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Large numbers of relative periodic orbits (RPOs) have been found recently in doubly
periodic, two-dimensional Kolmogorov flow at moderate Reynolds numbers Re ∈
{40, 100}. While these solutions lead to robust statistical reconstructions at the Re values
where they were obtained, it is unclear how their dynamical importance changes with Re.
Arclength continuation on this library of solutions reveals that large numbers of RPOs
quickly become dynamically irrelevant, reaching dissipation values either much larger or
smaller than the values typical of the turbulent attractor at high Re. The scaling of the
high-dissipation RPOs is shown to be consistent with a direct connection to solutions of the
unforced Euler equation, and is observed for a wide variety of states beyond the ‘unimodal’
solutions considered in previous work (Kim & Okamoto, Nonlinearity vol. 28, 2015, p.
3219). However, the weakly dissipative states have properties indicating a connection to
exact solutions of a forced Euler equation. The dynamical irrelevance of many solutions
leads to poor statistical reconstruction at higher Re, raising serious questions for the future
use of RPOs for estimating probability densities. Motivated by the Euler connection of
some of our RPOs, we also show that many of these states can be well described by
exact relative periodic solutions in a system of point vortices. The point vortex RPOs
are converged via gradient-based optimisation of a scalar loss function which (i) matches
the dynamics of the point vortices to the turbulent vortex cores and (ii) insists the point
vortex evolution is itself time-periodic.
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1. Introduction
The dynamical systems view of turbulence considers turbulent flows as trajectories in a
high dimensional space, pin-balling between simple invariant solutions, such as equilibria,
travelling waves (TWs), unstable periodic orbits (UPOs) or relative periodic orbits (RPOs)
in systems with continuous translational symmetry (Kawahara, Uhlmann & van Veen
2012; Graham & Floryan 2021). This perspective gained considerable interest in recent
years following the discovery of unstable travelling waves on the laminar–turbulent
boundary in a pipe (Faisst & Eckhardt 2003; Wedin & Kerswell 2004) and a UPO in a
minimal Couette flow (Kawahara & Kida 2001). Since then, there have been systematic
searches for these simple invariant solutions in a myriad of flow configurations including
pipe flow (Kerswell 2005; Budanur et al. 2017), planar channels (Waleffe 2001; Park &
Graham 2015), plane Couette flow (Gibson, Halcrow & Cvitanovic 2008; Halcrow et al.
2009), Taylor–Couette flow (Krygier, Pughe-Sanford & Grigoriev 2021), body-forced
two-dimensional flows in periodic (Chandler & Kerswell 2013; Lucas & Kerswell 2015;
Zhigunov & Grigoriev 2023; Page et al. 2024b) and wall-bounded (Suri et al. 2020)
configurations, and three-dimensional Kolmogorov flows (Yalnız et al. 2021; Lucas &
Kerswell 2017), to list only a few.

There have been promising instantaneous observations of apparent visits to unstable
simple invariant solutions in experiments and simulations (Hof et al. 2004; Suri et al.
2017, 2018), with perhaps the most convincing being the Taylor–Couette study by Krygier
et al. (2021) showing clear evidence of shadowing of RPOs by the turbulence over multiple
periods. This observed shadowing is consistent with the view in periodic orbit theory,
which was developed to predict statistics of chaotic attractors in uniformly hyperbolic
dynamical systems (Artuso et al. 1990a,b; Cvitanović 1991; Cvitanović et al. 2016).
Periodic orbit theory expresses statistics as weighted sums of the statistics of UPOs,
where the weights are determined by the local stability of each solution (Christiansen,
Cvitanovic & Putkaradze 1997). These results can be straightforwardly adapted to RPOs
in systems with continuous symmetry (Budanur, Borrero-Echeverry & Cvitanović 2015).
However, rigorous application of these approaches requires a complete library of solutions
(see the discussion by Cvitanović 2013) and attempts to use the formulae on a modest
set of RPOs in two-dimensional turbulence proved no better than simply assigning an
equal weight to each solution (Chandler & Kerswell 2013; Lucas & Kerswell 2015). This
has motivated recent data-driven approaches for ‘optimal’ weight estimation within an
incomplete library of exact solutions (Yalnız et al. 2021; Page et al. 2024b; Redfern,
Lazer & Lucas 2024; Pughe-Sanford et al. 2025).

A long-standing limitation in the application of the above-mentioned approximate
statistical reconstruction methods has been the computation of sufficiently large libraries
of dynamically important simple invariant solutions. Recent attempts to remove reliance
on classical recurrent flow analysis to detect RPOs have had some success in significantly
increasing the number of converged solutions, leading to relatively robust statistical
coverage with periodic orbits in moderate-Re Kolmogorov flow (Page et al. 2024b; Redfern
et al. 2024). The hope has been that, with good statistical coverage at one value of Re,
predictions can then be made at higher Reynolds numbers by tracking the RPOs along
their solution branches, though, at present, we have only limited understanding of the
range of Re over which we can expect robust reproduction of turbulent statistics. Previous
continuation efforts have shown that solutions often become increasingly dynamically
irrelevant as Re is increased, with many moving to the laminar–turbulent boundary in
bistable flows (Waleffe 2003; Wang, Gibson & Waleffe 2007). Continuation in wall-
bounded flows also has to contend with the emergence of multiscale structure not
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contained in the low-Re solutions, and efforts have focused on looking for solutions
with this property in reduced order models (McCormack, Cavalieri & Hwang 2024),
though exact solutions have been found to describe vertically localised detached/attached
eddies at high Re (Deguchi 2015; Eckhardt & Zammert 2018; Yang, Willis & Hwang
2019). Furthermore, solutions often emerge in saddle node bifurcations, while the solution
branches themselves may be highly non-monotonic in Re (Gibson et al. 2008; Chandler &
Kerswell 2013). An additional layer of complexity is the need to also understand how the
weights in the statistical expansions should change under increasing Reynolds number.
Here, we make a data-driven assessment of both (i) the range of statistical coverage (in
Re) that is obtainable with a set of solutions converged at a single parameter setting and
(ii) the dependence of the statistical weightings as Re is adjusted.

A large library of converged simple invariant solutions will describe a variety of self-
sustaining processes. Systematically identifying the relevant physical phenomena is a
significant challenge. In three-dimensional shear flows, asymptotic theories have emerged
to describe roll/streak interactions (Hall & Smith 1991; Hall & Sherwin 2010) and the
‘staircase’-like structure of the instantaneous streamwise velocity (Montemuro et al.
2020). In two-dimensional turbulence, there is evidence that ‘dynamically relevant’ exact
solutions connect directly to solutions of the inviscid Euler equation, which can simplify
the elucidation of the underlying mechanics. This connection has been conjectured for
a particular class of ‘unimodal’ solutions in two-dimensional Kolmogorov flow (Kim &
Okamoto 2015; Kim, Miyaji & Okamoto 2017) which share similar vortical features with
the condensate that dominates undamped two-dimensional turbulence at high Re (Smith &
Yakhot 1993) and which become insensitive to the background forcing required to maintain
them in the presence of viscosity. A collection of exact solutions to the Euler equation
(with a regularising hyperviscous term) was obtained recently by Zhigunov & Grigoriev
(2023). The authors were able to show that many of the exact Euler solutions dominated by
a large vortex pair were relevant to the dynamics of finite-Re turbulence. In a later study,
Reynoso, Zhigunov & Grigoriev (2024) found an inviscid mechanism – via a self-similar
class of solutions to the Euler equation assuming a background large-scale hyperbolic
flow – to explain the mechanism of the direct cascade.

A generic feature of the various Euler solutions reported by Zhigunov & Grigoriev
(2023) is that they exist as members of infinite-dimensional continuous families. This
feature is observed in other analytical (smooth) solutions to the Euler equations, with
perhaps the most well known being ‘Stuart vortices’ (Stuart 1967), a row of spanwise
‘cat’s eye’ vortices with uniform counter-flowing streams in the far field. The continuous
family depends on a single parameter, which smoothly deforms the flow from a parallel
tanh mixing layer through the cat’s-eye structures to a row of point vortices. Analogous
solution families have been obtained on the surface of a stationary sphere (Crowdy
2003) and the 2-torus (Sakajo 2019). Other inviscid solutions with some relevance to
the various Navier–Stokes RPOs found in the present study include multipolar solutions
consisting of a central core vortex surrounded by a number of opposite-signed satellite
vortices. These structures have been found analytically as superpositions of vortex patches
with line vortices (Crowdy 1999) and in numerical simulations of instability growth on
axisymmetric vortices of various forms (Carton, Flierl & Polvani 1989; Carnevale &
Kloosterziel 1994; Morel & Carton 1994).

Connections to exact solutions of the inviscid equations have also been conjectured
in decaying two-dimensional turbulence. For instance, Jiménez (2020) showed that most
of the kinetic energy in the early stages of decay, during which the dominant scale of
the kinetic energy is small compared with the domain, is contained in a slowly evolving
quasi-equilibrium ‘crystal’ of vortex cores. The significance of point vortex dynamics in
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the description of two-dimensional turbulence is well known, with compelling numerical
evidence that the dynamics of finite-area vortices can be described by a ‘punctuated
Hamiltonian’ model (Benzi et al. 1992). In this model, vortex motion is governed by
the equations of point vortex dynamics, interrupted only by non-Hamiltonian merger
events. There are large numbers of vortex crystals (this terminology is reserved for exact
relative equilibria with fixed inter-vortex distances, see the review by Aref et al. 2003)
documented in the literature for various numbers of vortex cores, Nv . Many solutions have
been obtained via geometrical or symmetry considerations (e.g. Stieltjes 1900; Lewis &
Ratiu 1996; Aref & Buren 2005). In another approach, free-energy minimisation has been
employed to find extremely large numbers of crystals for large Nv = O(50) (Campbell &
Ziff 1979; Cleary & Page 2023). The latter study made use of gradient based optimisation
on augmented loss functions to search for crystals with specific features, and is adapted
here to find exact point vortex solutions that replicate the key vortex dynamics contained
in a library of Navier–Stokes RPOs.

The aims of this paper are twofold. The first is to investigate how the dynamical
importance of RPOs in two-dimensional Kolmogorov flow changes with increasing Re.
This is achieved by performing a large arclength continuation in Re of a library of RPOs
and tracking their contribution to the turbulent statistics. One intriguing feature of the
solutions obtained at relatively low Re is that many appear to connect directly to solutions
of the unforced Euler equation as Re → ∞. As a result, a second aim of this manuscript
is to attempt to represent the dynamics of the self-sustaining, large-scale coherent vortices
in the RPOs with exact solutions of the point vortex system. In § 2, we formulate the
equations of motion of two-dimensional Kolmogorov flow and the point vortex system
in doubly periodic domains. In § 3, we present the large continuation effort of turbulent
RPOs. In § 4, we present the labelling of the turbulent RPOs via solutions of the point
vortex model.

2. Formulation
We begin this section by introducing two-dimensional Kolmogorov flow and the associated
library of RPOs (§ 2.1) that seed the continuation effort presented in § 3. We present a
method to extract vortex cores from the RPOs in § 2.2, before formulating the doubly
periodic point vortex system in § 2.3, with which we will model the large-scale vortex
dynamics in the Kolmogorov solutions.

