOD (Yun
et al., 2021)

PIHUP-
MODT-tree

HUIs TWU UP-Growth+ (Tseng et al.,
2013) & PRE-HUI-MOD
(Lin et al., 2015)

Pre-large (Hong et al., 2001) 2021

PIHUPM (Kim et al.,
2023)

PIHUPM-list HUIs TWU PIHUP (Lin et al., 2014),
LIHUP (Yun et al., 2017) &
EHMIN (Kim et al., 2022)

Pre-large (Hong et al., 2001) 2023
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pre-large-based iHUIM algorithms. Table 19 highlights the theoretical aspects of pre-large-based HUIM
approaches from the incremental datasets.

4. Summary
Incremental data mining has emerged in recent years because the conventional HUIM algorithms are
tailored for static datasets and encounter significant performance issues when handling incremental data.
We provide an in-depth survey that falls into mainly four categories of iHUIM approaches: two-phase-
based, projection-based, utility-list-based, and pre-large-based.

The IUM (Yeh et al., 2008) and FIUM (Yeh et al., 2008) algorithms are designed to identify itemsets
with high temporal utility. IUM is a Two-phase algorithm (Liu et al., 2005), and FIUM belongs to the
ShFSM category (Li et al., 2005c). FIUM uses the transaction-weighted downward closure property
(Liu et al., 2005). ITPAU (Hong et al., 2009a) comes after FIUM and builds up on it. ITPAU is more
efficient and is also implemented as a Two-phase method. IHUP (Ahmed et al., 2009a) proposed three
tree structures. IHUPL-Tree skips the functioning operations; IHUPTF-Tree relies on the decreasing order
of transaction frequency; and IHUPTWU-Tree relies on the decreasing order of TWU values. It requires a
maximum of two dataset scans to find HUIs. IIUT (Ahmed et al., 2009b) proposes IIUT-Tree, which is
based on the item’s appearance order. This approach follows a pattern-growth method and only requires
two dataset scans. Tree structures prove highly effective and efficient in the extraction of HUIs. Then,
FUP-HUI (Lin et al., 2012) is introduced, which is based on the FUP method (Cheung et al., 1996).
This approach demonstrates faster performance in contrast to Two-phase method (Liu et al., 2005) of
batch mining. PRE-HUI algorithm (Lin et al., 2014) relies on pre-large notion (Hong et al., 2001).
The algorithm divides the itemsets into a total of nine cases, taking into account both upper-bound and
lower-bound utility. This approach outperforms FUP-HUI (Lin et al., 2012).

HUI-list-INS (Lin et al. 2014) is built upon HUI-Miner (Liu & Qu, 2012), employing it to construct
utility-list structures. The EUCS structure is utilized to accelerate mining performance. The EIHI algo-
rithm (Fournier-Viger et al. 2015) is based on HUI-list-INS (Lin et al., 2014) and is much faster than its
predecessor. The iCHUM algorithm (Zheng & Li, 2015) introduces a tree structure known as iCHUM-
Tree, which is based on TWU values. It performs better than other algorithms, especially when a large
number of transaction items are concerned. HUPID-Growth (Yun & Ryang, 2014) utilizes the HUPID-
Tree structure, which is built with only a single dataset scan. This algorithm rectifies the problem of
overestimated utilities that can occur in other local trees.

HUI-list-INS (Lin et al., 2014) adopts a memory-based incremental approach, outperforming the
FHM algorithm (Fournier-Viger et al., 2014). It stores items from both HTWUIs and non-HTWUIs,
eliminating the need for re-scanning the dataset during transaction insertions. In IncUSP-Miner (Wang &
Huang, 2016), the extra sequences are removed that are not high utility in contrast with the prevailing
HUSP mining approaches. A candidate pattern tree data structure is introduced in IncUSP-Miner. A
compressed node structure is presented to keep the details of corresponding sequences to avoid com-
putations. MUAP (Shao et al., 2016) is based on frequency and utility concepts. It follows the global
pruning strategy, and patterns are selected that have the highest weighted values. IHUI-Miner (Guo &
Gao, 2017) uses the IHUI-Tree data structure. This algorithm does not generate any candidate itemsets.
Three steps are followed to compute HUIs in the case when the prefix utility is no less than min_util.
After verification of itemsets, IHUI-Tree needs to be updated. On the other hand, LIHUP (Yun et al.
2017) efficiently processes data with just a single dataset scan. This approach uses a list structure and
entirely avoids candidate generation. It adeptly addresses the overestimation concept employed by FP-
Growth (Han et al., 2000) and Apriori-based algorithms (Agrawal et al. 1993). The optimized sorting
order is determined post the construction phase. It follows the TWU descending order and performs
better than HUPID (Yun & Ryang, 2014) and IHUP (Ahmed et al., 2009a) algorithms, primarily due to
its efficiency, which require only a single dataset scan.

