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THE EFFECT OF ANISOTROPY ON THE CREEP OF
POLYCRYSTALLINE ICE

By R. C. LiLe
(Meteorology Department, University of Melbourne, Parkville, Victoria 3052, Australia)

AmstrRACT. Quantitative effects of crystallographic orientation fabrics are incorporated into the flow
law for isotropic polycrystalline ice by the introduction of an enhancement factor applied to the isotropic
fluidity. An aggregate is viewed to a first approximation as a collection of grains deforming independently
by basal glide. The influence of preferred orientations on the mean intragranular rate of strain is treated
in terms of a redistribution of the magnitude and orientation of resolved basal shear stress. A quantitative
measure of this effect on the fluidity of the aggregate is provided through the development of a geometric
tensor and a stress configuration parameter. Intergranular interference is then considered as a dissipative
process modifying the fluidity of the aggregate.

Empirical justification for the model at low octahedral shear stresses is provided by several laboratory
creep tests on naturally anisotropic bore-hole specimens under both in situ and anomalous stress situations.
Predicted enhancement factors ranged from approximately 0.2 to 2.8 and agree well with measured values.
The tests were carried out in uniaxial compression and simple shear.

Resume. Effet d’anisotropie sur le fluage de la glace polycristalline. Des effets quantitatifs liés & I'orientation
cristallographique résultant de la texture sont pris en considération dans la loi d’écoulement généralement
utilisée pour la glace polycristalline isotrope en associant un facteur d’accroissement 2 la fluidité isotrope.
Un agrégat est considéré en premiére approximation comme un ensemble de grains indépendants se défor-
mant d'abord par glissement basal. L’influence des orientations préférenticlles sur la vitesse moyenne de
déformation intergranulaire est traitée en terme d’une redistribution de la grandeur et de Porientation de la
contrainte de cisaillement réduite dans le plan basal. Une mesure quantitative de cet effet sur la fluidité
de I'agrégat est obtenue a l'aide du développement d’un tenseur géométrique et d’un paramétre lié A la
configuration de la contrainte. L’accomodation intergranulaire est ensuite considérée comme un processus
dissipatif modifiant la fluidité de I’agrégat.

La justification expérimentale du modéle dans le cas de faibles contraintes de cisaillement octaédriques est
faite grice a plusieurs essais de fluage en laboritoire sur des carottes de glace naturelle anisotropes a la fois
sous des contraintes, correspondant a celles existant dans les glaciers, et, des contraintes exceptionnelles. Les
facteurs d’accroissement prévus ont des valeurs comprises entre 0,2 et 2,8 et correspondent bien aux valeurs
mesurées. Les essais sont faits par compression uniaxiale et par cisaillement simple.

ZUSAMMEN@ASSUNG.  Der Einfluss der Anisotropie auf das Kriechen von polykristallinem Eis. Quantitative
Einfliisse der kristallographischen Orientierungsstruktur werden in das Fliessgesetz fiirisotropes polykristallines
Eis einbezogen, indem ein Steigerungsfaktor der isotropen Fliessfihigkeit cingefiihrt wird. Ein Aggregat
wird in erster Niiherung als eine Ansammlung von Kérnern betrachtet, die unabhiingig voneinander durch
basales Gleiten verformt werden. Der Einfluss bevorzugter Orientierungen auf die mittlere Dehnungs-
geschwindigkeit in den Kérnern wird durch eine Neuverteilung der basalen Schubspannung nach Grosse
und Orientierung beriicksichtigt. Ein quantitatives Mass dieser Auswirkung auf die Fliessfahigkeit des
Aggregats wird durch die Entwicklung eines geometrischen Tensors und eines Spannungskonfigurations-
parameters gegeben. Gegenseitige Beeintrichtigung der Kérner wird dann als dissipativer Vorgang
betrachtet, der die Fliessfahigkeit des Aggregats verindert.

Das Modell wird bei niedrigen oktaedrischen Schubspannungen durch mehrere Kriechversuche im
Labor an natiirlich anisotropen Bohrlochproben empirisch bestitigt, sowohl unter in situ- als auch unter
anomalen Spannungsbedingungen. Die vorausgesagten Stcigerungsfaktoren erstrecken sich von ungefihr
0,2 bis 2,8 und stimmen gut mit gemessenen Werten iiberein. Die Versuche wurden unter einachsigem
Druck und einfachem Schub ausgefiihrt.