2.1. Kolmogorov flow
We consider two-dimensional turbulence in a square domain with periodic boundary
conditions, driven by a monochromatic body force in the streamwise direction. The
out-of-plane vorticity ω= ∂xv − ∂yu, where the velocity u = (u, v), evolves according to

∂tω+ u · ∇ω= 1
Re

∇2ω− n cos ny. (2.1)

In this non-dimensionalisation, we have chosen a length scale 1/k∗, which is the inverse
of the fundamental wavenumber of the domain k∗ = 2π/L∗, and a time scale 1/

√
k∗χ∗,

where χ∗ is the amplitude of the forcing in the momentum equation. These length and
time scales lead to the definition of the Reynolds number in this flow Re :=√

χ∗/k∗3/ν,
where ν is the kinematic viscosity. Throughout this work, we set the forcing wavenumber
n = 4, as has been common in previous studies (Chandler & Kerswell 2013; Page,
Brenner & Kerswell 2021, 2024b).
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Equation (2.1) is equivariant under continuous shifts in the streamwise (x) direction,
Ts :ω(x, y)→ω(x + s, y), under discrete shift-reflects by a half-wavelength in y,
S :ω(x, y)→ −ω(−x, y + π/4), and under discrete rotations by π , R :ω(x, y)→
ω(−x,−y). The existence of the continuous symmetry means that we generically expect
exact solutions to be relative periodic orbits that shift a finite distance in x over one period.
This is the case for the vast majority of solutions in our library.

Some key integral observables reported throughout this work are the total kinetic energy,

E(t) := 1
2
〈u2〉V , (2.2)

the total dissipation rate,

D := 1
Re

〈|∇u|2〉V = 1
Re

〈ω2〉V , (2.3)

and the total production rate,

I := 〈u sin(ny)〉V , (2.4)

where the average over the volume V is defined as

〈•〉V := 1
(2π)2

∫∫
• d2x. (2.5)

We solve (2.1) using the spectral version of the JAX-CFD solver (Kochkov et al. 2021;
Dresdner et al. 2022). At each time step in the solver, the velocity field is computed by
solving the Poisson equation ∇2ψ = −ω, where the streamfunction ψ is related to the
induced velocity components via u = ∂yψ, v = −∂xψ . The resolution is varied depending
on the value of Re: Nx × Ny = 128 × 128 when Re � 150, rising to 256 × 256 when 150<
Re � 300 and finally 512 × 512 when Re> 300.

Our analysis begins with a large set of RPOs converged at Re = 40 and Re = 100, which
are documented by Page et al. (2024a) and Page et al. (2024b) (see those papers for
full details of the solutions, including periods, shifts, Floquet exponents etc.). Altogether,
we begin with 174 RPOs at Re = 40 and 151 RPOs at Re = 100. To investigate how the
dynamical importance of these solutions varies with Re, we perform a continuation of the
solutions at Re = 40 and Re = 100 to higher Reynolds number. The continuation results
in a large set of solutions in the region Re ∈ (30, 1100), with each RPO belonging to a
solution branch initialised at either Re = 40 or Re = 100. Branches can go through multiple
fold bifurcations throughout the continuation, so that Re is not necessarily monotonic
along the curves.

2.2. Vortex identification
Motivated by a possible connection of exact solutions in viscous Kolmogorov flow to
solutions of the Euler equation as Re → ∞ (Kim & Okamoto 2015; Kim et al. 2017;
Zhigunov & Grigoriev 2023), part of this work explores the ability of point vortex
solutions to capture the dynamics of the large-scale vortices in the Navier–Stokes RPOs.
Note that while a Kolmogorov forcing profile is used throughout this work, previous work
(Gallet & Young 2013; Kim et al. 2017; Zhigunov & Grigoriev 2023) indicates that the
large-scale structure of the flow may detach from the forcing in (2.1) at very high Re.

To model the vortex cores of the Kolmogorov RPOs with point vortices, we must first
identify and extract coherent vortices from the turbulent flows. We follow the methodology
of Page et al. (2024a) and first compute the root-mean-square (r.m.s.) vorticity fluctuations
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Figure 1. Application of the vortex extraction criterion discussed in the text to two example snapshots at (a,b)
Re = 100 and (c,d) Re = 400. Contours are of the out-of-plane vorticity, white lines identify regions identified
by the threshold (2.6), purple text indicates the region area and red lines (which here enclose areas so small
they appear as points in the visualisation) highlight which of these regions were discarded due to the bound
imposed on the region area.

ωrms :=√〈(ω(x, t)−ω(y))2〉V , where the overline denotes an average over time and
x direction. Spatially localised vortices are then extracted as any connected regions Vi ,
where

|ω(x, t)−ωrms |� 2ωrms . (2.6)

Some examples of these connected regions extracted from a vorticity snapshot are shown
in figure 1 at both Re = 100 and Re = 400. Note that this method requires that a reference
vorticity magnitude must be chosen (2ωrms in (2.6)), which influences the boundaries of
the extracted vortex cores. This method is agnostic to the shape of the connected region,
so that strong vorticity filaments are also occasionally extracted as vortex ‘cores’ – note
the thin structure stretching across the periodic boundary in figure 1(b).

Following vortex boundary identification, the circulation Γi := ∫
x∈Vi

ω(x) d2x,
vortex area Ai := ∫

x∈Vi
I(x) d2x and the centre of vorticity x̃i = (x̃i , ỹi )= (1/Γi )∫

x∈Vi
ω(x)(x dx, y dy) of each vortex core can all be computed. Similar to the approach
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by Benzi, Patarnello & Santangelo (1987), we consider only ‘large-scale’ vortices,
ignoring any structures with area less than 10 % of the largest vortex Ai < 0.1 max j (Aj )

(see discarded vortices in red in figure 1). Finally, to satisfy the Gauss constraint,∫
ω(x) d2x = 0, we must ensure that

∑
j Γ j = 0, which is enforced by equally modifying

the extracted circulation of each vortex core, Γ j → Γ j − 〈Γ 〉, prior to initialising a point
vortex computation.

Our attempt to fit point vortex solutions is performed at Re = 100. At this value, we find
an average 〈|Γ |〉 = 2.84 with standard deviation σΓ = 2.68 for the extracted cores in the
RPO library (the distribution has a long right tail, see Page et al. 2024a). As a result, the
induced velocities are O(1). This should be contrasted to the much weaker time average
velocity, which is approximately an order of magnitude smaller (statistics are presented in
§ 3.5).

2.3. Doubly periodic point vortex model
We now outline the formulation for the point vortex problem in a doubly periodic
domain. The following equations of motion in this system were first derived by Weiss &
McWilliams (1991). An alternative derivation is presented here following the approach
adopted by Aref et al. (2003) for a periodic strip. We begin by considering Nv point
vortices in an infinite two-dimensional domain without a background velocity, where
the j th vortex is located at the complex position z j = x j + iy j . Each point vortex moves
under the induced velocity from the Nv − 1 other vortices in the domain. The equations of
motion for these point vortices are

ż j = ẋ j − i ẏ j = 1
2π i

Nv∑
k=1

′ Γk

z j − zk
, (2.7)

where the overbar represents the complex conjugate, the dot denotes a time derivative, Γk
is the circulation of the kth point vortex and the prime indicates the omission of
any singular terms (i.e. no self-induced velocity from j = k). These equations form a
Hamiltonian system (e.g. see Batchelor 1967),

Γ j ż j = −1
i

∂Hu

∂z j
, (2.8)

where the unbounded Hamiltonian is

Hu = − 1
4π

Nv∑
j=1

Nv∑
k=1

′Γ jΓk log |z j − zk |. (2.9)

This result can be generalised to the bounded, doubly periodic L × L domain by
introducing ghost vortices at z j + nL + imL with m, n ∈Z\{0}, j ∈ {1, . . . , Nv}. The
equations of motion then become

ż j = 1
2π i

∞∑
n,m=−∞

Nv∑
k=1

′ Γk

z j − zk − nL − imL
. (2.10)

We can make use of the identity
∞∑

n=−∞

1
x − n

= π cot(πx) (2.11)
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to simplify (2.10) by evaluating either the summation over n

ż j = 1
2Li

∑
k

Γk

∞∑
m=−∞

cot
(
π

(
z j − zk

L
− im

))
, (2.12)

or over m

ż j = 1
2L

∑
k

Γk

∞∑
n=−∞

cot
(
π i

(
z j − zk

L
− n

))
. (2.13)

Equations (2.12) and (2.13) correspond physically to an infinite number of strips, periodic
in the horizontal and vertical directions, respectively (Aref et al. 2003). We can then use
the trigonometric identity

cot(a + ib)= sin(2a)− i sinh(2b)

cosh(2b)− cos(2a)
(2.14)

to extract ẋ j from (2.13) and ẏ j from (2.12). This results in the final equations of motion
for the doubly periodic domain

(
ẋ j
ẏ j

)
= 1

2L

Nv∑
k=1

′Γk

∞∑
n=−∞

⎛
⎝−Sn

(
2π
L (y j − yk),

2π
L (x j − xk)

)
Sn

(
2π
L (x j − xk),

2π
L (y j − yk)

)
⎞
⎠, (2.15)

where

Sn(a, b)= sin(a)
cosh(b − 2πn)− cos(a)

. (2.16)

The reason for extracting ẋ j from (2.13) rather than (2.12) is due to the need to numerically
truncate the summations. Consider, for example, the equilibrium configuration of Nv = 4
point vortices with equal circulation magnitude, equispaced in the periodic domain.
Truncating the summation in (2.13) at finite n results in two unmatched ghost vortices
in the final vertically periodic strip in the summation, which causes a very small, but
non-zero induced velocity in both the x and y directions. However, this induced numerical
‘drift’ in x is substantially weaker than in y. The same argument can be made for extracting
ẏ j from (2.12), where the number of horizontal strips is truncated.

These equations of motion with L = 2π match those derived via the method of Laplace
transforms by Weiss & McWilliams (1991) (up to a rescaling of time to match their
conventions). Weiss & McWilliams (1991) also derived the Hamiltonian for the doubly
periodic system of point vortices

H = − 1
4π

Nv∑
j,k=1

′Γ jΓk

2
h

(
2π
L
(x j − xk),

2π
L
(y j − yk)

)
, (2.17)

where

h(a, b)=
∞∑

m=−∞
log

(
cosh(a − 2πm)− cos(b)

cosh(2πm)

)
− a2

2π
. (2.18)

This Hamiltonian is clearly even in both x and y. It is clearly periodic in y – periodicity
in x can be shown by manipulation of the sum truncated at large M , before taking the
M → ∞ limit. The periodic boundary conditions break the rotational symmetry of the
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unbounded domain, leaving two additional constants of motion,

Px =
Nv∑
j=1

Γ j x j , Py =
Nv∑
j=1

Γ j y j , (2.19)

arising from the translational symmetry in x and y, respectively.
We solve (2.15) using a differentiable point vortex solver JAX-PV, developed in our

previous work (Cleary & Page 2023). This numerical solver is built on the JAX library
(Bradbury et al. 2018), to allow for efficient computation of the gradient of the time-
forward map f t (x) of (2.15), where x := (x1, y1, . . . , xNv , yNv ), with respect to x. The
JAX framework also brings efficiency benefits such as just-in-time compilation and auto-
vectorisation. Time integration is performed with the symplectic second order Runge–
Kutta scheme at a fixed time step of δt = 10−3.