IMHAUI (Kim & Yun, 2017) uses a compact tree structure with a pattern-growth approach. It adopts
the path-adjusting method to maintain the compression of the tree, adhering to the descending order
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Table 19. Pros and cons of the pre-large-based approaches

Algorithm Outcomes Pros and Cons Future directions
PRE-HUI (Lin
et al., 2014)

The proposed method
efficiently maintains and
modifies the obtained HUIs
by integrating and updating
the Two-phase approach
(Liu et al., 2005) and
pre-large concepts (Hong
et al., 2001)

The DCP property (Liu
et al., 2005) is employed to
reduce the size of
candidates by decreasing
the computational time of
the dataset scan

The transaction deletion
and transaction update
could be further
explored to design more
efficient methods to
maintain the relevant
information in the
updated dataset

PIHUP (Lee
et al., 2018)

An efficient
pre-large-based method is
designed to extract HUIs
from a dynamic
incremental data stream by
using a pattern tree and the
PIHUPL-tree data structure

The proposed algorithm
outperforms PRE-HUI
(Lin et al., 2015) in terms
of performance. However,
it follows the candidate
generation-and-test
approach, which leads to
the generation of a
considerable number of
irrelevant candidates

The pre-large-based
HUIM on data streams
could be designed
without the need to
generate any candidate

PRE-HAUIMI
(Lin et al.,
2020)

The proposed approach
addresses the incremental
HAUPM problem with
transaction insertion by
using the pre-large concept
(Hong et al., 2001) and
AUL structure

PRE-HAUIMI handles the
sets of 1-HAUUBIs and
1-PAUUBIs efficiently by
adopting the AUL
structure. However, it
incurs significant
processing time when
dealing with a large
number of itemsets in
newly inserted
transactions, resulting in
higher computational costs

The pre-large concept
(Hong et al., 2001) has
the potential for
extended application in
various domains and
applications in the field
of knowledge discovery

APHAUP (Wu
et al. 2020c;
Wu et al.
2020b)

The authors design an
incremental transaction
insertion algorithm based
on the pre-large concept
(Hong et al., 2001) and
Apriori (Agrawal et al.,
1993) for HAUI mining

The proposed
upper-bounds significantly
prune the unpromising
candidates at an early
stage, resulting in a
substantial reduction in the
search space

The pre-large concept
could be further used for
broader applications in
various domains of data
mining. Furthermore, it
can be effectively
applied to transaction
deletion and transaction
modification tasks

PIHUP-MOD
(Yun et al.,
2021)

An efficient tree-based
pre-large HUIM algorithm
is proposed to mine HUIs
from the modified datasets
by utilizing the pre-large
concept (Hong et al., 2001)
and a novel tree data
structure

The proposed algorithm
outperforms the
Apriori-based methods
(Lin & Hong 2014; Lin
et al., 2015). However, it is
difficult to set two
thresholds for users

The concept of a time
window in real IoT
(Internet of Things) data
could be considered for
future applications
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Table 19. Continued

Algorithm Outcomes Pros and Cons Future directions
PIHUPM
(Kim et al.,
2023)

An efficient list-based
pre-large HUIM algorithm
is proposed to mine the
HUIs from the increment
databases without the need
for candidate generation
and extra database scans

The proposed algorithm
performs efficient pattern
expansion and memory
usage by adopting the
DFS-based method.
However, it requires more
time for database
re-scanning and a greater
number of parameters to
attain the specified
thresholds

