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Abstract

Reduced rings and lattice-ordered groups are examples of groups with Boolean orthogonalities. In
this note we show that any group with a Boolean orthogonality satisfying a finiteness condition
introduced by Stewart is isomorphic with a group of homeomorphisms of a topological space, in
which two homeomorphisms are orthogonal if and only if they have disjoint supports.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 54 H 10; secondary 06 F 15,
54 H 15, 57 S 99.

Introduction

Groups with Boolean orthogonalities were introduced by Davis (1971a) princip-
ally to obtain representation and extension theorems for lattice-ordered groups
and reduced rings in a uniform way. Since then Boolean orthogonalities on
groups and rings have been studied by Davis (1971b), (1975) and Stewart (1975).
A universal algebraic study of algebras with Boolean orthogonalities has been
undertaken by Cornish (1975) and Cornish and Stewart (1977).

In this note we show that every group G with a Boolean orthogonality 1
satisfying a certain finiteness condition can be faithfully represented as a group
of permutations G = {g: 8 € G) of aset X in such a way that g L h holds if
and only if {x € X: xg = x} U {x € X: xlf=x} = X, forallgh € G.
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2] Permutation representation of groups 413
Boolean orthogonalities on permutation groups

Let G denote a group and L a binary relation on G. For a non-empty subset
S of G we define S* = {ge€ G:g L hforallhe S} and S+ =(SHL. If
S = {h)} is a singleton set then we denote S* and S*+ by A* and h*+
respectively.

The relation L is a Boolean orthogonality on G if for each non-empty subset S
of G the set §* is a subgroup of G and, in addition,

(1) L is a symmetric relation,

2)ifg L gtheng = 1,

(3)if g L hthen k'gk L k~'hk for all k € G,

@ifgttNnhtt =1theng L h.

THeOREM 1 (Davis (1971b)). Let G be a group with a Boolean orthogonality | .
Then B(G) = {S*: S is a non-empty subset of G}, ordered by inclusion, is a
complete Boolean algebra with A\ B=A N Band AN/ B=(A* N BY* for
all A, B € B(G).

Let G be a subgroup of the symmetric group on a set X. The supportof g € G
is the set supp(g) = {x € X: gh + x}. We shall say that G is a d-group (for
“directed- group”) if whenever g,, g, € G and & # supp(g,) N supp(g,) there is
an A € G with & # supp(h) C supp(g,) N supp(g,)-

PROPOSITION 2. Let G be a subgroup of the symmetric group on X. Define the
binary relation 1. on G by g L h if supp(g) N supp(h) = . If G is a d-group
then L is a Boolean orthogonality on G. Conversely if L is a Boolean orthogonal-
ity and for each (x, g) € X X G with xg = x there is an h € G with x € supp(h)
and supp(g) N supp(h) = &, then G is a d-group.

PROOF. Suppose G is a d-group. The relation L is clearly symmetric and
satisfies (2) of the definition of a Boolean orthogonality. Furthermore each S+
is clearly a subgroup of G and condition (3) follows from the fact that
supp(k ~'gk) = supp(g)k for all g, k € G. Suppose that g, h€ G and g L h
does not hold. Then supp(g) N supp(h) # & so there is a k € G with J #
supp(k) C supp(g) N supp(h). If g’ € g* then supp(g’) N supp(k) C supp(g’)
N supp(g) = T so g’ € k. That is gt C k*. Similarly At CkLt so 1 #k €
g** N ht*, and therefore L is a Boolean orthogonality.

Suppose conversely that L is a Boolean orthogonality and for all (x, g) € X
X G with xg = x there is a g’ € G with x € supp(g’) and supp(g) N supp(g’)
= (J. Assume that g, h € G and supp(g) N supp(h) # &. Since L is a Boolean
orthogonality we can find 1 # k € gttt n A+t.
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Suppose x & supp(g). Then there is a g’ € G with x € supp(g’) and supp(g)
N supp(g’) = &, so supp(g’) N supp(k) = I and therefore x & supp(k). Simi-
larly x & supp(h) implies x & supp(k) so & # supp(k) C supp(g) N supp(h).
That is, G is a d-group.

Let G be a group of permutations of X. If G is a d-group then we shall equip
G with the Boolean orthogonality L defined by g L A if and only if supp(g) N
supp(h) = &. We let 2; denote the topology on X having the sets supp(g),
g € G, as sub-basic open sets. The condition that G be a d-group is almost the
condition that the sets supp(g), g € G, are basic open sets for the Z;-topology.
We give a name to this latter phenomenon: G is a d*-group if the sets supp(g),
g € G, form a base for the 2 ;-topology on X. Thus, G is a d*-group if and only
if

(1) for all g, h € G, if x € supp(g) N supp(h) then there is a k € G with

x € supp(k) C supp(g) N supp(h),
(2) no point of x is fixed by all g € G.

LEMMA 3. Let G be a d*-group on the set X. For all g € G, g** = {k € G:
supp(k) C supp(g)}, where S denotes the closure of S C X for the Z;-topology.

