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Abstract

There is a growing interest in studying individual differences in choices that involve trading off reward amount and delay

to delivery because such choices have been linked to involvement in risky behaviors, such as substance abuse. The most

ubiquitous proposal in psychology is to model these choices assuming delayed rewards lose value following a hyperbolic

function, which has one free parameter, named discounting rate. Consequently, a fundamental issue is the estimation of

this parameter. The traditional approach estimates each individual’s discounting rate separately, which discards individual

differences during modeling and ignores the statistical structure of the population. The present work adopted a different

approximation to parameter estimation: each individual’s discounting rate is estimated considering the information provided

by all subjects, using state-of-the-art Bayesian inference techniques. Our goal was to evaluate whether individual discounting

rates come from one or more subpopulations, using Mazur’s (1987) hyperbolic function. Twelve hundred eighty-four subjects

answered the Intertemporal Choice Task developed by Kirby, Petry and Bickel (1999). The modeling techniques employed

permitted the identification of subjects who produced random, careless responses, and who were discarded from further

analysis. Results showed that one-mixture hierarchical distribution that uses the information provided by all subjects suffices to

model individual differences in delay discounting, suggesting psychological variability resides along a continuum rather than

in discrete clusters. This different approach to parameter estimation has the potential to contribute to the understanding and

prediction of decision making in various real-world situations where immediacy is constantly in conflict with magnitude.
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1 Introduction

Organisms often choose between rewards that differ in mag-

nitude and delay to delivery. How they trade off these fea-

tures is important in understanding and predicting people’s

intertemporal choices, which can be defined as decisions

whose outcomes occur at different points in time (Frederick,

Loewenstein & O’Donoghue, 2002).

The study of intertemporal choices has real-world impli-

cations because many crucial decisions that affect people’s

quality of life are intertemporal tradeoff dilemmas that ulti-

mately affect public policy and economic markets (Andreoni

& Sprenger, 2012). Research has found that individual dif-

ferences in time preferences are connected to engagement in

risky behaviors, such as substance abuse. Previous reports

suggest that abusers of substances such as tobacco (Bickel,

Odum & Madden, 1999), alcohol (Petry, 2001), and heroin

(Kirby, Petry & Bickel, 1999), tend to prefer rewards sooner
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than non-drug users, meaning the former place greater im-

portance on immediacy rather than magnitude when solving

intertemporal dilemmas.

The time preference literature has developed different

models to explain how organisms represent and evaluate the

options available in their choice space. The most commonly

used proposal in psychology is the one-parameter hyper-

bolic function (Mazur, 1987), which rests on the following

assumptions:

• Organisms integrate all the information regarding a re-

ward’s features into one global (subjective) value, as-

signed independently to each alternative.

• This global value decreases hyperbolically as delay to

its delivery increases.

• The option with the higher subjective value is selected

(maximization rule).

According to Mazur’s (1987) hyperbolic function, rewards

are compared in terms of their subjective values, which are

determined by the following equation:

V =
A

1 + kD
,

where V represents the subjective value of a certain amount

A delayed D time units. The free parameter, k, known as

discounting rate, represents the rate at which the amount A

losses value as time to its delivery increases. Note that for
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immediately available rewards, the delay D equals zero, and

the subjective value V equals monetary amount A.

That rewards are discounted hyperbolically means not only

that valuation changes as time progresses but also that the

proportion by which it changes varies continuously (Killeen,

2009). This function’s success resides in its ability to account

for a ubiquitous dynamic inconsistency: that people’s origi-

nal preference reverses as the temporal distance to both out-

comes decreases (Ainslie, 1975; Cheng & González-Vallejo,

2016).

Because differences in choice behavior are assumed to as-

sociate with differences in discounting rate, k, the estimation

of this parameter is a central issue (Green, Fry & Myerson,

1994; Killeen, 2009). The traditional way to model hetero-

geneity in choice is by fitting a discounting function to each

subject’s data separately, and estimating a fixed discounting

rate per person (Bickel, Odum & Madden, 1999; Green,

Myerson & McFadden, 1997; Madden, Raiff, Lagorio, Be-

gotka, Mueller, Hehli & Wegener, 2004). Statistically, this

approach rests on the idea that the only information required

to estimate any subject’s k is the data each person provides.