3. Continuation of Kolmogorov RPOs

3.1. Continuation in Re
In this section, an arclength continuation effort of the library of RPOs in two-dimensional,
doubly periodic Kolmogorov flow is presented. As discussed in § 2.1, the starting library
of RPOs for the continuation comprises 174 solutions at Re = 40 and 151 solutions at
Re = 100. Each of these solutions is defined by the state vector X = [ω, s, T ]T , where ω
is a vorticity snapshot along the RPO, s is the required translational shift and T is the
period of the RPO. To begin the continuation of a branch, a starting solution X(Re0) at
Re0 is naively perturbed in Re by δRe, Re1 = Re0 + δRe. Using X(Re0) as the initialisation
at Re1, this solution is converged via a standard Newton-GMRES-Hookstep solver to yield
X(Re1). This is robust as long as δRe is small, but cannot work when there are turning
points in the solution branch. For this reason, the continuation proceeds via arclength
continuation after the first successful convergence. The branch is then instead parametrised
by its arclength r , which increases monotonically along the branch. The state vector is
extended to include Re, i.e. X(r)= [ω, s, T, Re]T , along with an additional constraint

∂X
∂r

· ∂X
∂r

= 1, (3.1)

to match the additional unknown. The next step size in arclength δr is controlled by

δri−1 =
√
(X(ri−1)− X(ri−2))2, (3.2)

so that X(ri = ri−1 + δri−1) is computed via the modified Newton-GMRES-Hookstep
solver with the extra constraint (3.1). The initialisation for X(ri ) was set by linearly
extrapolating along r from the previous two states along the branch X(ri−2) and X(ri−i ).
The methodology matches that presented by Chandler & Kerswell (2013), and full details
can be found in the appendix of that paper.

The continuation algorithm was automated in the following ways. For each branch, the
initial perturbation in Re was set to δRe = 2.5. If the perturbed solution was not converged
by the standard Newton-GMRES-Hookstep solver, δRe was halved repeatedly until a
convergence was found, up to a maximum of four halvings. After this first successful step
in Re, the step size in arclength δr was set according to (3.2), and X(ri ) was initialised
using the two existing states along the branch. If the initialised state was not converged
by the modified Newton-GMRES-Hookstep solver, then δr was halved repeatedly until a
convergence was found, again up to a maximum of four halvings. The number of halvings
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of δr required for convergence was recorded along the branch, as a proxy for the ease of
convergence along the branch. If both previous solutions along the branch did not require
any halvings, then δr was doubled, to speed up the continuation. Convergence of a solution
was deemed to have failed if either (1) more than 100 Newtons iterations were required or
(2) more than 10 Hooksteps were required more than three times. Continuation of a branch
was also terminated if either (1) more than 50 solutions were converged along that branch,
a restriction added due to many curves repeatedly folding, or (2) δr was halved more than
four times for the current solution. The starting Re = 40 RPOs were continued upwards
in Re, while the starting Re = 100 RPOs were continued in separate computations both
upwards and downwards in Re.

Long trajectories of Kolmogorov flow were also simulated at various Re ∈ [30, 1000] to
compute reference turbulence statistics. We use the probability density function (p.d.f.)
of the dissipation in these long computations as a simple measure of the dynamical
significance of the RPOs to the turbulence, labelling a solution as ‘dynamically relevant’
if its mean dissipation rate D lies between the 1st and 99th percentile of the reference
p.d.f. This method is chosen for its simplicity and ease of evaluation, but will lead to
some mislabelling. Better observables should be considered in future work (see e.g. the
strategies of Krygier et al. (2021) and Page et al. (2024b)). Each long trajectory was
simulated for 105 advective time units, and sampled at intervals of 1 advective time unit.
Contour plots of the p.d.f.s of the dissipation of these trajectories are shown in various
figures throughout the paper to aid identification of the turbulent attractor, with boundaries
of the dynamically important region of the turbulent attractor indicated by dashed black
lines.

The time-averaged dissipation rate for the RPOs along each branch was computed and is
plotted in figure 2 over the background turbulent p.d.f.s. This quantity was chosen to reveal
the scaling of the volume-averaged velocity gradients with Re for each branch. The scaling
of the time-and-volume-averaged dissipation, scaled by Re, Re D, of the fully turbulent
flow is also shown in the bottom panel of figure 2 and matches the ‘asymptotic’ scaling
of Re1/2 identified by Chandler & Kerswell (2013) (their observations held for Re � 200).
The majority of branches seeded from RPOs at Re = 100 do not leave the region Re ∈
[60, 200], with the branches repeatedly turning (this was the reason for terminating many
continuations at 50 steps).

In the top panel of figure 2, the number of monotonic-in-Re subsections of solution
branches is tracked – this is a proxy for the number of unique RPOs in a particular Re
interval. The number of dynamically important solutions decreases more sharply with
Re than the total number of monotonic subsections. This departure of the RPOs from
‘dynamically relevant’ dissipation values could be attributed to a number of causes. One
is the (unlikely) exit from the attractor of RPOs via boundary crises. Alternatively, the
RPOs may remain in the attractor but with an increasingly rare probability of visits from
a turbulent orbit, hence, it is deemed dynamically irrelevant under our scalar-observable
based criterion. Finally, there is the possibility that the solutions were not in the attractor
when they converged, but close by. This is not something that is obvious from low-
dimensional projections which are typically used to assess the closeness of an RPO to
the turbulence, but does seem to be borne out by the following analysis.

To facilitate a discussion about the Re → ∞ behaviour of the solutions, the branches
are labelled as belonging to one of three classes according to the dynamical importance of
the final RPO on each branch, as assessed by comparison to the turbulent PDF described
previously. The final RPO of branches in class 1 have a larger dissipation rate than the
dynamically important region, class 2 solutions lie in the dynamically important region
(many remain confined to a small range of Re) and class 3 solutions have a smaller
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Figure 2. Continuation of periodic orbits and their overlap with the turbulent dissipation p.d.f. (Top)
Histograms of the number of monotonic-in-Re subsections Nupo of all solution branches (grey) and monotonic-
in-Re subsections fully within the dynamically important region (red) as a function of Re. Both histograms are
computed using 50 bins, spaced logarithmically over the range Re ∈ [20, 1000]. (Middle) The time-averaged
dissipation rate Re D against Re of the arclength continuation of the initial library of RPOs starting at both
Re = 40 and Re = 100. The contour plot shows the reference p.d.f.s of dissipation rate, with the 1st and 99th
percentiles indicated by the dashed black lines. The red/blue/green branches indicate those with terminal RPOs
above/within/below this dynamically important region. Circles denote the terminal solution along each branch.
Filled circles denote the branches which were terminated as 50 states were converged, while empty circles
denote the branches which could not be continued further. (Bottom) The time-averaged, scaled dissipation rate
Re D of a long-time simulation is shown as a function of Re (black), as well as the scaling law Re1/2 (blue).

dissipation rate than the dynamically important region. These three classes are coloured
in red, blue and green, respectively, in figure 2. At high Re, the average dissipation rate of
RPOs in class 2 scales similarly to the turbulent attractor, while those in class 1 and class
3 scale more strongly (most with a scaling D ∼ Re) or weakly (D ∼ 1/Re – though we are
lacking large numbers of solutions in this regime), respectively. Note that the vast majority
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Figure 3. Time-averaged, scaled dissipation rate Re D against Re for three representative branches in class 1.
A single vorticity snapshot for each highlighted RPO (circled numbers 1–3) at points indicated by crosses on
the branch are shown in a row on the right of the figure, with arclength increasing from left to right. Note the
different colour bars for each panel, highlighting the strengthening vortical structures.

of solutions in classes 1 and 3 appear to continue monotonically with Re after they leave
the dynamically relevant region.

3.2. Class 1: connections to exact unforced Euler solutions
Some example branches from solution class 1 are shown in more detail in figure 3. The
RPOs in this class have stronger dissipation rates than the turbulence, or equivalently larger
enstrophy 〈ω2〉V . As a result, class 1 solutions have very defined vortical structures – e.g.
see the horizontal bars and clear vortex cores in figure 3. The strength of the local vorticity
associated with these features increases dramatically as Re is raised. For example, the
maximum vorticity nearly triples for the last two points highlighted in the second row of
figure 3, while Re increases from approximately 100 to 220.

The increasingly strong vorticity fields in class 1 meant that the baseline resolution
was often inadequate as the continuation proceeded upwards in Re. As a result, some of
the initial computations terminated due to a failure to converge before reaching 50 states.
These branches are identified with filled diamonds in figure 3, and were continued further
at this point by doubling the number of Fourier modes in both spatial directions. For
solutions which began at Re = 40, it was sometimes necessary to double the resolution
again (to a maximum of 512 × 512) to follow the branch further upwards in Re.

The dissipation scaling D ∼ Re is consistent with an enstrophy 〈ω2〉V ∼ Re2, which
impliesω= O(Re) if the vortex cores do not shrink. This scaling is confirmed for a number
of branches in class 1 in figure 4, and the velocity field (largely induced by the high
amplitude vortex cores) also follows this scaling. In addition, the Re-dependence of the
period of the RPOs is also shown in figure 4, and scales like TRPO ∝ 1/Re. The horizontal
shift associated with the class 1 RPOs (figure 4d) does not exhibit a consistent scaling
with Re – though the majority solutions appear to exhibit sRPO ∼ constant as Re increases.
These scalings motivate the introduction of new variables Ω :=ω/Re, U := u/Re and
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Figure 4. Scalings with Re of (a) the periods TRPO, (b) maximum vorticity values max |ω|, (c) maximum
velocity values max |u| and (d) shift for a subset of branches in class 1.

τ := Re t , from which (2.1) becomes

∂τΩ + U · ∇Ω = 1
Re2 (
Ω − n cos ny). (3.3)

An asymptotic solution would then be sought in the form of a regular perturbation
series:

Ω(x, τ )=Ω0(x, τ )+ 1
Re2Ω1(x, τ )+ · · ·, (3.4)

U(x, τ )= U0(x, τ )+ 1
Re2 U1(x, τ )+ · · ·. (3.5)

At each order, 
Ψi = −Ωi , where Ψi is the streamfunction associated with U i . The
dynamics at leading order are therefore governed by the inviscid vorticity equation (the
curl of the Euler equation)

∂τΩ0 + U0 · ∇Ω0 = 0, (3.6)

while the first-order correction is

∂τΩ1 + U0 · ∇Ω1 + U1 · ∇Ω0 =
Ω0 − n cos ny. (3.7)

The existence of a solution to the first-order problem requires that a series of solvability
conditions are satisfied, ∫ T

0
〈ζ j (
Ω0 − n cos ny)〉V dτ = 0, (3.8)

where – as shown by Zhigunov & Grigoriev (2023) – the {ζ j } are eigenfunctions associated
with continuous symmetries of the T −(relative) periodic Euler solution Ω0(x, τ ). This is
a generalisation of the solvability condition of Okamoto (1994) for steady solutions, which
is identical to the physical constraint derived by Batchelor (1956).

The analysis here suggests a direct connection of the finite-Re solutions to solutions of
the unforced Euler equation, where it is well known that solutions exist as continuous
families due to the conservation of Casimir functions (Stuart 1967; Zhigunov &
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Grigoriev 2023). However, we expect that each viscous solution should connect to a single
‘member’ of an Euler family, which is selected through the viscous solvability conditions
(3.8) (Okamoto 1994) – no further bifurcations associated with other ‘members’ of a
solution family at finite Re are necessary as there is no direct connection.

The scalings of class 1 solutions with Re reported in figure 4 confirm the expected
asymptotic behaviour. These results indicate that many Kolmogorov flow solutions found
as low as Re = 40 – which have a structure at low Re that depends intimately on the
forcing – connect directly to solutions of the unforced Euler equation. The various
‘turbulent’ RPOs found here complement the ‘unimodal’ states of Kim & Okamoto (2015),
which also appear to connect to solutions of the unforced Euler equation as Re → ∞.
Those authors used a framework in which the body force was assumed to be O(1/Re)
in the momentum equation, though this is equivalent to the O(1) force considered here
after the rescaling used to produce (3.3); see also the discussion of Kim & Okamoto
(2010). Kim & Okamoto (2015) observed unimodal Euler solutions to emerge for 500 �
ReKO � 100 000, where their Reynolds number, ReKO, is related to ours by Re ≈ √

ReKO
(approximate because of differences in the forcing profile). Their vorticity profiles, which
have ωKO = O(1) as ReKO → ∞, would also scale like ω= O(Re) using our conventions.
The Re values where unimodal states are found by Kim & Okamoto (2015) correspond in
our problem to a range 22 � Re � 300, which agrees well with the Re values for which the
class 1 scaling becomes apparent.