1. INTRODUCTION

Empirical flow laws for polycrystalline ice presently in use are based for the most part on
the suite of existing data relating to tesselate, fine-grained, isotropic polycrystals. Quantitative
effects of preferred crystallographic orientation fabrics are here incorporated into the flow
law for an isotropic polycrystal by the introduction of an enhancement factor applied to the
isotropic fluidity.

The flow law for polycrystalline ice relates the rate of strain tensor ¢ to the stress tensor
oij. Assuming that hydrostatic pressure does not effect the flow law, Glen (1958) showed that
¢ 1s related to the deviatoric stress tensor oy’ through functions of the second and third
deviatoric stress invariants

L, = foy'oy’, (1a)
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I, = Yoiy' o5 oki’ (1b)

In constructing a rheological model to investigate the effects of anisotropy it is useful to
recognize the physical characteristics described by these invariants.
¥,’ is frequently specified in terms of the octahedral shear stress

7o = (o4'045'[3) ¥

= (2%,/3)*

= %‘(712+722+732) 2 (2)
where the ; are the principal shear stresses related by the expression (Jaeger, [1969])

T—T T3 = 0. (3)

A zero subscript hereafter denotes the octahedral value of the associated tensor defined as in
Equation (2). As X’ is (§) times the mean square shear stress evaluated over all surface
orientations, T, is proportional to the root-mean-square (rms) shear stress.

The third deviatoric stress invariant contains information related to stress configuration.
When dependence on X, is eliminated from ;" by scaling the components of oy to an
octahedral value of 21/6, the resulting normalized value of ;' ranges from -1 for uniaxial
tension through zero for pure shear in two dimensions to —1 for uniaxial compression. A
more convenient stress configuration parameter is realized by defining the third deviatoric
stress invariant in terms of the principal shear stresses. The invariant

A = (r3—71)[72 (4)
is non-dimensional and independent of £,” while retaining the symmetry and unity limits
exhibited by the normalized form of X'

Specification of the independent physical invariants 7, and A together with the orientation
of the principal axes of stress is sufficient to define an arbitrary deviatoric stress situation. A
precise definition of an arbitrary orientation fabric f will also be required. Let f be defined
as the volume fraction per steradian of an aggregate of total volume V' possessing optic axes
oriented within the elemental solid angle d€):

_1dV
It follows that the orientation density of an isotropic aggregate, which we shall call f”, is

f=F" = (auj™

Consider an aggregate in which the octahedral strain rate &, is a function of the rms
resolved basal shear stress, as may be expected if the rate-controlling process is basal glide.
Jaeger ([¢1969]) shows that the shear stress resolved on a basal plane with direction cosines /;
relative to the principal axes of stress is

78 = 2(7*2%+ 7222l AR b (6)
Eliminating the ; in Equation (6) using Equations (2), (3), and (4) yields

TB = &7os (7)
where

g i (A—1)2 L2 4d2l2+ (A4 1)2 22 8
*= Ve Az+tg . (®)

is the geometric stress factor (Weertman, 1973) for the grain.

Defining the rms resolved basal shear stress as
1 i
Trms — I:T;'f T2 dV] 3 (9)
v
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and substituting Equations (5) and (7) gives

o o

Equation (10) may be evaluated for an isotropic aggregate using
[, = sin 6 cos «,
[, = sin @ sin a,
l; = cos 0, {xe)
dQ = sin 0 df de.

The result is
Trms = To4/(3/10), (12)

notably independent of A, If, as proposed above, ¢, is a function of 7pms, the implication of
Equation (12) is that for an isotropic aggregate ¢, is a function of =, and not of stress con-
figuration. This suggests a flow law of the form (Nye, 1953)

éo = A7) 7o (13)
The large suite of empirical creep data applicable to isotropic polycrystals presently available
indicates (cf. Weertman, 1973) that ¢, oc 7,", implying (Nye, 1953; Langdon, 1973) that
A oc (7o/G)"t where G is the shear modulus for ice.