A second, richer approach assumes subjects originate

from an overarching distribution, meaning they are related

to one another. Vincent (2016) presents an example of this

perspective. He estimated trial-, subject- and group-level pa-

rameters simultaneously, using hierarchical modeling. The

success of this technique in cognitive modeling stems from a

particular treatment of between-subject variability that nei-

ther ignores nor overweights individual differences: the es-

timation of parameter values for each subject is informed

by the information contributed by the rest of the individuals

(Nilsson, Rieskamp & Wagenmakers, 2011).

The present work introduces a natural extension to the

hierarchical approach adopted by Vincent (2016): the pos-

sibility of modeling differences in delay discounting as a

combination of N sub-population distributions. In this type

of representation, called latent mixture model, the mixture

component captures qualitative differences among groups

of people, while the hierarchical component accounts for

the variability within each group (Lee, 2016). For each

subject, parameter values are calculated conditional on the

distribution they come from (Gelman, Carlin, Stern & Ru-

bin, 2004; Gershman & Blei, 2012). Modeling individual

differences as a mixture of different processes is common

in fields such as medical diagnosis, where measurable in-

dividual variables are used to allocate people into clusters

(Bartholomew, Steele, Moustaki & Galbraith, 2008), and has

multiple real-world applications. Examples from the sub-

stance abuse literature highlight the potential clinical value

of discounting rates to predict whether abstinent smokers

will relapse (Dallery & Raiff, 2007; Yoon, Higgins, Heil,

Sugarbaker, Thomas & Bader, 2007).

Besides endorsing a specific statistical model, an equally

relevant issue in parameter estimation is the choice of infer-

ence procedures. The challenge is the handling of the un-

certainty linked to estimating parameter values from limited

data. Bayesian methods are a viable alternative to traditional

inference techniques to address this challenge, as they offer

a coherent and consistent response to the inference prob-

lem. The literature provides evidence that Bayesian tech-

niques result in more robust parameter estimates, as has been

demonstrated in simulation studies where data-generating

parameter values were recovered more accurately and with

less variability via Bayesian methods than via more tradi-

tional approaches, such as maximum likelihood estimation

(MLE). In addition to their robustness, Bayesian methods

can be more informative than traditional techniques because

they supply full posterior distributions over parameter val-

ues instead of only point estimates (Nilsson, Rieskamp &

Wagenmakers, 2011).

Another key advantage of Bayesian inference comes from

the possibility of fitting a wider set of models, as the same

and unique principle of inference — Bayes’ Rule — can

be applied flexibly to both simple and complex structures.

We illustrate this advantage by building a model aimed at

identifying subjects who use some cognitive process other

than the one of interest to produce behavior in a task. Factors

such as lack of attention or motivation can originate careless

responses. Because such responses do not represent the

behavior of interest, recognizing subjects who produce them

represents a major advantage not only for parameter inference

but also for the study of individual differences (Lee, 2016;

Zeigenfuse & Lee, 2010).

Therefore, the present work offers a description of indi-

vidual variation in a delay discounting task by implement-

ing two analyses: one that compares different hierarchical,

population-level distributions over hyperbolic discounting

rates, and another that detects subjects who responded the

task carelessly, in order to prevent them from affecting pa-

rameter inference.

2 Method

2.1 Subjects

As part of a broader project that studied risky decision mak-

ing as a case of choice behavior, 1284 Mexican students (629

females) participated in the study as a class requirement. The

sample was composed mainly of high school juniors and se-

niors (87%) and included some first-year university students

(13%).

2.2 Materials and Procedure

The Intertemporal Choice Task (Kirby, Petry & Bickel, 1999)

consists of 27 trials, each of which presents a choice be-

tween two hypothetical monetary rewards, one smaller in

amount and available immediately (named SS) and another
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larger in amount, available after a certain delay (called LL).

We employed this instrument because of its extensive use

within the temporal discounting literature, which largely

stems from the questionnaire’s adequate psychometric prop-

erties (Kirby, 2009; Myerson, Baumann & Green, 2014).