Furthermore, some of our class 1 solutions share qualitative similarities with the Euler
solutions reported by Zhigunov & Grigoriev (2023). Of the 184 solutions labelled as ‘class
1’, 18 consist of a pair of opposite-signed vortices – similar profiles were reported by
those authors (e.g. see example (3) in figure 3). Ratios of the time-averaged enstrophy and
energy for these class 1 RPOs are typically found to be between approximately 5 and 10
(not shown), somewhat higher than those reported by Zhigunov & Grigoriev (2023), which
were between 2 and 4, while the appropriately scaled periods for our RPOs are also much
larger, T Re = O(100). However, it is still possible that some of our states are connected
to those shown by Zhigunov & Grigoriev (2023), which could presumably be checked
by converging the leading (Euler) component of the solution and performing homotopy
through the continuous solution families.

The class 1 solutions discussed here, some of which were highlighted in figure 3,
indicate that a direct viscous-to-inviscid connection is possible for a wide variety of flow
states beyond the unimodal states discussed here (Kim & Okamoto 2015; Kim et al. 2017;
Zhigunov & Grigoriev 2023). The scaling of this solution class relative to the turbulence
would seem to suggest that these states, while ‘dynamically relevant’ by our definition at
the Re values where they were converged and potentially similar to turbulent trajectories,
were outside of the turbulent attractor.

3.3. Classes 2 and 3
The RPOs in classes 2 and 3 tend to be dominated by two oppositely signed vortices,
arranged similarly to the vortex condensates typically seen in high-Re and Euler solutions
(Zhigunov & Grigoriev 2023; Page et al. 2024a). The large-scale opposite-signed vortex
pair in class 3 branches is less distinct from the background vorticity than in class 2
branches – class 3 solutions still appear to show evidence of the n = 4 forcing wave.
Multipolar structures (Carton et al. 1989; Morel & Carton 1994) are observed in the
class 2 solutions. For example, note the co-rotating same-signed vortex ‘bound state’
in the top row of snapshots in figure 5, and the ‘tripole’ structures (central core with
two opposite-signed satellites) in the second and third rows of figure 5. In the middle
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Figure 5. Time-averaged, scaled dissipation rate Re D against Re for three representative branches in class 2.
Three RPOs along each branch are sampled (indicated by crosses) and visualised on the right of the figure.
A single vorticity snapshot for each highlighted RPO (circled numbers 1–3) at points indicated by crosses on
the branch are shown in a row on the right of the figure, with arclength increasing from left to right.
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Figure 6. Time-averaged, scaled dissipation rate Re D against Re for three representative branches in class 3.
Three RPOs along each branch are sampled (indicated by crosses) and visualised on the right of the figure.
A single vorticity snapshot for each highlighted RPO (circled numbers 1–3) at points indicated by crosses on
the branch are shown in a row on the right of the figure, with arclength increasing from left to right.

row (solution ‘2’) in figure 5, the tripole structure weakens with increasing Re, and the
vorticity field becomes dominated by the opposite-signed large-scale vortices. In contrast
to the class 2 solutions, the vorticity strength of solutions in class 3 remains practically
constant, even as Re is increased by an order of magnitude from Re = 100 to Re ≈ 1000.
The dominant structures visible in the solutions in class 3 also vary remarkably little with
these large changes in Re.

The apparent asymptotic behaviour of the class 3 solutions, with D ∼ 1/Re, is
consistent with vorticity fields ω= O(1) (as shown in figure 6). We also observe
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Figure 7. Full range of production I at each Re for the three furthest continued class 3 solutions.
A logarithmic colourmap is used, and the numbering corresponds to the numbered branches in figure 6.

that TRPO ≈ constant as Re increases (not shown). This behaviour is consistent with
a connection to solutions of a forced Euler equation. To see this, consider a regular
perturbation expansion (ω, u)= (ω0, u0)+ Re−1(ω1, u1)+ · · ·, from which the leading
order contribution satisfies

∂tω0 + u0 · ∇ω0 = −n cos ny. (3.9)

There are no dissipation mechanisms, hence, for T -periodic solutions, the forcing term
must extract the same amount of kinetic energy it injects over a cycle,∫ T

0
I dt =

∫ T

0
〈u0 sin ny〉V dt = 0. (3.10)

The production over a complete cycle of three class 3 RPOs is reported in figure 7 along
the solution branches. For two of the branches (labelled ‘1’ and ‘3’), negative values of the
production are realised at higher Re, which is consistent with a forced-Euler connection in
the limit Re → ∞. Further continuation would be necessary to verify this trend.

3.4. New RPOs at Re = 100
Due to the non-monotonicity of the solution branches, the original library at Re = 100 can
be supplemented with new RPOs by slicing branches anywhere they cross Re = 100 in
the arclength continuation. As a result, 101 new RPOs at Re = 100 were converged. The
initialisations in the Newton convergence for these new RPOs were generated by linearly
interpolating between the two RPOs which bracket the point where the branch crosses
Re = 100. Some branches crossed Re = 100 more than once to yield more than one new
unique RPO.

These new RPOs are reported in figure 8 in terms of their production, I , and dissipation
D, normalised by the laminar value. Due to the localised nature in phase space of these
RPOs, full coverage of the turbulent p.d.f. at this Re is difficult, and requires a large number
of solutions. These new RPOs go some way to increasing the coverage of the turbulent
p.d.f., though gaps remain at higher D and the tails of the I marginal p.d.f. are not covered.

3.5. Reconstruction of turbulent statistics
A variety of statistics, including full dissipation and energy p.d.f.s, were recently
successfully reconstructed via an expansion in the statistics of individual RPOs at Re = 40
by Page et al. (2024b). In that paper, the weights in the expansion were determined from
the invariant measure of a Markov chain, where the ‘states’ on the chain were the RPOs,
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Figure 8. Energy dissipation rate D against energy production rate I at Re = 100, both normalised by the
laminar dissipation Dlam = Re/(2n2). The 101 new RPOs at Re = 100 from the continuation are shown in red,
the starting library of 151 RPOs are shown in blue. The grey background is the p.d.f. computed from a trajectory
of 105 samples, separated by 1 advective time unit. The contour levels of the p.d.f. are spaced logarithmically.
(a) New very high dissipation RPOs, far from the turbulent attractor, which resulted from the continuation of
the very high dissipation RPOs at Re = 40. (b) Zoom-in on the turbulent attractor.

and the current state on a turbulent trajectory was assigned by measuring the distance
to each RPO in the latent space of an autoencoder and identifying the closest solution.
We adopt a similar approach here across Re ∈ [40, 300], albeit without building Markov
chain models. Instead, RPO weights are determined by fitting to a single representative
statistic, and their robustness is then assessed by reconstructing other statistics using the
same weights (see the approach of Redfern et al. 2024). We generate the various libraries
of RPOs at each target Re by slicing the solution branches from the arclength continuation,
as described in § 3.4. This allows us to track how the weights of each RPO change as Re
is increased and assess the utility of RPOs converged at one Re value in making statistical
predictions at higher values.

The number of unique solutions converged at each Re considered is shown in figure 9.
There is a reduction in the number of solutions reported here compared with the number
of monotonic-in-Re subsections of the solution curves reported in figure 2 due to multiple
interpolated initial guesses in Newton sometimes converging to only one of the possible
solutions on a branch repeatedly folding back and forth (e.g. both the lower and upper
branch pair at a saddle node converging to the lower-branch solution). This could be
improved by reducing the arclength step sizes in the original branch continuation. There
are two distinct peaks in figure 9 at Re = 40 and Re = 100, as the arclength continuation
was seeded from solutions at these values. The substantial drop in numbers of solutions at
the higher Re regimes commented on in § 3.1 is also apparent – there is a near-exponential
drop off in the solutions. Many of the solutions counted in figure 9 are dynamically
unimportant and will not contribute to the reconstruction of the turbulent statistics.

We compute a fixed set of weights at a given Re, {wj (Re)}Np(Re)
j=1 , where Np(Re) is

the total number of RPOs found at that Re value. The ansatz, inspired by periodic orbit
theory (Artuso et al. 1990a; Cvitanović 2013), is that the normalised distribution pw of
any observable γ :M→R

n (here, M is the state space) can be constructed via a linear
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Figure 9. Number of unique RPOs converged by slicing the arclength continuation at discrete values of Re.

superposition of the RPO statistics for that same observable:

pw(γ )=
∑Np

j=1 wj pj (γ )∑Np
j=1 wj

, (3.11)

where pj (γ ) is the distribution of the j th RPO and we are suppressing all dependencies on
Re for clarity. We find the weights by minimising the Kullback–Leibler (KL) divergence
between the reconstructed observable distribution and the distribution of the target
turbulent statistic q,

DKL(pw‖q)=
∫

pw(γ ) log
(

pw(γ )

q(γ )

)
dγ. (3.12)

Optimisation of the weights proceeds via gradient-based optimisation of DKL, using the
Adam optimiser (Kingma & Ba 2015) with an initial learning rate of 10−2. To ensure that
the weights wj ∈ [0,∞), we write them in terms of a ‘softplus’ function,

wj = σ+(ŵ j ) := log(1 + eŵ j ) ∈R+, (3.13)

and optimise for the latent representation ŵ j ∈R. The softplus function is a smooth
approximation to the typical rectifier or ReLU function and ensures that the weights are
strictly positive. The stopping criterion for convergence is set to

Di
KL − Di−1000

KL

Di
KL

< 10−8, (3.14)

where Di
KL denotes the KL divergence at the i th optimiser iterate. This optimisation

amounts to fitting to a one-dimensional curve and is almost instantaneous on modern
hardware – negligible compared with the cost of converging the underlying solutions.

A key feature of the weights obtained via periodic orbit theory is that they are
fixed by properties of the underlying exact solutions and do not vary between statistics.
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Figure 10. DKL loss for the reconstruction of D/Dlam (blue circles), I/Dlam (orange squares) and E/Elam
(green diamonds) as a function of Re, each normalised by DKL at Re = 100 of the training observable, which
was set to D, I and E respectively in panels (a)–(c). Unfilled markers denote this training observable in each
panel. The weights were then fixed when reconstructing the distributions of the other two test observables.
The normalisation constants are the laminar dissipation rate Dlam = Re/(2n2) and the laminar energy Elam =
Re2/(4n4).

Accordingly, robustness of the weights determined in the data-driven approach can be
checked by computing the weights using a single ‘training’ statistic, using these fixed
weights to reconstruct other ‘test’ statistics at the same Re, and then comparing KL
divergences. Three observables are considered here as training statistics – the normalised
dissipation rate D/Dlam , normalised production rate I/Dlam and the normalised energy
E/Elam .

The KL divergence of the three observables are shown as a function of Re in figure 10,
setting the training observable (unfilled markers) to one of the three statistics in each
panel. The KL divergences are normalised by the KL divergence of the training observable
at Re = 100. Both D and E (figure 10a,c) as training statistics lead to relatively robust
reconstruction of statistics in the range 40 � Re � 150, with a noticeable increase in
DKL for all p.d.f.s beyond this point. This observation is consistent with the decreasing
number of dynamically relevant solutions estimated in figure 2. The least robust observable
appears to be I/Dlam , exhibiting the largest discrepancy between the training and
test reconstructions of typically two orders of magnitude across all values of Re. The
reconstruction above Re = 300 is not shown due to the lack of dynamically important
solutions.

