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Abstract

Reduced rings and lattice-ordered groups are examples of groups with Boolean orthogonalities. In
this note we show that any group with a Boolean orthogonality satisfying a finiteness condition
introduced by Stewart is isomorphic with a group of homeomorphisms of a topological space, in
which two homeomorphisms are orthogonal if and only if they have disjoint supports.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 54 H 10; secondary 06 F 15,
54 H 15, 57 S 99.

Introduction

Groups with Boolean orthogonalities were introduced by Davis (1971a) princip-
ally to obtain representation and extension theorems for lattice-ordered groups
and reduced rings in a uniform way. Since then Boolean orthogonalities on
groups and rings have been studied by Davis (1971b), (1975) and Stewart (1975).
A universal algebraic study of algebras with Boolean orthogonalities has been
undertaken by Cornish (1975) and Cornish and Stewart (1977).

In this note we show that every group G with a Boolean orthogonality ±
satisfying a certain finiteness condition can be faithfully represented as a group
of permutations G = {g: g E G} of a set X in such a way that g -L h holds if
and only if [x 6 X: xg = x} u {x G X: xh = x) = X, for all g h e G.
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|2] Permutation representation of groups 413

Boolean orthogonalities on permutation groups

Let G denote a group and ± a binary relation on G. For a non-empty subset
S of G we define S x = {g G G: g _L /i for all /i G 5} and S x x = (S"1)-1-. If
S = {h} is a singleton set then we denote S x and S x x by / ix and / j x x

respectively.
The relation ± is a Boolean orthogonality on G if for each non-empty subset S

of G the set S x is a subgroup of G and, in addition,
(1) ± is a symmetric relation,
(2)ifg 1 gtheng = 1,
(3) ifg ± h then fc-'gik _L k~lhk for all A: G G,
(4) if g x x n / i x x = 1 theng ± h.

THEOREM 1 (Davis (1971b)). Let G be a group with a Boolean orthogonality _L.
Then B(G) = { S x : S is a non-empty subset of G}, ordered by inclusion, is a
complete Boolean algebra with A /\ B = A n B and A \/ B = (Ax n B ^ for
all A,B G B(G).

Let G be a subgroup of the symmetric group on a set X. The support ofgG G
is the set supp(g) = {x G X: gh ¥= x). We shall say that G is a d-group (for
"directed-group") if whenever g,, g2 G G and 0 =?t supp(g,) n supp(g2) there is
an h G G with 0 ^ supp(/j) C supp(g,) n supp(g2).

PROPOSITION 2. L^/ G be a subgroup of the symmetric group on X. Define the
binary relation -L on G by g _L h if supp(g) n supp(A) =£ 0 . If G is a d-group
then A. is a Boolean orthogonality on G. Conversely if _L is a Boolean orthogonal-
ity and for each (x, g) G X X G with xg = x there is an h G G with x G supp(A)
and supp(g) n supp(A) = 0 , then G is a d-group.

PROOF. Suppose G is a c/-group. The relation J. is clearly symmetric and
satisfies (2) of the definition of a Boolean orthogonality. Furthermore each 5 x

is clearly a subgroup of G and condition (3) follows from the fact that
supp(A:"'gA:) = supp(g)/c for all g, k G G. Suppose that g , / i £ C and g _L h
does not hold. Then supp( g) n supp(A) ^ 0 so there is a k G G with 0 ¥=
supp(fc) C supp(g) n supp(/j). If g' G g x then supp(g') n supp(Ac) C supp(g')
D supp(g) = 0 so g' G &x. That is g x C k±. Similarly / i x C A:x so 1 =£ k G
g x x n / i x x , and therefore ± is a Boolean orthogonality.