Monetary amounts were as stated by the authors (but ex-

pressed as Mexican pesos instead of U.S. dollars), delays

were expressed as number of days to delivery and trials were

presented in the order specified by the authors.

3 Bayesian Data Analysis

We analyzed the process underlying choice data by applying

four models using the Bayesian framework.

The first model was designed to distinguish subjects who

behave according to the hyperbolic model (henceforth, “non-

contaminant subjects”) from whose who produced careless,

random responses (“contaminant subjects”). The remaining

three models consist of hierarchical extensions that assume

individual discounting rates come from either a one-mixture,

a two-mixture, or a three-mixture population distribution,

respectively.

The contaminant-detector model allowed us to identify

109 individuals who responded randomly; these subjects

were excluded from further analysis. On the other hand,

the comparison among the mixture models suggested hy-

perbolic discounting rates are better described by a single,

one-mixture population distribution.

We follow the notation presented in Lee (2008)1 to detail

all models. In this representation, shaded nodes correspond

to observed variables, whereas unshaded nodes stand for

latent variables. Double-bordered nodes are deterministic,

while single-bordered nodes are stochastic. Circles represent

continuous variables, and squares portray discrete variables.

Each model contains two bounding rectangles that enclose

independent replications of two structures within the model:

one corresponding to subjects i, and the other representing

trials h.

The main analysis code was written in R. We used JAGS

(Just Another Gibbs Sampler; Plummer, 2003) to conduct

Markov chain Monte Carlo sampling-based inference. For

all nodes in all models, posterior distributions were estimated

drawing a total of 500,000 samples over 2 chains. The first

200,000 samples were discarded (the burn-in interval), and

only one sample of each 300 was retained for a total of 1,000

final samples per chain. Under these sampling parameters

and given the size of our dataset, each model took about 30

hours to run. Convergence was verified by visual inspection

of the chains and by computing the R̂ statistic (Gelman &

Rubin, 1992). Around 95% of nodes within each model

1An introduction to Bayesian philosophy, methods and techniques, along

with several worked applications in cognitive science can be found in Lee,

M.D. & Wagenmakers, E.-J. (2014). Bayesian Cognitive Modeling: A

practical course. Cambridge: Cambridge University Press.

showed R̂ values between 1 and 1.05, which is traditionally

interpreted as a sign of reliable convergence between chains.

3.1 Detecting Contaminants

The core model, common to the contaminant-detector and to

all mixture models, assumes each subject i has a discounting

rate ki .2 For each trial h, the subject’s discounting rate

determines the subjective value of LL, vih , combining its

delay dh and monetary quantity qh according to Mazur’s

hyperbolic equation. Next, the model decides whether vih
is greater or less than the value of the SS alternative, ph . If

ph > vih , the model concludes the probability of choosing

the LL reward lies between 0 and 0.5 (i.e., it is rather unlikely

to choose the LL option if SS has a larger value). On the

contrary, if ph < vih , the probability of choosing LL is

somewhere between 0.5 and 1.0. Both cases are encoded in

node θih , which represents the probability of choosing the

LL reward in trial h for subject i.3 The actual response, Cih ,

codes SS responses as 0 and LL responses as 1. This model,

along with the contaminant-detector extension, is presented

in Figure 1.

Figure 1: Core Model with Contaminant-Detector Exten-

sion. This model assumes each person responded either

randomly, or following a hyperbolic process based on the

task’s items. After observing each subject’s responses, the

model infers which scenario is more likely. See text for de-

tails.
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ri „ Bernoulli
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`

θih
˘

The contaminant-detector extension consists of a third

possibility in node θih that intends to identify data gener-

ated by psychological processes different from hyperbolic

discounting (Zeingenfuse & Lee, 2010). Specifically, the

model assumes that θih is low because ph > vih , large be-

cause ph < vih , or that θih = 0.5 regardless of the values of

2The contaminant-detector model assumes individual discounting rates

lie somewhere between 0 and 0.30 because Kirby et al.’s questionnaire is

sensitive to k values in that range. See Figure 1 for details on the prior

distributions.