Proor. Take g € G and suppose supp(k) Csupp(g). If g L A then supp(g)
N supp(h) = & so supp(h) N supp( g) = & and therefore supp(h) N supp(k) =
. Thatis, k € g*+.

Suppose on the other hand that k € g**. If supp(g) = X there is nothing to
show. Suppose otherwise that O is a non-empty open set contained in X \
supp(g). Then O = U{supp(h): supp(h) N supp(g) = J} so supp(k) N O =
U{supp(k) n supp(h): supp(h) N supp(g) = &} = &. That is,
supp(k) Csupp(g).

COROLLARY 4. Let G be a d*-group on the set X. Then the following are
equivalent, for all g, h € G:

(Dg L A,

(2) supp(g) N supp(h) = I,

(3) supp(g) N supp(h) has empty interior for the = ;-topology.

We note that every group is a d-group in its right regular representation. The
Boolean orthogonality defined in proposition is, however, trivial in this case in
the sense thatg L hholdsifandonlyifg = lorh = 1.

We note also that not every permutation group is a d-group. For instance if G
acts sharply doubly transitively on X then G is not a d-group. Indeed, since no
permutation can have a one-element support the symmetric group on three or
more letters is not a d-group.
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Permutation representation

Throughout this section G will denote a group with a Boolean orthogonality
1.

A subgroup H of G is a w-subgroup if hi*+\/ - - - \/h;** C H for each finite
subset (A, ..., h,} of H.

The 7-subgroups of G ordered by inclusion clearly form a complete lattice.

LEMMA 5. Let H be a m-subgroup of G and g an element of G. Let (H U {g}>
be the smallest m-subgroup of G containing H U {g}. Then {<H U {g}> =
U {F** Vv g'*: F C G, F finite}.

PrOOF. If F= {h;,...,h,} is a finite subset of H then F** = b+
Vs Vhittso Fri\/gtt C(H U {g)). il k, k, € G then ki* N k;- C
(k,k;")*, since sets of the form S+ are subgroups of G, so k.k;' € kji*+ v/
k;-*+. Consequently if k, € F[**+\/ g*+ and k, € F;**+\/ g**, where F, and
F, are finite subsets of H, then

kiki' € kift N/ kit CFt N B gttt = (Fu Fz)ll\/ng-

Hence U {F**\/ g**: F C G, F finite} is a subgroup of G, and therefore by
its definition a w-subgroup, contained in (H U { g}, so equality holds.

We call the meet-irreducible elements of the lattice of #-subgroups of G the
prime w-subgroups of G. Thus, a 7-subgroup P of G is a prime 7-subgroup if and
only if for all #-subgroups H,, H, of G, H,n H, C P implies H, C P or
H, C P. Equivalently, a w-subgroup P is prime if and only if for all g, & in
G,g**Nnhtt C Pimpliesg € Porh € P.

We shall now see that when G satisfies a certain finiteness condition for L,
the prime #-subgroups of G intersect in 1. This fact allows us to represent such
groups as d*-groups of homeomorphisms.

DerINITION. The Boolean orthogonality L on G is finite if for all g, h € G
there is a finite subset F of G with gt+ n h*+L = F+1,

In the context of Boolean orthogonalities on rings this finiteness condition
was introduced by Stewart (1975).

PROPOSITION 6. Let G be a group with a finite Boolean orthogonality | and
suppose g, 7 | in G. Then there is a subgroup of G maximal with respect to being
a w-subgroup of G not containing g,. Any such w-subgroup is prime.
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ProOOF. The set of w-subgroups of G is plainly inductive so if g, 7 1 then there
is a subgroup H of G maximal with respect to being a w-subgroup not
containing g,. Assume that H is not prime. Then there exist g, k & H such that
gttt Nnk*t C H. Since g, € (H U {g})> N {H U {k}) there are finite sub-
sets F, F, of H such that

& c (FI_L,L ng.L) N (FIJ.J_ v le)
- (Fl_L_L N FZJ_.L)\/(FI.L.L ! k.LJ.)v(Fz.L.L N g_L_L)\/(g.L_L N k.L_L).
Since L is finite, there is a finite subset F of G with F*+ = g+ n k1. Since

g+t N k*t C H then F C H and g, € H-a contradiction, so H is a prime
w-subgroup.

COROLLARY 7. If G is a group with a finite Boolean orthogonality = then
MN{P C G: Pis a prime m-subgroup} = 1.

It is easily seen from condition (3) for a Boolean orthogonality that each
conjugate of a (prime) 7-subgroup of G is again a w-subgroup of G.

Let G and H be groups with Boolean orthogonalities, both denoted by L. A
group homomorphism f: G — H is a L-homomorphism if g L h in G implies
gf L hfin H. A L-isomorphism f: G — H is a bijection such that both f and f~*
are 1 -homomorphisms.

We now let X = U {G/P: P is a proper prime m-subgroup of G} be the
disjoint union of left cosets of proper prime 7-subgroups of G.

If H is a subgroup of the symmetric group on X and also a d-group we shall
equip H with the Boolean orthogonality 1 defined by g L 4 if and only if
supp(g) N supp(h) = .