Unlike more standard error metrics, the KL divergence (which is not a metric) is not
straightforward to interpret, and the performance of the reconstruction is assessed further
in figure 11, where the p.d.f.s are compared with direct numerical simulation (DNS)
ground truth, with D as the training statistic. As expected, the reconstruction of D itself
is fairly well represented by the RPOs – particularly at Re ∈ {40, 100} where the solutions
were originally converged – but with some gaps in the higher dissipation tails. At other Re
values, the reproduction of the high-dissipation tails deteriorates. This can be attributed to
the emerging dynamical irrelevance of solution class 1, which climb to increasingly high
dissipation rates to connect to inviscid solutions and which may be outside of the turbulent
attractor. Unsurprisingly, the reconstruction of the more probable production rates is also
fairly robust, though the high-I tail is only really apparent from the RPOs at Re = 40.
However, reconstruction of the kinetic energy p.d.f. is noticeably poor compared with D
and I , particularly outside of the Re where solutions were originally converged.
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Figure 11. Reconstruction of turbulence statistics for increasing Re from the top row to the bottom row, with
weights obtained using D/Dlam as the training observable. (a) From left to right, the reconstructed normalised
dissipation rate D/Dlam , normalised production rate I/Dlam , and normalised energy E/Elam are shown in
grey, while the true turbulent distributions are shown in blue. (b) In the left panels, the true turbulent mean
velocity profile U (y) is shown in blue, while the reconstructed profile is shown in black. In the right panels, the
true turbulent r.m.s. velocity fluctuations urms (blue continuous line), vrms (orange dotted line), averaged over
the streamwise direction, discrete symmetries and time, are shown, while the reconstructed profiles are shown
in black.

Notably, the p.d.f. reconstruction fails to represent the high-I tails or to reproduce the
negative values of production observed at higher Re values. This is perhaps surprising
given the relatively robust reconstruction of the dissipation and the fact that D = I when
averaging is over any relative periodic solution. However, note that the production p.d.f.
is significantly wider than that of dissipation. For instance, peak values of I for Re � 100
increase to more than twice the peak dissipation values (see p.d.f.s in figure 11). Therefore,
a periodic orbit with time-averaged dissipation D that samples these extreme I values will
need to spend longer in the low-I region. The absence of this behaviour in our solution
library is therefore likely due to the relatively short periods of the converged cycles.

1020 A52-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
67

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10673


Journal of Fluid Mechanics

Re ε(μ̂D) ε(σ̂ 2
D) ε(μ̂I ) ε(σ̂ 2

I ) ε(μ̂E ) ε(σ̂ 2
E )

40 0.012 0.031 0.011 0.097 0.006 0.092
60 0.089 0.022 0.09 0.056 0.025 1.576
80 0.053 0.365 0.054 0.568 0.059 1.227
100 0.013 0.136 0.015 0.563 0.037 2.812
120 0.002 0.057 0.003 0.572 0.035 2.385
140 0.01 0.138 0.012 0.602 0.008 2.469
160 0.018 0.251 0.019 0.635 0.029 2.193
180 0.025 0.358 0.03 0.697 0.0 3.857
200 0.013 0.228 0.02 0.699 0.016 6.603
300 0.029 0.295 0.171 0.32 0.003 1.656

Table 1. Relative error in predictions of the first two moments (mean μ̂ and variance σ̂ 2) in the distributions
reported in figure 11, where the dissipation was used as the ‘training’ observable. Relative error of a statistical
estimate is defined as ε(μ̂) := |μ̂−μ|/μ, where the ground truth value (here μ) is obtained from the ‘true’
turbulent distributions shown in blue in figure 11.

Prediction of a full p.d.f. is a particularly challenging task – though one common
feature for all reconstructed distributions is that continuation of the RPOs from other
Re values provides coverage for the more probable events. To understand the utility of
the solution library at estimating point statistics, we also report in table 1 the relative
error in reconstruction of the first two moments of the D, I and E p.d.f.s using the
RPOs. These estimates were computed from the distributions reported in figure 11, and
show that estimates of the mean of all three quantities is relatively robust at all Re
except Re = 300: generally, errors of less than 5 % are observed. The variance is not so
impressive, particularly for the energy, which is reflective of the fact that the solutions
representing the rarer excursions to, for example, high-dissipation or high-energy regions
of the state space appear to be relevant only in a small-Re range. This is true even in the
‘asymptotic’ regime beyond Re � 100 – for instance, see the relative lack of solutions in
the tails at Re = 160 in figure 11 compared with those at Re = 100.

Similarly, predictions for the mean velocity and r.m.s. velocity fluctuations shown in
figure 11 (averaged over the streamwise direction, the 16 discrete symmetries of n = 4
Kolmogorov flow and time, see Chandler & Kerswell 2013; Farazmand 2016) are also
relatively robust over the range of Re considered. This is perhaps to be expected, as
estimating the first moments of the velocities is a more straightforward task than a full
p.d.f., as discussed previously. All three predictions at Re = 40 are very close to the true
DNS profiles and the mean velocity profile is predicted quite faithfully at all Re considered.
Note the significant weakening of U , which was commented on in § 2.2, consistent with
the increased decoupling from the background forcing (for reference, the laminar velocity
profile is proportional to Re in our scaling). However, the fluctuating velocities grow with
increasing Re. Predictions for the r.m.s. velocity fluctuations suffer slightly for Re> 40, but
errors are consistently below O(10 %). These velocity profile reconstructions are roughly
in line with the observable-agnostic predictions at Re ∈ {40, 100} by Page et al. (2024b).

Tracking how the weights for the RPOs change along their solution curves provides an
indication of the changing dynamical importance of that solution as Re increases. This
is shown for a sample of representative solution branches in figure 12(a), where D was
again used as the training statistic to fit the weights. The relative weight wj/max j wj for
each RPO is indicated by the size of its marker (circles), while points where the weight
wj/max j wj < 10−4 are indicated with a cross. The figure indicates the same broad trends
identified previously, that weights are larger when the RPO sits closer to the centre of the
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Figure 12. (a) Visualisation of the changing weights along the solution curves of some example RPOs, with
D as the training statistic. The RPOs are visualised via their time-averaged, scaled dissipation rate, and the
relative size of each circle along the curves indicates the relative weight wj/max j w j of the RPO at that
particular Re. Each colour represents a different solution branch; larger circles indicate larger weights, while
crosses denote RPOs with wj/max j w j < 10−4. (b–d) Dependence of the weights on the real part of the sum
of unstable Floquet exponents

∑
j σ j , σ j > 0, for each RPO at Re = 40, 100, 200, respectively. The dotted

black line denotes the line of best fit, indicating an inverse dependence of (
∑

i σi )
−1.43, (

∑
i σi )

−0.21 and
(
∑

i σi )
−2.19, at Re = 40, 100, 200, respectively. Only the results at Re = 40 appear to show a clear trend.

A total of 163, 22 and 28 RPOs are cut-off, respectively, due to the truncation of the weights at 10−4.

turbulent distribution (see orange curve in figure 12) and drop as the RPO moves to higher
dissipation values to become less dynamically relevant (see green and blue curves – these
are class 1 solutions) – though note that the weights tend to vary non-monotonically along
the branch, which is to be expected given the emergence/disappearance of solutions in
folds and the occurrence of other bifurcations not documented/analysed here.

The data-driven approach to assigning weights to solutions is driven by an acceptance
that the solution library is incomplete. One major flaw in our incomplete library of
solutions is that no search was made for pre-periodic solutions with a finite number of
shift-reflects in the vertical. We have also seen that many solutions which were believed to
be on the attractor (overlap with turbulence in low-dimensional projections) may actually
be outside, but still somehow contain ‘turbulent’ dynamical processes. An examination
of the dependence of the weights on the Floquet multipliers of the RPOs (figure 12b–
d) indicates the expected inverse correlation wj ∼ (

∑
i σi )

−1 (see also the discussion of
Redfern et al. 2024) for moderate Re = 40, but shows little correlation at higher Re. The
indication is a decoupling of the fitting from any underlying dynamical properties of the
solutions, which is perhaps to be expected given both the fate of classes 1 and 3 as Re → ∞
and the diminished cover of the tails of the p.d.f.s.

It is pertinent at this point to question the utility of a periodic orbit statistical
reconstruction in light of these results. The library of solutions at Re = 100 (for example)
is, to our knowledge, the largest set of (apparently ‘dynamically relevant’) solutions
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assembled and is the result of thousands of GPU hours of computation (as documented by
Page et al. 2024a,b) augmented by our continuation effort. The success of future efforts to
accurately estimate statistics beyond mean values rests both on convergence of solutions
with longer periods, bringing additional computational challenges, and an assessment of
whether these states are embedded in the turbulent attractor, where we have seen that an
inspection of low-dimensional projections is likely very misleading. One caveat here is
that this analysis is based on two-dimensional turbulence and may not apply directly to the
three-dimensional case. Given the apparent connection of many of the converged RPOs to
inviscid solutions, we explore now whether the key dynamical features of the large set of
Re = 100 solutions can be captured in a much simpler point vortex model.

4. Labelling with point vortex RPOs
Motivated by the apparent connection of the class 1 RPOs to solutions of the unforced
Euler equation, and the wide range of vortex dynamics encompassed in this set of orbits,
this section explores the feasibility of fitting exact point vortex solutions to the RPOs in
our library. Our analysis is focused primarily on the large set of solutions converged at
Re = 100, of which a large number achieved the class 1 D ∼ Re scaling on continuation,
some after going through a series of fold bifurcations before moving away from ‘turbulent’
dissipation values. The motivation for doing this is the known connection of continuous
families of Euler solution to point vortex dynamics (e.g. Stuart vortices – Stuart 1967;
Crowdy 2003) in particular limits.

Fitting is done by matching the dynamics of the point vortices to the dynamics of
the vortex cores of the turbulent RPOs, while insisting that the time evolution of the
point vortices is also a relative periodic orbit. This approach relies on gradient-based
optimisation of a scalar loss function which depends on entire point vortex trajectories,
and which is accomplished here using a fully differentiable solver (Cleary & Page 2023).

The labelling procedure is broken down into three stages: (i) extraction of the vortex
cores from the turbulent RPOs and the initialisation of a representative point vortex
system (described in § 4.1); (ii) gradient-based optimisation which updates the initial
positions and circulations of the point vortex system to improve the matching between the
point vortex trajectories and the dynamics of the reference turbulent RPO (§ 4.2); (iii) a
point vortex Newton-GMRES-Hookstep RPO solver then attempts to converge to an exact
point vortex RPO (also detailed in § 4.2).

At the initialisation stage, a choice must be made for the number of point vortices
Nv used in the fitting of each RPO. Representative trajectories of the doubly periodic
point vortex system for various choices of Nv are shown in figure 13. The Nv = 2 system
is integrable (Stremler & Aref 1999): the vortices translate uniformly together – see
figure 13(a). The Nv = 3 system is also integrable when the net circulation of the system
is zero – the conserved quantities being the Hamiltonian and the horizontal and vertical
momenta which commute for

∑
j Γ j = 0 (Stremler & Aref 1999), as is the case here to

satisfy the Gauss constraint. This system was studied extensively by Stremler & Aref
(1999), who showed it can be mapped to the problem of advection of a passive particle
by a system of stationary vortices, with considerably richer dynamics than the equivalent
system on the unbounded plane. For example, they showed that if the ratio of the vortex
circulations is rational, then the relative motion of the vortices is periodic, exhibiting so-
called ‘paired’, ‘coupled’, ‘collective’ or ‘wandering’ motion. In the more general case of
a non-rational ratio of vortex circulations, as shown in figure 13(b), the relative motion
can be aperiodic. For higher Nv � 4, the system is not integrable and exhibits the usual
features of low-dimensional Hamiltonian chaos (Aref & Pomphrey 1982).