3In this sense, the node αi works as an auxiliary node that roughly

reflects how strict a subject is when choosing between the two alternatives

in each trial.
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Figure 2: Choice data, inferred discounting rate and inferred contaminant status for two subjects (one per row) that exemplify

contaminant detection. Each circle represents the alternative selected in a given trial: red for SS, and blue for LL. Trials are

ordered (from left to right) from lowest to highest k at indifference. Responses of subject 815 are inconsistent with a single

discounting rate. Accordingly, the model specifies high posterior uncertainty over k, and concludes this subject responded

randomly. In contrast, the choices of subject 675 are ordered and consistent with a small set of possible k values. This subject

is inferred to have responded accordingly to the hyperbolic discount function. See text for details.

Data Posterior over
κi

Posterior over
r i

P
ar

tic
ip

an
t

81
5

0.0003 0.003 0.03 0.3 no contaminant contaminant

P
ar

tic
ip

an
t

67
5

0.0003 0.003 0.03 0.3 no contaminant contaminant

13 1 9 20 6 17 26 24 12 22 16 15 3 10 2 18 21 25 5 14 23 7 8 19 11 27 4

18
6

11
7

16
2

17
9

16
0

15
7

13
6

11
1

11
9

80 89 91 53 62 61 29 30 30 19 21 20 13 14 14 7 7 7

34
35

54
55

78
80

28
30

47
50

80
85

22
25

54
60

67
75

25
30

49
60

69
85

19
25

40
55

55
75

24
35

34
50

54
80

14
25

27
50

41
75

15
35

25
60

33
80

11
30

20
55

31
85

pesos

pesos

days

0.00016 0.0004 0.001 0.0025 0.006 0.016 0.041 0.1 0.25

Question id.

Larger Later

Smaller Sooner

κ at indifference

Chose Smaller Sooner

Chose Larger Later

the SS and LL alternatives. The first two scenarios corre-

spond to subject i being guided by the amounts and delays

of each question in the task, and is represented as ri = 0.

The last scenario corresponds to subject i responding ran-

domly, and is represented as node ri = 1. Note that node

ri is unknown and its value is inferred conditional on each

subject’s data. Before taking data into account, we assumed

each subject was equally likely to be a contaminant or a

non-contaminant, which is represented by the uniform prior

distribution over nodes ri .

To illustrate how the contaminant-detector model works,

we present two exemplar subjects’ data and the correspond-

ing conclusions of this model in Figure 2. In the left panel,

we plotted each subject’s responses coding SS choices as red

and LL choices as blue circles. Note that the order of the

questions in the figure is guided by the discounting rate value

that makes a subject indifferent between both alternatives (k

at indifference).4

In the top row, subject 815’s responses reveal an unordered

and suspicious pattern, visually reflected as blue and red dots

intermixed across the whole question set. Take questions 1

4The actual order of presentation in the paper-pencil instrument is pre-

sented as “question id.” (see Kirby et al., 1999, for details).

and 24 as examples. In question 1, this subject chose the

LL reward, which suggests $55 in 117 days has a larger

subjective value than $54 immediately. However, the same

subject chose the SS reward in question 24, which indicates

$60 in 111 days has a smaller subjective value than $54

immediately. Both responses imply $60 in 111 days < $55

in 117 days. According to the hyperbolic model, choos-

ing a smaller monetary amount delivered later over a larger

amount of sooner delivery is inconsistent behavior. A sim-

ilar inconsistency occurred between questions 19 and 4. In

the former, $80 in 14 days were preferred over $33 with no

delay; in the latter, $31 delivered immediately were chosen

over $85 in 7 days. In summary, the responses of subject

815 are inconsistent with a single discounting rate value, and

therefore suggest her behavior is not guided by the amounts

and delays the task presents.

As a consequence, the contaminant-detector inference

over subject 815’s discount rate, presented in the middle

panel, reflects high posterior uncertainty. Since the re-

sponses from this subject are consistent with several k815

values, the uniform prior is barely updated by her choices

and the model is inconclusive regarding her discounting

rate. Accordingly, the model concludes it is more likely
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Figure 3: One-mixture model. Individual discounting rates

are assumed to come from a single population distribution,

with parameters µ and σ. After observing the data from all

subjects, this model infers each individual’s discounting rate

and both population parameters simultaneously.
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Figure 4: Two- and Three-mixture models. These exten-

sions assume the population of individuals is composed of

two (three) different distributions of hyperbolic discounting

rates. After observing our data, each model inferred individ-

ual discounting rates, each subpopulation’s parameters, and

the subpopulation each individual is more likely to belong to,

simultaneously.