Suppose conversely that ± is a Boolean orthogonality and for all (x, g) G X
X G with xg = x there is a g' G G with x G supp( g') and supp( g) n supp( g')
= 0 . Assume that g, /i G G and supp( g) n supp(A) ^ 0 . Since J. is a Boolean
orthogonality we can find l 7 t / c G g x x n / i x x .
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414 Gary Davis [3|

Suppose x (£ supp(g). Then there is a g' G G with x G supp(g') and supp(g)
n supp(g') = 0 , so supp(g') n supp(/c) = 0 and therefore x 9! supp(A:). Simi-
larly x £ supp(/i) implies x & supp(A:) so 0 =£ supp(/c) C supp( g) n supp(/i).
That is, G is a rf-group.

Let G be a group of permutations of X. If G is a rf-group then we shall equip
G with the Boolean orthogonality ± defined by g ± h if and only if supp(g) n
supp(/i) = 0 . We let 2 G denote the topology on X having the sets supp(g),
g e G, as sub-basic open sets. The condition that G be a rf-group is almost the
condition that the sets supp(g), g G G, are 6awc open sets for the 2c-topology.
We give a name to this latter phenomenon: G is a c/*-group if the sets supp(g),
g & G, form a base for the SG-topology on X. Thus, G is a */*-group if and only
if

(1) for all g, h G G, if x G supp(g) n supp(/i) then there is a k G G with
x G supp(A:) C supp(g) n supp(/j),

(2) no point of x is fixed by all g G G.

LEMMA 3. Let G be a d*-group on the set X. For all g G G, g ± x = {A: G G:

supp(A:) C supp(g)}, where S denotes the closure of S C X for the 1G-topology.

PROOF. Take g G G and suppose supp(A:) csupp(g). If g ± h then supp(g)
D supp(/i) = 0 so supp(/i) n supp( g) = 0 and therefore supp(A) n supp(&) =
0 . That is, A: G g±:L.

Suppose on the other hand that k G g x x . If supp(g) = X there is nothing to
show. Suppose otherwise that O is a non-empty open set contained in X \
supp(g). Then O = i/{supp(//): supp(/i) n supp(g) = 0} so supp(fc) n O =
U{supp(A:) n supp(/i): supp(/i) n supp(g) = 0 } = 0 . That is,
supp(&) Csupp(g).

COROLLARY 4. Le? G be a d*-group on the set X. Then the following are
equivalent, for all g, h G G:

(2) supp(g) n supp(/Q = 0 ,
(3) supp( g)n supp(/i) has empty interior for the Sc-topology.

We note that every group is a d-group in its right regular representation. The
Boolean orthogonality defined in proposition is, however, trivial in this case in
the sense that g ± h holds if and only if g = 1 or h = 1.

We note also that not every permutation group is a rf-group. For instance if G
acts sharply doubly transitively on X then G is not a */-group. Indeed, since no
permutation can have a one-element support the symmetric group on three or
more letters is not a </-group.
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Permutation representation

Throughout this section G will denote a group with a Boolean orthogonality
±.

A subgroup H of G is a IT-subgroup if / iX J- V • • • \fhj-1- C H for each finite
subset {A,, . . . , / / „ } of//.

The 7r-subgroups of G ordered by inclusion clearly form a complete lattice.

LEMMA 5. Let H be a m-subgroup of G and g an element of G. Let (H U {g}>
be the smallest m-subgroup of G containing H U {g}. Then (H U (g}> =
U { F x x V g ± X : F C G, Ffinite}.

PROOF. If F = {/i,, . . . , hn) is a finite subset of H then F x x = / i x x

V • " • Vhn
±± so F x x V « X i C <// u {g}>. If *„ A;2 e G then A:x n A:x C

(A:,*:̂ 1)"1", since sets of the form S1- are subgroups of G, so A:^^1 G AT,-1-1- V
ytf1--1. Consequently if A:, G F, x -1- V g±x and A:2 e F2

X X V g± J", where /", and
F2 are finite subsets of H, then

2
A:* 1 £ A;xx V *A;,xx V * x x C F x x V ^ V g 1 1 = (F, U F 2 ) x x

Hence U f f ^ V g 1 1 : ^ C G, F finite) is a subgroup of G, and therefore by
its definition a w-subgroup, contained i n < / / u { g } > , so equality holds.