Weertman (1963) viewed an ice polycrystal as a collection of grains deforming indepen-
dently by basal glide governed by a monocrystalline flow law of the form

ép = ’\B'TB; (]4)

where ¢p is the basal glide rate and Ap oc (7p/G)"~1 is the basal fluidity. Assuming an
isotropic aggregate in uniaxial compression under an axial stress g, (= 370/v/2) and using
an axial geometric strain-rate factor (b,) to resolve ég into its axial component, he found the
average resolved axial strain-rate to be

éa = AppbacT,. (15)
An additional factor (B) was introduced to account for effects of intergranular interference:;
the factor (Apfbaa) is the axial fluidity of the aggregate. As the axial geometric strain-rate
factor b, is only one component of a general transformation tensor byj, Equation (15) may be
written for each component of &;:
éij = Aijo (16)
Equation (16) may be regarded as a flow law for anisotropic ice deforming in an arbitrary

stress situation, the tensor fluidity A;j = ApBbyx accounting for the efects of fand A through
the composite geometric tensor

&y = byja = ffbtja(f\) dQ. (17)

If the symmetric part of &; is written gy, then the octahedral deformation rate of the aggregate
is Yo = Ag7o, where

Ao = ABB(f, A) &o(f; A). (18)

Finally, consider two aggregates differing only with regard to their orientation fabrics
and deforming under identical conditions of temperature, stress situation, etc. If one is
isotropic, the ratio of their octahedral deformation rates is
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Equation (19) provides a flow law for an arbitrary orientation fabric and stress situation
through application of an enhancement factor E to the flow law for an isotropic aggregate.

As a beginning, the present paper examines the results to be expected at small octahedral
shear stresses where both laboratory and field data indicate an approach to a linear stress-
strain-rate dependence (n = 1). The geometric tensor, interference factor, and enhancement
factor are considered further in Sections 2, 3, and 4, respectively. In Section 5 the results of
several specially designed creep tests are provided to establish an empirical justification for the
model.

2. THE GEOMETRIC TENSOR

Ifit is assumed that the basal glide rate is directed parallel to (Kamb, 1961) and is linearly
proportional to the resolved basal shear stress, then ég = Aar, while Ap is independent of
stress. Let éB be the strain-rate of the grain in a coordinate system x;® associated with the
basal plane such that x,B is parallel to /; and x;® is oriented parallel to the resolved shear
stress. The strain-rate of the grain in the principal stress coordinates is then given by the
transformation

éiy = CriClér®, (20)
where ¢, is the cosine of the angle between the positive x,® axis and the positive x4 axis. As
the only non-vanishing component of égB is é;,® = ég, Equation (20) simplifies, becoming

éij = Csicl:iaAB""m (21)
where ¢y = ; and ¢,5 = ¢,3(A, ;) is a unit vector parallel to the resolved shear stress. Let the
geometrically related factors on the right-hand side of Equation (21) be absorbed into the
composite geometric tensor a; = €;i6j% = bijor.

The bulk strain-rate of the non-interacting aggregate is obtained by forming the volumetric
mean granular rate of strain:

: 1
&y = -I_’f égdl. (22)
v
Substitution of Equations (21), (17), and (5) into (22) gives
&y = GijABT, (23)
It follows that the octahedral deformation rate of the non-interacting aggregate is
YoN = AgNTo (24)
where
AN = ZoAn. (25)

3. THE INTERFERENCE FACTOR

A sufficient condition for accommodation at grain boundaries is that each grain conform
individually to the bulk flow situation (Taylor, 1956). Then each grain must carry out a
rotational and deformational adjustment dg; = — (&;— &), where djy; is the granular rate of
interference. The specific rate of dissipation associated with the adjustment is ¢ = 4dyjoi;’-
Since the process is dissipative, the rate of dissipation for the aggregate is given by the root-
mean-square granular rate
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] i
1= |5 [ Gavear]” (a6)
vV
The simplifying approximation
(3dyoi’)? & 7o%(dy)?, (27)

retains first-order interference effects. Hence, substituting Equation (27) into Equation (26),
I . i
g~ 7 [37’] (dig)? dV]
v