µ1:3 σ1:3

αi

κizi

dh

qh

ph

vih

θih

Cih

h trials

i participants

µ3 „ Uniform
`

µ2, 0.3
˘

µ2 „ Uniform
`

µ1, 0.3
˘

µ1 „ Uniform
`

0, 0.3
˘

σr1:3s „ Uniform
`

0, 20
˘

zi „ Categorical
`

1
3
, 1
3
, 1
3

˘

κi „ LogNorm
`

µzi,
1

σ2zi

˘

αi „ Uniform
`

0, 0.5
˘

vih Ð qh
p1`κidhq

θih Ð

#

αi if ph ě vih

1 ´ αi if ph ă vih

Cih „ Bernoulli
`

θih
˘

that this subject responded randomly, which is represented

in the posterior distribution over node r815 (top row, right

panel). In other words, based on this subject’s choices, the

contaminant-detector model was able to infer subject’s 815

responses were more likely produced by chance rather than

being guided by the set of alternatives in the questionnaire.

In contrast, subject 675 (bottom row) presents an ordered

pattern of responses. With the exception of questions 16 and

18, SS and LL choices appear at the left and right regions of

the plot, respectively, which suggests this subject’s discount-

ing rate at indifference lies somewhere between 0.016 and

0.041. Since most responses are consistent with a small set

of possible discounting rates, the posterior distribution over

k675 assigns more density to a reduced region of the param-

eter, automatically discarding extreme values. The consis-

tency among this subject’s choices and the narrow posterior

distribution over her discounting rate are in line with the pos-

terior distribution over node r675, which strongly indicates

this subject did not respond randomly, and was rather guided

by the amounts and delays of each alternative in the task.

In sum, the contaminant-detector model was able to iden-

tify noise produced by the stochastic nature of choice, such

as questions 16 and 18 for subject 675, and distinguish it

from noise produced by responding the task carelessly, ex-

emplified by subject 815’s responses.

We decided which subjects produced contaminant re-

sponses by computing their posterior means over the

contaminant-detector node. Every subject whose posterior

mean over node ri was larger than 0.5 was labeled “contam-

inant”. Under this criterion, we identified 109 contaminants

(8.5% from the total sample) that were discarded from fur-

ther analysis.

3.2 Mixture models

The models portrayed in Figures 3 and 4 consider subjects

come from either one, two or three group-level distributions

with respect to their discounting rate. The second model,

portrayed in Figure 3, expands the basic structure of the core

model, assuming k is governed by a group-level distribution5

with parameters µ and σ.

The two remaining models, both depicted in Figure 4,

extend the hierarchical structure to assume the group-level

distribution is composed of two and three mixtures, respec-

tively. These models estimate individual group membership

(represented by categorical variable zi) as well as the pa-

rameters that govern each mixture in the overarching hier-

archical distribution. In other words, the two-cluster model

represents the possibility that there are two different sub-

populations of discounters, each characterized by its own

parameter values: µ1 and σ1, and µ2 and σ2. Similarly, the

three-cluster model assumes an additional subpopulation of

discounting rates, and infers the parameter values that govern

each distribution: µ1:3 and σ1:3.

Figure 5 contrasts the data (1175 non-contaminant sub-

jects) against the predictions from each mixture model. In

each panel, subjects are ordered from left to right with re-

spect to the number of LL choices they made, while questions

follow the same order as in Figure 2 (lowest to highest k at

indifference) from bottom to top. In Data, white represents

5Since the natural logarithm of the discounting rates is assumed to be

normally distributed, we employed log-normal hierarchical distributions

over non-transformed kis in all mixture models. See Kirby et al. (1999) for

details.
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Figure 5: Contrast between data and the predictions from the three mixture models. In Data, white cells represent an SS