1020 A52-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
67

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10673


A. Cleary and J. Page

5 00 5 0 5 0 5

5.0

2.5

(a) (b) (c) (d )

Figure 13. Sample trajectories of randomly generated point vortex systems with (a–d) Nv = 2, 3, 4 and 6
vortices, respectively, in a doubly periodic domain of size 2π × 2π , with circulations normalised such that
maxα |Γα | = 10 and

∑
α Γα = 0. Trajectories are plotted as red (blue) points denoting positive (negative)

circulation, such that increasing opacity denoting increasing time and the separation of points along a trajectory
gives an indication of the speed of that vortex. Each system is simulated for 30 time units and is set to have net
zero circulation.

4.1. Vortex initialisation
The first stage in the labelling procedure is the initialisation of a point vortex system from
the reference turbulent RPO at Re = 100. First, NS = 50 snapshots are sampled from the
reference Kolmogorov RPO, equally spaced in time. The vortex cores in each snapshot are
extracted using the vortex identification method outlined in § 2.2 and the modal number
of vortex cores at each snapshot throughout the period of the RPO, N̄v , is computed.

This procedure seeks to initialise a point vortex system that matches the strongest vortex
cores over the period of the turbulent RPO. Trajectories of vortex cores in the reference
RPO are tracked by connecting vortex cores i and j in sequential snapshots k and k + 1
which satisfy the similarity condition∥∥∥Xk

i − Xk+1
j

∥∥∥
2

‖L‖2
< 0.1, (4.1)

where X i = (x̃i , ỹi , Γi , Ai ) is a state vector collating the centre of vorticity, circulation
and area of each vortex core. The normalisation L is set to (Lx , L y, Γi , Ai ), rather
than X i . This choice of normalisation is made so that the similarity condition is
independent of the location of the vortex cores on the domain, and depends instead on
the inter-core distance – note that periodic boundary conditions are accounted for when
computing the difference between x̃k

i and x̃k+1
j . As the turbulent solutions are typically

RPOs, there is a translational discontinuity between the first and final snapshot of the
period of the solution. This discontinuity is taken into account by translating the vortex
cores in the first snapshot by the reverse translational shift when attempting to connect a
trajectory between the first and final snapshots.

Some vortex cores will not satisfy the vorticity thresholding condition in (2.6) for
all snapshots along their trajectories. In general, very few vortex-core trajectories exist
over the full period of the reference RPO due to the fluctuating strength of the vortices.
The trajectories of the vortex cores are sorted by their average circulation over their
existence,

〈Γi 〉 =
∫ T

0 Γi (t)Ii (t) dt∫ T
0 Ii (t) dt

, (4.2)

where the indicator function Ii (t) equals 1 if vortex core trajectory i exists at time t , and
0 otherwise. The average strength 〈Γi 〉 is used as a measure of the dynamical importance
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of the i th vortex core trajectory. The N̄v + 1 most dynamically important trajectories are
extracted and 〈Ai 〉 is also computed for each of these trajectories. The areas and circu-
lations of the point vortex state are initialised with 〈Ai 〉 and 〈Γi 〉, respectively (the areas
are required to compare to the reference RPO evolution – see later). If all of the extracted
trajectories co-exist in some snapshot of the reference RPO, the centres of vorticity of
the vortex cores in this snapshot are used to initialise the positions of the point vortices.
Otherwise, the snapshot with the smallest number of absent vortices is used and the
positions of the absent vortices are initialised with their average centres of vorticity 〈x̃i 〉.

4.2. Convergence
The dynamical initialisation algorithm outlined in the previous subsection outputs the
position, circulation and area of N̄v + 1 point vortices. These point vortices correspond to
the N̄v + 1 strongest vortex core trajectories extracted from the reference RPO. However,
there is no guarantee that this initialisation will be near to an exact point vortex solution.
The initialisation is also very sensitive to the vorticity extraction condition in (2.6). This
is because vortex cores will not satisfy (2.6) for sections of their trajectories, directly
impacting the modal number of vortex cores extracted N̄v . For these reasons, we employ
gradient-based optimisation to improve the point vortex fit and reduce the sensitivity
to the extraction method, before converging onto an exact point vortex RPO with a
Newton-GMRES-hookstep solver.

The gradient-based optimisation seeks to enforce two specific behaviours in the point
vortex evolution: (i) that the point vortices must shadow the vortex cores from the reference
RPO closely and (ii) that the point vortex evolution itself must also be (relative) time
periodic. We construct a scalar loss function L to target these two effects. Unlike in
the Newton-GMRES-hookstep solver subsequently used to converge exact solutions, the
circulations of the point vortices are allowed to change during optimisation.

Matching to the reference vortex cores is done by a contribution Lmatch to the total
scalar loss function L. The contribution Lmatch is included to attempt to minimise the
difference between the reference RPO and a grid-based representation of the point vortex
solution. The singular point vortex circulations of an Nv-vortex configuration at position
x∗ = [x∗

1, . . . , x∗
Nv

] ∈R
2Nv (note x∗

α := [x∗
α, y∗

α]), with circulations Γ ∈R
Nv and areas

A ∈R
Nv , are used to define a doubly periodic observable by placing a Gaussian at each

vortex location:

G
(
x; x∗, Γ

) :=
Nv∑
α=1

gα
(
x; x∗

α, Γα
)
, (4.3)

where

gα
(
x; x∗

α, Γα
) :=

∞∑
n,m=−∞

g̃α
(
x; x∗

α + (nL ,mL), Γα
)

(4.4)

is a doubly periodic function with Gaussian contributions from all image vortices, i.e.

g̃α
(
x; x∗

α, Γα
)= Γα

2πσ 2
α

exp

(
− (

x − x∗
α

)2
2σ 2
α

)
. (4.5)

In this expression, the properties of the vortex cores extracted from the reference
turbulent RPO are used to define the standard deviation of the Gaussian, σ 2

α = 0.1Aα .
This smoothing of the vorticity delta functions centred on each point vortex allows for
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comparison between snapshots of the point vortex system and the vorticity field of the
reference Kolmogorov RPO. It also allows for the possibility of vortex permutations if
their strengths and areas are equal. To compute the doubly periodic Gaussian distribution
in (4.3), we approximate its Fourier series with the Fourier transform of the Gaussian
distribution on the infinite domain

1
4π2

∫ π

−π

∫ π

−π
gα(x)e−i k·x d2x ≈ 1

4π2

∫ ∞

−∞

∫ ∞

−∞
g̃α(x)e−i k·x d2x, (4.6)

which we find to be numerically accurate to machine precision when σ 2
α < 2. The Fourier

transform approximation ĝα(k) is derived by applying the shift and stretching Fourier
theorems to the standard Gaussian Fourier transform

ĝα(k)= 1
4π2 e−i k·xαe−k2σ 2

α/2 . (4.7)

Taking the inverse Fourier transform of (4.7) yields the approximation for the doubly
periodic Gaussian distribution in (4.3).

The function Lmatch then minimises the average L2 distance between snapshots
extracted from the turbulent RPO {ω(x, t) : 0 � t < TRPO} and the Gaussian observable
of the point vortex solution over the period TRPO of the turbulent solution,

Lmatch(x∗, Γ ) := 1
NS

NS∑
i=1

∥∥G(x; f ti (x∗), Γ )−ω(x, ti )
∥∥2

‖ω(x, ti )‖2 , (4.8)

where f t (x∗) is the time forward map of (2.15), tn = nTRPO/NS are equally spaced times
over the period and the norm ‖v‖2 := (1/V )

∫
V v

2 d2x. The period and vortex areas A are
kept fixed throughout the optimisation, so the only adjustable parameters for Lmatch are
the initial vortex positions x∗ and their circulations Γ .

The second contribution to the overall loss function L is designed to target point vortex
RPOs, and is termed LRPO. To allow for permutations of the point vortices between the
states x∗ and f TRPO(x∗), this loss function is also defined in terms of the periodic Gaussian
observable in (4.3),

LRPO(x∗, Γ , s)=
∥∥G(x; T s f TRPO(x∗), Γ )− G(x; x∗, Γ )

∥∥2

‖G(x; x∗, Γ )‖2 , (4.9)

where T s = T (sx ,sy) generates translational shifts in the x- and y-directions. While the
turbulent RPOs cannot shift in y (we do not have solutions in our library which shift-
reflect), the point vortex states are allowed to drift in both directions. The adjustable
parameters are x∗ and Γ (as in Lmatch), as well as the shifts sx and sy .

The full loss function is a combination of the two terms discussed previously:

L(x∗, Γ , s)= κβLmatch(x∗, Γ )+ (1 − κ)LRPO(x∗, Γ , s), (4.10)

where the hyperparameter β = 50 is set to a large number to increase the relative
importance of the matching loss term. This large weighting of Lmatch places a heavy
emphasis on finding point vortex solutions which closely mimic the dominant vortex
dynamics, which are themselves time periodic. The second term LRPO should be thought
of as a small correction to aid in this convergence towards exactly recurring solutions. The
hyperparameter κ is defined to conveniently set either of the loss terms to zero.

The gradients ∇x∗,Γ ,sL are passed to an Adam optimiser (Kingma & Ba 2015) with
an initial learning rate of η= 10−2. The optimiser is allowed to run for a maximum
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Nopt = 1000 steps, or until LRPO � 10−5. The value of the hyperparameter κ has a strong
effect on the likelihood of satisfying this tolerance on LRPO. For example, for κ = 0.5, just
4 % of initialisations reach this tolerance (the Lmatch term is still heavily weighted due to
our choice of β), compared with the 74 % of initialisations for κ = 0. All the optimiser
outputs are passed to a Newton solver to attempt convergence regardless of whether they
reach this tolerance level.

Two non-differentiable operations are then performed on the output of the gradient-
based optimisation. The first is to remove any vortices which satisfy |Γα|< ε, where
ε is a tolerance chosen as one of ε ∈ {0, 0.01, 0.05}. For reference, vortex circulations
were typically in the range |Γα| ∈ [1, 5] after the gradient-based optimisation. As LRPO
is computed in terms of the Gaussian observable, the optimiser tends to reduce the
circulation of any point vortices with a large contribution to LRPO. Removing these weak
vortices improves the final convergence rate of the Newton-GMRES-hookstep solver.

The second non-differentiable operation is the identification of any vortices which
permute their positions over the period of the point vortex solution. As LRPO is computed
in terms of the grid-based Gaussian observable, vortex cores with similar areas and
circulations are allowed to permute over the period TRPO while maintaining small LRPO
loss. As such, we have not yet needed to be explicit about the permutation symmetry of
point vortices with equal circulation. However, the Newton-GMRES-hookstep solver used
in the final convergence step finds roots of the residual defined in terms of the vortex
positions

F(x∗, s, T )= T s
P f T (x∗)− x∗, (4.11)

where the permutation P must be computed a priori. A modified Jonker–Volgenant
variant (Crouse 2016) of the Hungarian algorithm (Kuhn 1955) is used to compute the
vortex permutation P between x∗ and f TRPO(x∗) after the optimisation and prior to the
initialisation of the Newton solver (Cleary & Page 2023). The simplest permutation is a
pairwise swap of two vortices x∗

α and x∗
β , which can be written as a 2-cycle, P= (α β).