We call the meet-irreducible elements of the lattice of w-subgroups of G the
prime ir-subgroups of G. Thus, a Tr-subgroup P of G is a prime ir-subgroup if and
only if for all w-subgroups / / , , H2 of G, / / , n / / 2 C P implies Hl Q P or
H2 C .P. Equivalently, a w-subgroup P is prime if and only if for all g, h in
G,gx± n A x x c Pimpliesg G P or ^ e P.

We shall now see that when G satisfies a certain finiteness condition for _L,
the prime 7r-subgroups of G intersect in 1. This fact allows us to represent such
groups as </*-groups of homeomorphisms.

DEFINITION. The Boolean orthogonality 1 on G is finite if for all g, h G G
there is a finite subset F of G with g x x n A x x = F x x .

In the context of Boolean orthogonalities on rings this finiteness condition
was introduced by Stewart (1975).

PROPOSITION 6. Let G be a group with a finite Boolean orthogonality _L and
suppose g0 =£ 1 in G. Then there is a subgroup of G maximal with respect to being
a ir-subgroup of G not containing g0. Any such IT-subgroup is prime.
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PROOF. The set of w-subgroups of G is plainly inductive so if gQ ^ 1 then there
is a subgroup H of G maximal with respect to being a w-subgroup not
containing g0. Assume that H is not prime. Then there exist g,k & H such that
g x x n A:xx C H. Since g0 £ <// u (g}> n <// U {A;}> there are finite sub-
sets Fu F2 of H such that

g o e ( F x x V g x x ) n ( F x x v A : x x )

= (^.xx n F2
XX) v ( ^ x x n A:xx) V(F2

XX n g±±)v(g±± n * x x ) .
Since X is finite, there is a finite subset F of G with F x x = g x x n k±J-. Since
g x x n A : x x c / / then F Q H and g0 G / / -a contradiction, so H is a prime
w-subgroup.

COROLLARY 7. / / G is a group with a finite Boolean orthogonality TT then

C\{P C G: P is a prime IT-subgroup) = 1.

It is easily seen from condition (3) for a Boolean orthogonality that each
conjugate of a (prime) w-subgroup of G is again a vr-subgroup of G.

Let G and H be groups with Boolean orthogonalities, both denoted by _L. A
group homomorphism / : G -* H is a X -homomorphism if g X h in G implies
g/" X hf in H. A X -isomorphism/: G —> / / is a bijection such that both /and /" 1

are X-homomorphisms.
We now let X = (J {G/P: P is a proper prime w-subgroup of G} be the

disjoint union of left cosets of proper prime ^-subgroups of G.
If H is a subgroup of the symmetric group on A' and also a rf-group we shall

equip H with the Boolean orthogonality X defined by g X h if and only if
supp(g) n supp(/i) = 0 .

THEOREM 8. Let G be a group with a finite Boolean orthogonality X. Then G is
±-isomorphic with a d*-group of homeomorphisms of a topological space.

PROOF. Given g e G we define g: X -> * by (/tt)g = P£g. Then G = {£:
/ G G} is a subgroup of the symmetric group on X, and g -* g is an isomor-
phism onto G since the intersection of all prime w-subgroups of G is 1. We now
see that g X h in G if and only if supp(g) n supp(/i) = 0 . Suppose g ± h in G.
If (/*/:)£ ^ Pk then ĝA:"1 6 /* That is, g G &"'/»& and so, since k~x is a prime
w-subgroup and g x x n h±A~ C k~xpk, we have /i G AT1/*/:. That is, (Pk)h = Pk
so supp( g) C X \ supp(/i).