= |5 [ £y aq|’

P2

= Ap7e[xo?— &1, (28)
where
o = ff%z do — % J-faz do. (29)
o o

The effect of this dissipation is an increase in the aggregate viscosity. If A,x~! is the
ambient viscosity prior to the inclusion of interference effects and A,1 is the inclusive viscosity,
we may write after Batchelor (1967, equation 4.11.16)

§ = 6{A"T—Aox™Y) F0n%, (30)
where y,x is the ambient non-interacting octahedral deformation rate given by Equation (24).
Eliminating § between Equations (28) and (30) and introducing Equations (24) and (25)

yields
. ;;_Eoz J
o a1+ (55 T 0
Finally, eliminating the ratio A,/Ap between Equations (18) and (31) yields a first-order
estimate of the interference factor

;F_&oz =t
o [+ o

4. THE ENHANCEMENT FAGTOR

The analytical integration of Equation (17) for an isotropic orientation density using
Equations (11) and the subsequent evaluation of the aggregate octahedral geometric factor
yields*

&(f) = 2(f) = 1.
Combining Equations (29g), (10), and (12) leads to the result
x?(f') =

The isotropic interference factor may then be found by substituting the above values into
Equation (32), obtaining

B/ =1

* Further details will be included in the thesis, now in preparation for submission for the degree of Ph.D. at
the University of Mclbourne by the present author under the title “Rheology of polyerystalline ice’,

16
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It follows, using Equation (19), that the octahedral enhancement factor for an anisotropic
aggregate is

= 5B A) &lfs A). (33)
For a given orientation fabric and stress configuration Equations (17), (29), and (32) must
then be integrated numerically to obtain E( f; A).

The typical creep set-up yields only that strain-rate component associated with the
direction of the applied load. Thus, if the model is to be tested conveniently or applied
generally to past anisotropic creep results, a definition of component fluidity enhancement is
needed. A practical definition is complicated by the need to identify a coordinated system in
which the applied load may be expressed as a single tensor component. For uniaxial and
simple shear (Jaeger, [¢1969]) tests between parallel opposed platens, the required system
x® is clearly associated directly with platen orientation. Let x,* be directed parallel to the
applied shear stress (if any) and x,P be directed parallel to the platen normal and away from
the specimen. It follows that the measured uniaxial and simple shear components are é,F
and &,,P, respectively. If g is the geometric tensor expressed in the x;¥ system, the appro-
priate component enhancements are*

E2(f) = -B%g'ul’(f) B(F), (34)

for uniaxial compression, and

E,2(f) = %g;m BLS), (35)

for simple shear.

5. RESULTS

In view of the paucity of suitably documented creep tests on anisotropic polycrystals,
several experiments were designed specifically to provide empirical as well as model-derived
enhancements in uniaxial compression (A = —1) and simple shear (A = o). The results of
these tests are reported in this section.

Anisotropic ice cores were obtained from two quite different stress situations at Law Dome,
Antarctica. These cores have been subjected in the laboratory to stress configurations
simulating both in situ and anomalous conditions. Three specimens were prepared from the
318 m core at site SGD, the Dome Summit, a region of uniaxial compression (A = —1).
The girdle fabric of the parent core is illustrated in Figure 1c. Two of the specimens (318D1

a . _-“\.“ b :/ b Py - -

Fig. 1. Fabrics of (a) laboratory-prepared isotropic ice, (b) Cape Folger core from 200 m depth sectioned at 45° to the horizontal
and (c) a horizontal section of Dome Summit core from 318 m depth.

* For further details see the author’s doctoral thesis.
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and 318D2) were loaded in uniaxial compression as in situ. The third specimen (318D3)
was tilted go° to the in situ case with the axis of compression normal to the axis of symmetry
of the girdle fabric. The octahedral shear stress and temperature in each of the tests were
0.005 MN m~2 and —10.2°C, respectively.