THEOREM 8. Let G be a group with a finite Boolean orthogonality 1. Then G is
L -isomorphic with a d*-group of homeomorphisms of a topological space.

Proor. Given g € G we define g: X —» X by (Pk)g = Pkg. Then G = {g:
f € G} is a subgroup of the symmetric group on X, and g — ¢ is an isomor-
phism onto G since the intersection of all prime 7-subgroups of G is 1. We now
see that g L h in G if and only if supp(g) N supp(lf) = (. Suppose g L hin G.
If (Pk)§ #+ Pk then kgk™' & P That is, g € k~'pk and so, since k! is a prime
m-subgroup and g*+ N At C k~'pk, we have h € k~'pk. That is, (Pk)h = Pk
so supp(£) C X \ supp(h).

Suppose conversely that supp(g) N supp(};) = (. Let P be a prime =-sub-
group of G. Then Pg = P or Ph=p so g*+ C P or h*+ C P. In any case,
g** N htt C P. Since the prime 7-subgroups of G meet in 1 we have g~ N
h*+ =1 and thereforeg L h.
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Thus the relation L on G defined byg L k if and only if supp(g) N supp(h)
= J is a Boolean orthogonality. Suppose that g, # € G and Pk, € supp(g) N
supp(h). Then g, h € k;'Pk,. Take k € g*+ N h*t*\ k;'Pk,, so that Pk, €
supp(k). If P'k, € supp(k) then k & k;'P'k,so g**+ N h*+ g k;'P'k,. In this
case g, h & ki'P'k, so P'k, € supp(g) N supp(k). That is, G is a d*-group on
X. Clearly each ¢ € Gisa homeomorphism of X for the d*-topology.

Transitive representations and examples

We have seen that every group G with a finite Boolean orthogonality L is
1 -isomorphic with a d*-group of homeomorphisms of a topological space.

THEOREM 9. Let G be a group with a finite Boolean orthogonality L. Then G is
1 -isomorphic with a transitive d*-group G of homeomorphisms of a topological
space equipped with the Zs-topology if and only if G has a prime m-subgroup P
such that N {k™'Pk: k € G} = 1.

PRrROOF. Suppose that G has a prime 7-subgroup P whose conjugates meet in 1.
Then by proceeding as in Theorem 8 with the set of all prime 7-subgroups of G
replaced by conjugates of P we see that G has a transitive representation as a
d*-group of permutationson X = U {G/k™'Pk: k € G}.

Suppose conversely that G is (L -isomorphic with) a d*-group of permutations
acting transitively on X. Take x € X. We see that the point stabilizer G, =
{g € G: xg = x} contains a prime 7-subgroup of G. The set of w-subgroups of
G contained in G, is inductive so let H be maximal with respect to being a
7-subgroup of G contained in G,. Suppose thatg, h € Hbutg*+ n h*L C H.
Then {H U {g)}) contains some g’ with xg’ # x and (H U {h}) contains some
k" with xh’ # x. Then g’ € F*+ \/ g*+ and ¥’ € F;*+ \/ h+*, for some finite
subsets F;, F, of H, so (g)** N (W)**+ C H. Then there is a kK € G with
x € supp(k) C supp(g) N supp(h) so k € (g)** N (W)** CH C G,-a con-
tradiction.

Thus, H is a prime w-subgroup of G and N {k'Hk: k € G} C N {k™‘Hk:
keGlCc N{k'Gk:keG)=1.

The motivating class of groups for the study of (finite) Boolean orthogonali-
ties is the class of lattice-ordered groups: a lattice ordered group G has a finite
Boolean orthogonality | defined by g L 4 in G if and only if |g] A |#] =1
(where [gl = gV g7").

Our representation theorem for groups with finite Boolean orthogonalities was
modelled on Holland’s (1963) representation of lattice-ordered groups as groups
of order-preserving permutations of chains.
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Another class of examples is provided by the (not necessarily commutative)
reduced rings R where we define g L h if and only if gh = 0. Then g* is just the
left annihilator of g in R which, since R is reduced, is a two-sided ideal. It
follows then that g* C (gh)* for all g, h € R, so w-subgroups of R are in fact
two-sided ideals of R. Our representation theorem can then be converted to a
sheaf-theoretic representation for R. This has been carried out by Davis (1971b)
and Stewart (1975).

Another—by Theorem 8 fairly typical-example is ['(R?), the homeomorphism
group of RZ Indeed, suppose g, h € T'(R?) and x € supp(g) N supp(h) = U.
Find inside U an isometric copy C of the unit open disc O, with x € C. Let ¢:
O — C be a homeomorphism from O onto C. Define a map ¢: 00 as
follows:

2y = ?m4=20): ywhere d is the Euclidean metric and 90 is the boundary of O.

Now define k: R? > R? by

z ifz & C,
zk = ]
2oy ifzeC.
Then k is 2 homeomorphism of R? and x € supp(k) C U, so T'(R?) is a d*-group
and L, defined by g L & if supp(g) N supp(h) = I, is a Boolean orthogonality.
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