Suppose conversely that supp(g) n supp(/i) = 0 . Let P be a prime w-sub-
group of G. Then Pg = P or Ph = p so gxx Q P or / J X X C P. In any case,
g x x n A x x c /*. Since the prime w-subgroups of G meet in 1 we have g x x D
h x x = 1 and therefore g X h.
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Thus the relation _L on G defined by g ± h if and only if supp(g) n supp(A)
= 0 is a Boolean orthogonality. Suppose that g, h G G and Pk0 G supp(g) n
supp(/i). Then g, h G k^lPk0. Take k e g±A- n A"1--1- \ k^Pk^ so that />A:0 e
supp(/t). If P% G supp(A:) then k £ fcf'P'fc, so g-LX f l / i ^ g fc^1*,. In this
case g, h $ k\xP 'A:, so P 'A:, G supp( g) n supp(/i). That is, G is a <f-group on
X. Clearly each g G G is a homeomorphism of A' for the rf*-topology.

Transitive representations and examples

We have seen that every group G with a finite Boolean orthogonality ± is
-L-isomorphic with a d* -group of homeomorphisms of a topological space.

THEOREM 9. Let G be a group with a finite Boolean orthogonality _L. Then G is
-L-isomorphic with a transitive d*-group G of homeomorphisms of a topological
space equipped with the 1.^-topology if and only if G has a prime m-subgroup P
such that D {k^Pk: k G G) = 1.

PROOF. Suppose that G has a prime w-subgroup P whose conjugates meet in 1.
Then by proceeding as in Theorem 8 with the set of all prime w-subgroups of G
replaced by conjugates of P we see that G has a transitive representation as a
</*-group of permutations on X = U {G/k'lPk: k G G}.

Suppose conversely that G is (.L-isomorphic with) a t/*-group of permutations
acting transitively on X. Take x G X. We see that the point stabilizer Gx =
{g G G: xg = x) contains a prime w-subgroup of G. The set of 7r-subgroups of
G contained in Gx is inductive so let H be maximal with respect to being a
77-subgroup of G contained in Gx. Suppose that g, h G H but gx± n A x x C H.
Then <// u {g}> contains some g' with xg' J= x and <// u {h}} contains some
h' with xh' ^ x. Then g' G F ^ V g 1 1 and A ' e ^ V * 1 1 , for some finite
subsets F,, F2 of # , so (g')^1- n (A')"1"1 C //. Then there is a it 6 6 with
x G supp(A:) C supp(g) n supp(/i) so k G (g ' ) ± x H (/»')J"L Q H Q Gx-& con-
tradiction.

Thus, 7/ is a prime 7r-subgroup of G and D {k'lHk: k G G) C D {k~xHk:
k G G} C D {k'lGxk: k G G) = 1.

The motivating class of groups for the study of (finite) Boolean orthogonali-
ties is the class of lattice-ordered groups: a lattice ordered group G has a finite
Boolean orthogonality J_ defined by g ± A in G if and only if |g| A \h\ — 1
[where | g| = g V g"1)-

Our representation theorem for groups with finite Boolean orthogonalities was
modelled on Holland's (1963) representation of lattice-ordered groups as groups
af order-preserving permutations of chains.
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Another class of examples is provided by the (not necessarily commutative)
reduced rings R where we define g ± h if and only if gh = 0. Then g x is just the
left annihilator of g in R which, since R is reduced, is a two-sided ideal. It
follows then that g x C (gh)1^ for all g, h G R, so m-subgroups of R are in fact
two-sided ideals of R. Our representation theorem can then be converted to a
sheaf-theoretic representation for R. This has been carried out by Davis (1971b)
and Stewart (1975).

Another-by Theorem 8 fairly typical-example is F(R2), the homeomorphism
group of R2. Indeed, suppose g , l i E F(R2) and x e supp(g) n supp(/j) = U.
Find inside U an isometric copy C of the unit open disc O, with x G C. Let <jp:
O -* C be a homeomorphism from O onto C. Define a map \p: O —» O as
follows:

z>/> = e
2md(z'ao)z

5 where <i is the Euclidean metric and dO is the boundary of O.

Z k = - • i f z G C .

Then k is a homeomorphism of R2 and x e supp(/c) C U, so F(R2) is a d*-group
and ±, defined by g i. h if supp(g) n supp(/i) = 0 , is a Boolean orthogonality.
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