An improved re-scan
condition could be
designed to obtain
interesting patterns in
the real-world
environment

of AUUB. The mining process consists of three functions. It outperforms other algorithms in terms of
performance, although the validation of candidate itemsets remains a time-consuming task. IMHAUI
(Kim & Yun, 2017) increases the time required by recursively attracting conditional pattern bases. To
deal with this issue, FIMHAUI (Yildirim & Celik, 2018) is presented. A novel data structure named
miHAUI-Tree is presented, which maximizes the node-sharing effect. Information is exclusively stored
on the leaf nodes, and identical transactions are merged. Although it performs more efficiently than
IMHAUI (Kim & Yun, 2017), it still needs a validation phase to determine actual HAUIs. IncUSP-
Miner+ (Wang & Huang, 2018) is used for incremental mining of HUSPs. A new data structure, TSU, is
proposed that reduces redundant re-computations. The candidate pattern tree is used to buffer sequences
with high TSU values. This approach outperforms the USpan (Yin et al., 2012) and HUS-Span (Wang
et al., 2016) algorithms. USP-Miner (Wang & Huang, 2016), IncUSP-Miner (Wang & Huang, 2016),
and IncUSP-Miner+ (Wang & Huang, 2018) require extra memory space. In contrast, PIHUP (Lee
et al., 2018) employs a PIHUP-Tree which relied on pre-large notion (Hong et al., 2001). This tree
is lexicographically organized, and it utilizes Su and Sl as thresholds for measurement. The header is
arranged in a descending order based on TWU values. Items are categorized into large, pre-large, and
small values according to their TWU values. This method is better due to the pattern tree data structure.
However, it becomes slow in the case of small insertion data. This algorithm still needs to maintain the
anti-monotone property.

MR-INCHUSP (Saleti, 2021) uses a backward mining approach (Lin et al., 2009). A new data struc-
ture called CURMAP is proposed that deals with the combinatorial explosion. CURMAP efficiently
handles pruning and memory consumption. INC-HUSP does not mine the dataset from scratch, and
CURMAP efficiently reduces the number of candidate sequences. There are two MapReduce phases,
and the stable sequence property is used in the second phase. This approach is better than previous
MapReduce algorithms, exhibit good speed-up and linear scalability due to good practices. IIHUM (Yun
et al., 2019) follows a global-list structure that follows the ascending order of TWU. This algorithm effi-
ciently operates with just one dataset scan, eliminating the need for candidate checking. Additionally, it
doesn’t require the extraction of candidates to recursively generate the ILU-lists from the built global-
lists. This algorithm performs better compared with FUP-HU (Lin et al., 2012), HUPID (Yun & Ryang,
2014), and LIHUP (Yun et al., 2017) for the non-binary datasets. Id2HUP+ (Liu et al., 2019) is intro-
duced to improve upon the performance standard set up by EIHI (Fournier-Viger et al., 2015) and
HUI-list-INS (Lin et al., 2014) algorithms. It follows a one-phase paradigm and improves four types
of pruning techniques. This algorithm makes use of hash tables and introduces a new data structure
called niCAUL. This approach uses least memory because of the pseudo-projection. This performance
enhancement is due to the fact that legacy patterns are determined by contrasting the utilities. The
IncCHUI algorithm employs a CHT hash table to store CHUIs, and it efficiently constructs utility-lists
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in comparison to LIHUP and HUI-list-INS. This single-phase approach exhibits excellent scalability
when compared to other algorithms.

APHAUP (Wu et al., 2020c; Wu et al., 2020b) is insertion-based approach that utilizes pre-large
notion (Hong et al., 2001). pub and ipub are upper-bounds designed to decrease the utility values and
the size of candidates. These upper-bounds are implemented using a linked-list structure. APHAUP
with ipub efficiently decreases the time when compared to APHUAP with pub, especially with dense
datasets. PRE-HAUIMI (Lin et al., 2020) depends on the AUL structure and surpasses the level-wise
method by employing an enumeration tree to minimize the number of required join operations. The
itemsets are divided into nine cases according to the pre-large concept (Hong et al., 2001). This approach
outperforms HAUI-Miner (Lin et al., 2016), IHAUPM (Lin et al., 2018), and FUP-based (Cheung et
al., 1996) algorithms. However, it may require more time to construct an AUL structure when dealing
with large itemsets.

5. Research opportunities and future directions
In recent years, various approaches have been proposed to discover iHUIM; however, there are many
challenges in this field. This section discusses important research opportunities and future directions for
the iHUIM problem.

Closed patterns:
Mining closed HUIs is an important area of research. Closed patterns are compact but have complete
information about items (Singh & Biswas, 2021). Decision-making based on compacted or not huge
patterns is easier and more useful. Therefore, closed pattern mining from incremental datasets is desired
compared to traditional iHUIM. In the literature, only one work (Dam et al., 2019) is available that mines
closed iHUIM from incremental datasets.