A second set of three specimens was prepared from the 200 m core at site SGF near Cape
Folger. The parent core exhibited a strong single-pole fabric (Fig. 1(b)), indicative of its
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Fig. 2. Creep curves of axial strain versus time for specimens in uniaxial compression.
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Fig. 3. Creep curves of shear strain versus time for specimens in simple shear.
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history of simple shear (Jaeger, [¢1969]) flow in that region. In order to reinstate the in sifu
stress configuration (A = o), these specimens were mounted between parallel platens and a
constant shear load applied. The plattens were constrained to remain cquidistant to simulate
the in situ situation of simple shear flow. Specimen 200F1 was oriented as in situ (single-pole
axis normal to the platens) while the single pole axes of specimens 200F2 and 200Fg were
tilted at 22.5° and 45°, respectively, to the platen normal into the direction of the applied
shear stress. These tests were carried out at 0.04 MN m~? octahedral and —6.0°C.

With each set, an isotropic aggregate of similar grain size was tested under identical
conditions. A typical orientation fabric for these laboratory-prepared samples is shown in
Figure 1(a). Figures 2 and 3 show the creep curves obtained for the uniaxial and shear tests,
respectively.

Steady-state secondary creep rates were required to evaluate the observed component
enhancements. Reference to Figure 3 suggests that the samples deforming in simple shear had
settled to steady-state creep rates during the latter half of the experiment. Slopes of the creep
curves for the period from 140 to 240 h were thus used to calculate the observed shear en-
hancements.

At the lower temperature and smaller octahedral shear stress used in the uniaxial experi-
ment, the duration of the primary stage of creep was much longer. The residual curvature at
the conclusion of the experiment (Fig. 2) appears to be less for the pre-strained bore-hole
material than for the isotropic sample. Therefore it may be expected that the observed axial
enhancements, based on the slopes of the creep curves between 1 000 and 1 200 h, slightly
underestimate the actual steady-state axial enhancements. The observed component enhance-
ment for each of the six anisotropic specimens with respect to its associated isotropic control
sample is entered in Table 1.

TasLe I. OBSERVED AND MODEL-DERIVED COMPONENT ENHANCEMENTS

Experiment
318D1]2  318D3 200F 1 200F 2 200F3
Computed 1.47 0.86 2.79 0.45 0.21
Observed 1.41 0.83 2.78 0.43 0.22

For each test, the measured orientation fabric, stress configuration, and tilt orientation of
the specimen were presented as inputs to a computer program which performed the numerical
integrations and calculations necessary to evaluate the component enhancements. The
resulting estimates of the component enhancements calculated from the model are listed in
Table T above the observed enhancements.

6. CONCLUSIONS

The close agreement between observed and model-derived enhancements given in Table I
points to the validity of the present linear model at the small octahedral stresses involved.
The restriction of the present model to linear stress—strain-rate dependence suggests a further
examination, theoretical and empirical, of non-linear effects. A preliminary model incor-
porating a power-law rheology predicts that an equivalent power exponent be applied to the
linear enhancements. This result seems to be supported by additional uniaxial and simple-
shear tests on isotropic and natural anisotropic aggregates now completed in the octahedral
stress range between 0.05 and 1.6 MN m™2.

It may be concluded that the use of a flow law derived from laboratory studies of isotropic
ice to model flow in regions of natural ice masses exhibiting strong crystallographic anisotropy
will lead to underestimates of actual strain-rates by a factor likely to be in excess of 10. The
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enhancement factor described here offers an effective quantitative means of accounting for the
major effects of crystallography. If, as field results suggest, the crystallographic fabric of
natural ice masses is distributed in a systematic way throughout, then the enhancement
factor, which depends on the local crystallographic fabric and stress situation, could be used
in a flow law as a function of location.
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DISCUSSION

D. J. Goopman: Taylor’s analysis suggests that five independent slip systems are required for
plasticity. Your analysis discusses only the basal system which provides only three independent
systems. Could you explain how you introduce the other two systems?

R. C. LiLe: The degree to which basal glide alone is unable to account for accommodation
in the aggregate is measured by the residual strain-rate, d;;. While additional systems are
certainly required to supply the residual rate of strain, their effect on the aggregate fluidity
can be determined in terms of the energy dissipated in association with the residual strain-rate.
It may be that only the aggregate itself knows exactly what mechanisms are available and
which are utilized.
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