choice, while black ones account for an LL choice. Red cells represent missing data. The remaining panels show the contrast

between data and each model’s predictions. Grey cells represent the model accurately predicted data. Black and white cells

are cases in which model prediction and data do not concur; in such cases, the color corresponds to the model’s prediction.
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an SS choice, while black accounts for an LL choice. Red

represents missing data. The leftmost section of the data

panel shows a group of 109 subjects (9.28% from the sam-

ple) who selected SS in all trials. In contrast, the rightmost

section of the panel shows 17 subjects (1.45%) who chose

LL in all trials. As for the remaining 89%, two features are

worth mentioning: first, the abundant individual differences

in the data set; second, that this variability can be described

by a relatively smooth line that divides each subject’s SS and

LL choices.

The remaining panels in Figure 5 contrast data with the

predictions of the three mixture models. While grey areas

represent cases in which model prediction and data concur,

black and white line segments are cases in which model pre-

diction and data differ. In such cases, the color corresponds

to the predicted choice. For example, a white segment in-

dicates the model expected an SS answer, but the subject

opted for LL. Furthermore, each panel includes the global

percentage of disagreement between data and the model’s

prediction. A quick inspection of these percentages makes

evident that the two- and three-mixture models do not im-

prove the descriptive adequacy of the one-mixture model

substantially, thus suggesting a single overarching distribu-

tion suffices to describe the variability in our data.

A second reason to prefer the one-mixture model is based

on the Deviance Information Criterion (DIC). This is a mea-

sure of overall model fit, according to which lower values

identify the model with the best out-of-sample predictive

power (Gelman et al., 2004). Figure 6 shows the posterior

distributions over this model-selection criterion, for each of

the mixture models tested. As can be seen, the distribu-

tion for the one-mixture model is centered around slightly

smaller values. More importantly, the two-and three-group

DIC distributions suggest that additional subpopulations do

not improve fit.
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Figure 6: Posterior distributions over the Deviance Infor-

mation Criterion (DIC) for the one-, two-, and three-mixture

models.

1 mixture
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According to the one-mixture model, a full depiction of

variation among individual discounting rates is presented

in Figure 7. Most discounting rates lie at the middle of

the range, which largely reflects the fact that most subjects

switch from SS to LL choices around half the questionnaire.

A small set of ki’s with high posterior density at the extremes

corresponds to subjects that chose mostly SS (highest ki’s)

or LL (lowest ki’s) alternatives.

To examine individual differences in greater detail, Fig-

ure 8 portrays data, discounting rate and the corresponding

discounting function for three subjects. These subjects were

selected precisely because they represent the diversity found

in our dataset. The structure of Figure 8 is the same as

that of Figure 2, with the exception that Figure 8 dis-

cards the contaminant-detector node and instead presents

the inferred discount function, which exemplifies how the

subjective value of a $90 reward decreases when its delivery

is delayed. Note that we have plotted several likely curves

to account for posterior uncertainty over each individual’s

discounting rate.

The subject portrayed in the top row selected the LL alter-

native in 78% of the trials, but opted for the SS alternative

in 22% of the trials in which the delay to the LL alternative

implied a substantial waiting period (over 100 days). The

posterior distribution of her discounting rate is located at the

low extreme of the discounting continuum. For her, a $90

reward would not suffer a drastic loss of value, even after a

delay of 300 days.

The person shown in the middle row selected the SS al-

ternative in 52% of the trials, but chose LL in the remaining

48% of the trials. This subject opted for the LL reward in

Figure 7: Posterior distributions over individual discounting

rates, according to the one-mixture model.
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trials with a short delay to delivery (30 days or less). Con-

sistent with the observed choices, this subject’s posterior

distribution over k is situated in the middle portion of the

region. For this person, a $90 reward would lose most of its

subjective value after 150 days.

Finally, the subject portrayed in the bottom row chose the

SS reward in most trials (82%). The trials in which she

selected the LL reward imply a short delay to delivery (14

days or less). Accordingly, her discounting rate lies at the

high extreme of the continuum. In her case, a $90 reward

would have almost no subjective value if its delivery is even

slightly delayed.