However, higher-order k-cycles which permute k vortices are also possible in point vortex
RPOs. For the state T s

P f T (x∗) to be a symmetric copy of x∗, all vortices belonging to the
k-cycle must share the same circulation. Any permutation can be decomposed into disjoint
cycles ξi , such that P=∏

i ξi and each vortex belongs to at most one ξi . To ensure that the
permutation symmetry is respected, the circulation of all vortices belonging to each ξk is
then manually set to their mean circulation. All vortex circulations are then fixed and not
further updated by the Newton solver.

When converging solutions with the Newton solver, we apply a threshold on the Newton
residual and a condition that the period is not significantly adjusted after optimisation:∥∥T s

P f T (x∗)− x∗∥∥
‖x∗‖ < 10−8, (4.12)

|T − TRPO|
TRPO

< 0.25. (4.13)

The optimal initial size of the trust region for the Hookstep solver was found to be
0.01 × ‖(x∗, s, T )‖2. This small trust region resulted in a greater rate of dynamically
representative convergences – larger values resulted in point vortex RPOs that bore little
resemblance to the reference solution; smaller initial trust regions required too many
Newton steps for convergence.
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Name κ ε Total convergences Total matches Lrel < 1

1a 1/2 0 238 117 63
1b 1/2 0.01 237 117 63
1c 1/2 0.05 238 117 63
2a 0 0.01 411 138 64
2b 0 0.05 468 146 73
3a Anneal 0.01 255 120 67
3b Anneal 0.05 266 122 68

Table 2. Summary of point vortex RPO-fit experiments run using 252 turbulent RPOs at Re = 100 to initialise
the optimisation. Each reference RPO yields three different initialisations, by extracting the modal number of
vortex cores, Nv , as well as Nv ± 1, over the period of the reference RPO.

4.3. Optimisation results
A number of different experiments were run, varying the circulation threshold ε,
controlling which vortices are retained, and the annealing parameter κ in (4.10). These
experiments are summarised in table 2, while examples of some converged solutions,
overlaid over the reference Kolmogorov RPO, are shown in figure 14. The labelling
procedure was initialised with the 252 RPOs converged at Re = 100 (151 solutions from the
original library, 101 new solutions from the continuation). Three different initialisations
were run for each of these reference turbulent RPOs, by extracting the Nv − 1, Nv and
Nv + 1 most dynamically important vortex cores over the period of the reference RPO
(the overbar indicating the modal number of point vortices is dropped from now on).
Vortex numbers are typically 2 � Nv � 8, with most periodic orbits being well described
with Nv = 4 or 5. The ‘Total convergences’ column in table 2 reports the total number of
convergences (larger than 252 for each experiment due to the three initialisations run for
each RPO), while the ‘Total matches’ column reports how many of the reference RPOs
yielded at least one converged point vortex RPO.

Overall, table 2 indicates that all parameter settings achieve very large numbers of
converged solutions, though these convergences may in some cases differ substantially
from the reference simulation – point vortex states which are ‘similar’ to the underlying
turbulent periodic orbit are quantified by a dynamical relevance metric Lrel � 1, which
is introduced and discussed later. In some cases in table 2, the parameter κ is labelled
‘Anneal’: we use this terminology to describe an optimisation that is initialised with κ = 1,
and in which κ is then decreased by 1/Nopt at each optimisation step. This annealing
aims to initially closely match the reference turbulent RPO, while slowly increasing the
relative importance of the LRPO throughout the optimisation procedure. This scheduling
results in a slight increase in the total number of point vortex RPO convergences compared
with a constant equal weighting (κ = 0.5) of LRPO and Lmatch. Ignoring the Lmatch term
(setting κ = 1) results in a significant increase in the total number of point vortex RPO
convergences.

The solutions reported in the top three rows of figure 14 all represent cases where the
converged point vortex dynamics closely track the dominant vortex cores in the original
solution. They include cases featuring a multipolar structure (top row) and a bound state or
triangular vortex (middle row) – in both of these examples, the point vortex RPO involves
a permutation of vortices at each period. The final example is a crystal-like structure in
which two rows of same-signed vortices translate to the right. In all three cases, the period
of the converged point vortex solution matches the reference turbulent RPO to within a
few percent or better.
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Figure 14. Out-of-plane vorticity (contours) of three RPOs from Kolmogorov flow at Re = 100. Snapshots in
each row are sampled uniformly in time along the period of that solution. Overlaid on each snapshot are the
point vortices at the corresponding (proportional) time along the period of the matched point vortex RPO.
The size of the markers is proportional to the circulation of the vortex, and the lines denote the path swept
out by each point vortex over its full evolution. Red (white) markers denote positive (negative) circulations.
The reference RPO period TRPO, reference RPO shift sRPO, point vortex RPO period T and point vortex shifts
s for each solution are: (top row) TRPO = 1.34, sRPO = 0.0075, T = 1.2, s = (−0.032, 0.012); (second row)
TRPO = 1.79, sRPO = 0.085, T = 1.755, s = (0.05, 0.006); (third row) TRPO = 1.27, sRPO = 0.69, T = 1.27,
s = (0.48, 0). This point vortex solution is a vortex crystal (relative equilibrium); (bottom row) TRPO = 4.16,
sRPO = −0.756, T = 4.34, s = (0.04,−0.12).

However, by visual inspection, the dynamics of some converged point vortex RPOs
differs qualitatively from the reference turbulent RPO. An example of which is shown
in the bottom row of figure 14, in which a six vortex system has been converged which
only slightly resembles the reference RPO – there are two trapped systems of Nv = 4 and
Nv = 2 vortices which roughly align with large-scale vortices in the turbulent flow.

To quantify the dynamical relevance of the point vortex state to the original turbulent
dynamics, we compute the translation-and-time-reduced metric:

Lrel := min
s,
t

1
NS

NS∑
j=1

∥∥∥G(x; T s f tvj +
t
(x∗), Γ )−∑

i Ii (x, t j )ω(x, t j )

∥∥∥2

∥∥∑
i Ii (x, t j )ω(x, t j )

∥∥2 , (4.14)
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Figure 15. Histograms of the dynamical relevance metric (4.14) for experiments 1c, 2b and 3b detailed in
table 2, with a bin size of 0.05. The mean and mode of each experiment are indicated by the correspondingly
coloured bold dashed line and filled bars, respectively.

where the indicator function Ii (x, t)= 1 if x ∈ Vi at time t – i.e. we are comparing
only the vortex cores in the original RPO to the point vortex reconstruction. The
solutions are compared at equally spaced times tvj := jT/NS and t j = jTRPO/NS

along the periods of point vortex RPO T and the reference turbulent RPO TRPO,
respectively. Due to potential small mismatches between the alignment of the vortices
in the two solutions in space and time, we search in (4.14) over a restricted range
of (constant) temporal and spatial shifts: 
t ∈ {0,±10δt,±25δt,±50δt,±100δt}, and
sx , sy ∈ {0,±L/100,±L/40,±L/20,±L/10}.

It is worth considering what a ‘good’ value of Lrel would be. For unrelated point
vortex observables and turbulent RPOs, we find Lrel ≈ 2 (the expected result given we are
comparing two near-orthogonal vectors in a high-dimensional space). For the dynamically
similar states obtained in figure 14, we obtain values of Lrel = 0.47, 0.49, 0.46 for the first,
second and third rows, respectively. The state in the bottom row of figure 14 only achieves
a value of Lrel = 1.58, indicating a poor representation of the turbulent dynamics. The
relatively ‘large’ values of Lrel in the well-matched configurations can be rationalised
by the fact that the smoothed point vortex observable is constructed as a superposition
of Gaussians, with the shape of the original vortex core modelled by a variance which
is proportional to the vortex area, σ 2

α = 0.1Aα: we are comparing fields which can differ
quite significantly even in the best scenarios. As such, we find that Lrel � 1 is a sensible
threshold to discern whether the converged point vortex RPO captures critical features of
the original turbulent solution. We also checked all point vortex states with Lrel � 1 for
uniqueness by rescaling variables such that max |Γ j | = 1, before comparing their rescaled
periods and values of the rescaled Hamiltonian. All solutions are unique.

A comparison of the distributions of Lrel across three representative experiments from
the list in table 2 (1c, 2b and 3b) is reported in figure 15. These point vortex RPO searches
all enforced removal of vortices whose circulation shrunk in the optimisation below a
threshold of ε= 0.05, and are distinguished from one another by the relative weight placed
on the two contributions to the loss (4.10): In run 1c, the ‘RPO’ contribution (4.9) was
included alongside the matching constraint (4.8), while it represented the entire loss in
run 2b (no matching term). In run 3b, annealing was applied to incrementally increase
the contribution of the RPO term over the course of the optimisation. All of the search
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Figure 16. (a) Total number of point vortex RPO convergences at each value of Nv for experiment 3b in
table 2 which satisfy Lrel < 1. (b) Histogram showing the distribution of Lrel for experiment 3b as a function
of Nv . The bin size for Lrel is 0.1.

configurations summarised in figure 15 show a wide spread in Lrel. Notably the RPO-
only results (2b) show much higher Lrel when no requirement is made that the point
vortices attempt to shadow the vortex cores. We focus for the remainder of the section
on the results of experiment 3b, which has the lowest mean (and mode) in Lrel, though
the results are representative of the suite of experiments in general. Note that the value
of the circulation cutoff, ε, selected for analysis here (the largest, ε= 0.05) leads to an
increased number of convergences relative to calculations which retain larger numbers of
weak vortices, though the overall distribution of results are not substantially changed from
those shown in figure 15.

4.4. Discussion
We now explore the properties of the library of converged point vortex states from
experiment 3b and their relationship to the three classes of Kolmogorov RPO discussed in
§ 3.1. The number of convergences from this experiment satisfying Lrel < 1 is visualised
as a function of the number of point vortices Nv in figure 16(a). There is a preference for
small numbers of vortices, Nv � 5, with the most solutions found for Nv = 4. Intriguingly,
there is no clear dependence in the reconstruction error, Lrel, on the number of vortices,
Nv , other than an increase in the minimum observed value of Lrel with increasing Nv .
This is perhaps unexpected as intuitively, one might think that placing more point vortices
in the system would result in a more faithful representation of the turbulent dynamics.
However, the solutions in the turbulent RPO library at Re = 100 tend to be dominated by
a small number of vortex cores (see for example figures 5 and 6), and additional point
vortices are attempting to represent weak, small-scale filamentary structures which are
poorly represented with Gaussians (discussed further later).

Some examples of solutions in the most common Nv = 4 class of point vortex RPOs
are reported in figure 17. Most Nv = 4 solutions appear as an approximately equispaced
lattice, with two dominant vortices of opposite circulation. An example of one of these
‘quasi-crystal’ configurations is shown in figure 17(a). Other representative solutions for
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5.02.5 0 5.02.5 0 5.02.5
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0

(a) (b) (c)

Figure 17. Evolution of three samples point vortex RPOs with Nv = 4. Trajectories are plotted as red (blue)
points denoting positive (negative) circulation, such that increasing opacity denoting increasing time along the
period and the separation of points along a trajectory gives an indication of the speed of that vortex. Streamlines
of the final (most opaque) vortex configuration are also shown, such that darker streamlines denote greater
local induced speed. Each system is simulated for one complete period. (a) Vortex crystal configuration with
T = 2.16, s = (−0.008, 0.002). (b) Tripolar configuration with T = 1.75, s = (−0.056, 0.073). (c) Uniform
crystal lattice configuration with T = 1.27, s = (0.48, 0).

the Nv = 4 system are shown in the remaining two panels, and show a ‘tripole’ structure
and an oscillatory lattice, featuring rows of equal-signed vortices, respectively.