Top-K patterns:
In traditional HUIM, a minimum utility threshold is always required to mine useful patterns. It is not
easy for users to set the appropriate minimum utility threshold. To target this issue, k-value-based HUIM
is introduced (Tseng et al., 2016). In top-k HUIM, users need to provide the value of k1 instead of
the minimum utility threshold. In literature, the T-HUDS (Zihayat & An, 2014) approach is the only
available work that finds top-k HUIM from data streams.

Multiple minimum utility threshold based pattern mining
Predicting the optimum minimum utility threshold is not an easy task for users. Therefore, multiple
minimum utility threshold-based HUIM is proposed (Lin et al., 2015). It is easy for the user to give
many (more than two) minimum utility thresholds instead of one appropriate one. In the literature, no
work is available to mine HUIs from incremental or dynamic datasets.

Negative utility value-based pattern mining:
In real life, negative utility values occur very frequently. An item is called a negative item when it is
given away for free with a set of items. In such a scenario, the free item becomes a negative item (Chu
et al., 2009; Singh et al., . n.d.). Retailers and managers can make a better strategy to increase their

1k means number of desired patterns.
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overall profit by introducing negative utility (free items). In literature, only one work (Saleti, 2021) is
available to mine iHUIs with negative utility.

High average utility pattern mining:
In traditional HUIM, the utility value of an itemset is calculated by simply summation of the utility
value of each item in the itemset. Therefore, the total utility value of the itemset always increases as new
items are added. Therefore, a large itemset may have an unreasonable estimate of the profit compared to
the actual utility (Singh et al., 2022). To overcome the limitation of HUIM, high average utility itemset
(HAUI) mining has been introduced (Hong et al., 2011). HAUI mining considers the utility value of an
itemset and the length of an itemset. HAUI mining works on the average utility value of an itemset, such
that the total utility of an itemset is divided by the length of the itemset. Therefore, the utility measures of
HUIM cannot be directly applied to HAUI mining. In the future, it will be a big challenge to incorporate
HAUI mining into the incremental datasets because the length of the itemset changes frequently as new
transactions are inserted. In the future, it is a good area to explore.

Privacy preserving pattern mining:
The mining of privacy-preserving high utility itemsets (PPHUIM) is more realistic and useful com-
pared to traditional HUIM (Gan et al., 2018). Privacy-preserving hides sensitive items or information
provided by the users. In traditional PPHUIM, dummy transactions are inserted instead of the infor-
mation provided by the users. To find a more realistic HUIM, the incremental dataset area needs to be
explored.

Other problems:
Some other extensions of HUIs from incremental datasets mine rich patterns in various ways, such
as fuzzy HUIs mining, evolutionary computation-based HUIM (Kumar & Singh, 2022), complex and
uncertain datasets, etc. The researchers can use the latest dataset compaction techniques to improve the
performance of the algorithms.

Furthermore, artificial intelligence techniques such as deep learning, machine learning, reinforce-
ment learning, and social intelligence can be employed to identify high utility itemsets (HUIs) from
large-scale incremental datasets.

6. Conclusions
The iHUIM has become a significant focus in recent decades due to the performance issues faced by the
earlier HUIM algorithms when dealing with dynamic datasets. This survey presented a brief discussion
of various iHUIM approaches. The survey provided a taxonomy of the available approaches according to
their data structure and utilized strategies like two-phase-based, pattern-growth-based, projection-based,
utility-list-based, and pre-large-based methods. This survey provided a detailed category-wise analysis
and summary of various iHUIM algorithms. Detailed comparison tables are presented, which include
information on various iHUIM algorithms, like data structure used in the algorithm, mining strategy
used, pruning strategy employed, their state-of-the-art methods, and the algorithms they are based on.
The survey also described the outcome, pros and cons, and future directions of all the available state-
of-the-art approaches. Additionally, the paper offers insights into research opportunities and potential
future directions for iHUIM. The approaches analyzed in this survey can inspire various other related
data mining tasks. The challenges encountered by iHUIM have been under scrutiny for over two decades.
Nevertheless, active research is ongoing in this field, and these problems can be addressed in the future
to enhance the efficiency of the algorithms under consideration.
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