4 Discussion

The present work provides evidence that individual differ-

ences in a delay discounting task can be successfully modeled

assuming subjects originate from one group-level distribu-

tion. While time preferences research has acknowledged the

importance of providing more precise measurements of in-

dividual differences in discounting (Myerson, Baumann &

Green, 2014), these differences have traditionally not been

incorporated into the modeling of intertemporal choices.

That variability in delay discounting can be modeled with
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Figure 8: Choice data, inferred discount rate and inferred discount function for three subjects that exemplify low, medium

and high discounting rates. The discount function shows how a $90 delayed reward would lose subjective value considering

the hyperbolic model and the inferred discount rate of each subject. See text for details.
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one overarching distribution is theoretically relevant and sug-

gests interindividual heterogeneity can be located along a

continuum scale, and therefore can be described by the same

underlying psychological process.

Although we did not find evidence of different subpop-

ulations of individuals within our sample, it is worth high-

lighting the dataset was large enough to find them, if they

were present. Nevertheless, the modeling approach we em-

ployed holds potential for future research that relates delay

discounting in populations that differ in their involvement in

risky behaviors such as drug abuse, credit card debt, gam-

bling, among others.

It is worth noting the present work did not intend to com-

pare the adequacy of different delay discounting models.

We selected Mazur’s hyperbolic function to implement our

modeling approach because this equation has been the most

commonly used to study the relationship between delay dis-

counting and risky behaviors. However, in recent years,

attribute-based models have become an alternative approach

to understanding intertemporal choices. These models as-

sume the different features of an alternative are not inte-

grated into a global value, but instead are compared directly

(Dai & Busemeyer, 2014; Scholten & Read, 2010; Scholten,

Read & Sanborn, 2014). While a detailed discussion on

the adequacy of such models escapes the scope of this pa-

per, we suggest intertemporal choice research can largely

benefit from using the contaminant-detector extensions and

hierarchical-mixture modeling shown in this work.

The Intertemporal Choice Task possesses strengths that

have made its use widespread in time preferences research.

Firstly, it is quick and easy to administer. Secondly, it has met

psychometric standards for reliability and validity. Thirdly,

it has proven to capture behavior differences between drug

and non-drug users (Kirby, 2009). Despite these advantages,

the questionnaire’s scoring method poses complications for

parameter estimation. Because individuals are assigned to

one of 10 possible k categories, it automatically narrows

the measurement of discounting rate, which is implicitly

understood as a continuous variable (Myerson, Baumann

& Green, 2014). Additionally, because traditional model-

ing approaches do not consider the possibility that subjects

answer randomly, unidentified contaminant data can distort

parameter inference. These limitations can be successfully

addressed via Bayesian inference methods.

This study and Vincent (2016) are promising examples of

the use of Bayesian methods in time preferences research.

Bayesian methods prove to be powerful techniques for mod-

eling individual differences in intertemporal decision mak-

ing. Besides providing more information about parame-

ter estimates than traditional inference procedures, they can

effectively identify subjects who produce contaminant re-

sponses. By removing the 8.5% of subjects who answered

randomly from further modeling, we were able to provide

greater precision in parameter estimation at subject- and

group-levels, thus allowing for more robust conclusions.
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While the present work and Vincent (2016) both use

Bayesian methods to estimate parameters in delay discount-

ing, they differ in aspects worth mentioning. As far as general

purpose, he aimed to introduce Bayesian estimation and hy-

pothesis testing for delay discounting tasks, while this work

seeked to model individual differences assuming subjects

come from different subpopulations. In terms of the dataset,

he used a small sample of subjects who behaved similarly;

by contrast, the present research evaluated a considerably

larger number of individuals, providing a dataset especially

well suited to research individual differences. Finally, as far

as the modeling, he assumed a single group level population,

while we explored different group structures to model data.

Studying inter-individual heterogeneity in delay discount-

ing assuming subjects are similar to one another deserves fur-

ther exploration for two main reasons. Firstly, because this

perspective can contribute to the understanding of how peo-

ple solve intertemporal choice dilemmas. Secondly, because

this comprehension has the potential to modify organisms’

consumption choices in several real-world scenarios where

the tradeoff between immediacy and magnitude is constantly

on the agenda.
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