A key question is whether the successful fitting of a point vortex solution to a
Kolmogorov RPO says anything about the possible connection of the original RPO to
a solution of the (unforced) Euler equation. To explore this point, we first examine how
many of the subset of RPOs which were successfully labelled with a ‘representative’ point
vortex solution at Re = 100 (quantified by Lrel < 1) can be continued to higher Re. This is
done via the histogram in figure 18(a), which compares the number of labelled branches
to the total number of solutions as Re varies; both scale similarly with Re.

More revealing is figure 18(b), which identifies point-vortex-labelled RPOs on a
production/dissipation plot at Re = 100, where the solutions are coloured according to
the class assigned in § 3.1. The figure appears to be dominated by solutions from classes
1 (red, dissipation stronger than turbulent p.d.f.) and 2 (blue, dissipation within turbulent
p.d.f.). However, this figure is distorted by the large number of solutions in class 2, while
the labelling success rate as a percentage of the cardinality of the class was significantly
larger for class 1 and class 3. These statistics are summarised in table 3, which reports the
number and percentage of successfully labelled solution branches (one branch may contain
multiple solutions at a given Re) for each of the three distinct branch classes. The branches
which could be continued the highest in Re by the arclength continuation (class 3) were the
most likely to be successfully labelled with a point vortex RPO (albeit with only a small
sample size). The RPOs in class 1 were the second most likely to be successfully labelled.

Even if a solution is successfully labelled, another important consideration is whether
the extracted ‘vortices’ which are used to define the point vortex initialisation (and
subsequently measure the success of the ‘reconstruction’) remain as Re increases, or
whether they thin and shrink. The latter behaviour is expected to occur for filamentary
structures where point vortices are a poor modelling choice (see figure 1).

To probe this, we report in figure 19 p.d.f.s of the extracted vortex areas, {A}, for
the Kolmogorov RPOs for which a point vortex solution was also found. P.d.f.s are
shown at both Re = 100 where the extraction + fit was performed (colour) and at the
highest Re values on the solution curve (grey). The results show that the area of the
vortices for class 1 solutions is roughly maintained (and on average increases slightly)
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Figure 18. (a) Histogram of all the distinct RPO branches which cross Re = 100 as a function of Re in grey.
The histogram of the branches which were successfully matched at Re = 100 is shown in red. (b) Energy
dissipation rate D against energy production rate I at Re = 100, both normalised by the laminar dissipation
Dlam = Re/(2n2), for the turbulent RPOs which were successfully matched with a point vortex RPO. The
RPOs are coloured according to their branch class: 1, red; 2, blue and 3, green. The grey background is
the p.d.f. computed from a trajectory of 105 samples, separated by 1 advective time unit. The contour levels of
the p.d.f. are spaced logarithmically.

Re = 100 Re> 200

RPO class Branches labelled Percent labelled Branches labelled Percent labelled

1 21 33.3 % 14 43.75 %
2 32 18.4 % 4 25 %
3 7 46.7 % 6 50 %

Table 3. Number and percentage of successfully labelled (Lrel < 1) branches for each of the three distinct
classes of solution branches identified in § 3.1. The Re = 100 columns report these figures for experiment 3b,
run on the library of 252 RPOs at Re = 100. The Re> 200 columns report these figures for the same labelling
procedure, but the reference solutions considered are instead all the terminal branch solutions which were
continued to above Re = 200.

on continuation. However, the class 2/3 solutions exhibit on average decreasing vortex
area – though the continuation does not generally proceed particularly high in Re for most
class 2 states. Class 1 also indicates a bimodal distribution with a peak at a large vortex
area.

The results in figure 19 should be interpreted alongside the labelled vortex areas shown
earlier in figure 1: filamentary structures at Re = 100 tend to have A � 0.2 with some
exceptions, while these structures are not strong enough to be flagged at the higher value
of Re = 400. The behaviour of the class 1 area p.d.f.s under increasing Re is consistent
with an absence of filaments and the dominance of larger-area vortex cores, a result
supported by two examples from both classes 1 and 3 shown in figure 20, where the
point vortex solution is overlaid. Also included is a higher-Re state from the same solution
branch. In the cases from class 1, the point vortex periodic orbits correspond to features
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0.5 2.01.51.00.500

Figure 19. P.d.f.s of vortex areas (thresholding used to define this variable is described in § 2.2) in the
converged RPOs for which a point vortex RPO was found. (a) Class 1 solutions: red is the p.d.f. at the starting
value Re = 100, grey is the p.d.f. obtained using solutions at the highest Re on the branch. (b) Classes 2 and
3: cyan is the p.d.f. at the starting value of Re = 100, grey the p.d.f. at the highest Re on the branch (note only
states which were continued successfully beyond Re> 150 were included in the class 2/3 results here).
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Figure 20. (a–d) Contours of vorticity for four RPOs in Kolmogorov flow. Top row shows a snapshot at
Re = 100 along with the point vortex RPO overlaid as in previous figures. The bottom row is the final state
obtained after arclength continuation up in Re. The two leftmost RPOs belong to ‘class 1’, while the two
rightmost RPOs belong to ‘class 3’ as described in § 3.1. The reference RPO period and shift, TRPO, shift sRPO,
point vortex RPO period T and shifts s for each labelled solution on the top row are: (a) TRPO = 2.99, sRPO =
−0.44, T = 2.97, s = (−0.041,−0.023); (b) TRPO = 1.97, sRPO = −0.43, T = 1.89, s = (0.01,−0.01);
(c) TRPO = 4.61, sRPO = 0.071, T = 4.695, s = (−0.008,−0.001); (d) TRPO = 4.67, sRPO = −0.17, T = 4.497,
s = (0.016,−0.018). The point vortex solution in panel (d) is a travelling wave. The final solutions on the
bottom row were converged at Re = 185.69, 175.003, 345.297 and 277.23, from panel (a–d), respectively.

of the turbulent solution which remain as Re grows while the thin background filaments
weaken in comparison. For instance, note the multipole structure in the second column
approximating ring of vorticity, which amplifies under increasing Re, while the weaker
triangular vortex in the same snapshot is not represented in the point vortex solution,
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and weakens as Re increases. Similar effects are also apparent in the earlier examples
in figure 14 from class 1 (top 3 rows of that figure).

In contrast, the solutions in class 3 have resulted in the initialisation of weaker point
vortices on small filamentary regions (e.g. see the weaker pair of vortices in the second
class 3 example in figure 20(d)), a feature hinted at by the relative importance of low area
vortices in figure 19. In these cases, it appears we have found a point vortex RPO which
can mimic the weaker viscous dynamics, without implying anything stronger about the
behaviour as Re → ∞.

The identification by the point vortex fit of structures in class 1 which persist as Re
increases is consistent with the connection of these RPOs to exact solutions of the Euler
equation as Re → ∞, as suggested by their asymptotic scalings. Under continuation,
these RPOs tend to be increasingly dominated by large-scale, coherent vortices while
weaker filamentary structures lessen. The vortex extraction algorithm largely avoids the
filamentary components for class 1 states and the point vortex fit captures the large-
scale flow features which are retained in the high-Re limit. Interestingly, these class 1
solutions contain examples with many interacting vortices (typical of high dissipation
states seen in past work (Chandler & Kerswell 2013; Page et al. 2024a; Redfern et al.
2024)) but also examples of condensate-like structures dominated by a pair of opposite
signed vortices, which are reminiscent of the Euler solutions discussed in previous work
exploring Euler/Navier–Stokes connections (Kim & Okamoto 2015; Kim et al. 2017;
Zhigunov & Grigoriev 2023). The weaker performance of the point vortex fit in classes 2
and 3, and failure to extract the structure retained as Re increases, reflects the fact that –
particularly in class 2 – the flow field is dominated by a large scale vortex pair and thin
filamentary structures.

5. Conclusion
This study presented a continuation effort of a large number of numerically exact recurrent
solutions in two-dimensional Kolmogorov flow, over the range Re ∈ (30, 1000). Libraries
of Kolmogorov RPOs at different Re were constructed from sets of ‘starting’ solutions
at Re = 40 and Re = 100, and used to reconstruct summary statistics of the turbulence.
The reconstruction was performed with a data-driven approach in which the weights
in an RPO-expansion were determined from a fit to a single p.d.f. The quality of the
reconstruction deteriorated dramatically with changing Re, while the numerically assigned
weights become poorly correlated with the instability of the underlying RPOs. This raises
serious questions about the use of RPOs to estimate statistics – particularly full p.d.f.s –
given the computational expense required to assemble the starting solution libraries used
here (thousands of GPU hours, see Page et al. 2024a,b). Further work should explore if
there are more ‘robust’, perhaps longer-period, solutions with high dissipation excursions
which can be used to say something about bursting events via continuation. It may also be
worth considering alternative strategies for assigning weights to the periodic orbits too. For
instance, the recent work of Pughe-Sanford et al. (2025) has described a simple method for
statistical reconstruction with only a handful of periodic solutions of the Lorenz equations.
Whether these ideas, or others like them, can yield robust statistical reconstruction in
turbulence will determine the utility of the continued hunt for new solutions. Finally,
it remains to be seen whether the conclusions drawn here are also directly relevant to
three-dimensional, wall-bounded flows.

The dependence of dissipation rate on Re was used to delineate the large number of
solution branches into three classes: class 1 RPOs were characterised by a dissipation
rate scaling D ∼ Re, and an analysis of the scaling of flow variables indicated a direct
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connection to solutions of the unforced Euler equation as Re → ∞. The RPOs on these
branches feature strong vortical structures that appeared largely decoupled from the
specifics of the Kolmogorov forcing and generalise the Euler connection to states beyond
the ‘unimodal’ structures considered previously (Kim & Okamoto 2015; Kim et al. 2017).
Two other classes of solutions were identified which scaled either with the average
turbulent dissipation (class 2, D ∼ Re−1/2) or weaker than it (class 3, D ∼ Re−1). Class 2
solutions remained contained within a finite-Re region, many repeatedly folding back and
forth under continuation. Class 3 solutions show a scaling consistent with a connection to
a forced Euler equation in the high-Re limit. Both class 1 and 3 solutions are particularly
remarkable: their appearance in low-dimensional projections at the Re values where they
were first obtained seems to suggest that many are ‘dynamically relevant’ to the turbulence.
It is only under continuation that their apparent irrelevance (they may not be on the chaotic
attractor) is revealed.

Finally, motivated by the connection of large numbers of RPOs to inviscid solutions, a
method was introduced to search for point vortex relative periodic orbits that reproduced
the dominant vortex interactions in the original solution library at Re = 100. This was done
via gradient-based minimisation of a scalar loss function. The method proved successful
for a wide range of RPOs, but only for solutions in class 1 did it identify vortical structures
that persist under increasing Re. The success can perhaps be attributed to the fact that these
states become dominated by (smooth) large-scale structures as Re increases at the expense
of small scale filamentary vortices. The success of the fit is consistent with a connection
to exact inviscid solutions.
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with continuous symmetry—a tutorial. Chaos 25 (7), 073112.

1020 A52-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
67

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://www.ecdf.ed.ac.uk/
http://github.com/google/jax
https://doi.org/10.1017/jfm.2025.10673


Journal of Fluid Mechanics

BUDANUR, N.B., SHORT, K.Y., FARAZMAND, M., WILLIS, A.P. & CVITANOVIĆ, P. 2017 Relative periodic
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