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Abstract

In engineering and architecture, different approaches have been developed that share the use
of graph transformation to automate design processes or to search for design solutions by
means of computational design synthesis. In order to give an overview of these approaches,
we provide a review of articles published in the last decade. Forty-eight articles were reviewed
to determine similarities and differences of these approaches. Research fields in method devel-
opment for the representation of design problems and the processing of graph transforma-
tions, as well as the application of graph transformations in engineering, architecture, and
shape grammars were identified. Different approaches for the documentation of the
vocabulary and the rules were examined. Finally, different approaches for rule applications
were analyzed. Based on found limitations, future research directions are suggested.

Introduction

The task of designing a new product is a common problem shared by different engineering
domains. While some problems faced during the design of a new product may be specific
to an engineering domain, generic approaches have been investigated for support in the design
task. Such approaches include, among others, knowledge-based engineering, model-based sys-
tems engineering (MBSE), as well as generative grammars and graph-based design languages.

The application of generative grammars for engineering design has long been a subject of
research in the field of architecture and engineering. The use of generative grammars for engi-
neering design falls into the field of computer-based design synthesis research. Besides the use
of generative grammars for design synthesis, other research fields in computer-based design
synthesis are function-based synthesis and analogy-based design (Chakrabarti et al., 2011).
Generative grammars use a vocabulary to describe the elements of the design and an associated
set or rules to describe how these elements may be put together to form a valid design. The
vocabulary and the associated set of rules are used to formalize the knowledge necessary to
create a design. The rules consist of two parts, a left-hand side (LHS), defining the conditions
under which the rule is applied, and a right-hand side (RHS), defining the transformations
that should be carried out, if the conditions defined on the LHS are found. In the case of
graph grammars, the LHS might define a particular graph pattern and the RHS may consists
of modifications, such as additions or subtractions, that are applied to instances of this pattern
in the overall graph.

According to the underlying representation, different kinds of grammars can be distin-
guished. Gips and Stiny distinguish between array, tree, graph, and shape grammars (Gips
and Stiny, 1980). In their overview on generative grammars, Chakrabarti et al. (2011) identify
graph and spatial grammars as the most common types of grammars used for engineering
design. The category of spatial grammar, that is used by Chakrabarti et al., comes from the
research of Krishnamurti and Stouffs (1993) and is not directly linked to the underlying rep-
resentation but is used for grammars that define languages of spatial forms (Krishnamurti and
Stouffs, 1993). Spatial grammars may use strings, sets, graphs, or shapes as underlying repre-
sentation (Krishnamurti and Stouffs, 1993; Chakrabarti et al., 2011). An overview of different
applications of generative grammars is given by Antonsson and Cagan (2001). The book by
Antonsson and Cagan includes contributions by different authors on the topic of generative
grammars. It includes chapters on the topic of shape grammars (Stiny, 2001) and the applica-
tion of shape grammars for engineering design (Cagan, 2001).

This article focuses on graph-based representation approaches. Generally, the data repre-
sentation are graphs, consisting of nodes, edges, and labels. Graph grammars, a type of gen-
erative grammar and graph-based design languages, share a graph as an underlying data
structure and the fact that graph transformation is used to describe how the graph should
be transformed to create a valid design. A closer examination shows that different terms are
used to describe similar approaches. In this respect, “graph grammar,” “graph rewriting,”
“graph transformation,” or “graph-based design language” describe approaches used for
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engineering design in the field of architecture and various subdo-
mains of mechanical engineering. While it could be expected that
each of these terms designates a clearly defined approach, this is
not always the case.

Despite the different designations, the approaches share some
characteristics. The common characteristics of these approaches
are the use of a vocabulary to describe the elements of the design
and an associated set of rules to describe how the elements may be
put together to form a valid design. The approaches differ on how
the rules are processed. Graph grammars stress the generative
aspect and are used to create the so-called language of the
graph grammar, that is the possible solutions derived by applying
the rules of the grammar (Blostein et al., 1996). Other approaches
might prefer a deterministic execution of the rules, where exactly
one result is created for a certain input, as is the case with graph-
based design languages. Graph rewriting and graph transforma-
tion merely state the mechanism of how the graph as the under-
lying data structure is changed. In this paper, we use the term
graph transformation.

The common characteristics shared by the different
approaches strongly suggest that these characteristics perform
well in different settings. The advantages and disadvantages of
the different approaches to use graph transformation for engi-
neering design are considered in this review. To understand the
current situation, as well as the similarity and differences of the
approaches, the following questions need to be answered:

• For what examples has graph transformation been used in engi-
neering design?

• How are the vocabulary and the rules documented?
• How are the vocabulary and the rules processed to derive valid
designs?

• What research gaps need to be addressed?

In this study, these questions are answered through a literature
review. In total, 48 journal articles published between 2010 and
2020 in 24 different journals were reviewed. The paper has the fol-
lowing structure: Section “Methodology” describes how the differ-
ent journal articles were selected. In Section “Research areas,” the
reviewed literature is categorized into the two categories: “method
development” and “application of graph transformation” in engi-
neering design. Section “Documentation of the production sys-
tem” examines how the vocabulary and the rules are
documented. In Section “Processing,” different approaches to pro-
cess the vocabulary and the rules in order to create valid designs
are presented. Section “Future research directions” presents
research gaps that need to be addressed, followed by the paper’s
conclusion.

Methodology

In this paper, we discuss the application of graph transformation
systems for engineering design for the period of 2010–2020.
Graph transformation systems are used in many fields. In the con-
text of engineering design, the research on the application of
graph transformation may be published in journals that focus
on the application of information technology in engineering or
in journals that focus on a special engineering field in which
the application of graph grammars is investigated.

In order to avoid overlooking relevant research, the search for
articles consisted of the following steps as indicated by Figure 1.
The first step was a broad search in the Web of Science database.

The keywords for the topic search were design language, design
languages, graph grammar, graph grammars, graph rewriting,
graph transformation, graph transformations, graph-based design
language, and graph-based design languages. The search was lim-
ited to journal articles in English published between the years
2010 and 2020 in journals listed in the Science Citation Index
Expanded (SCI-Expanded), the Social Sciences Citation Index
(SSCI), the Arts & Humanities Citation Index (A&HCI), or the
Emerging Sources Citation Index (ESCI). This time period was
chosen because the paper by Chakrabarti et al. discussing graph
grammars in the context of computational design synthesis was
submitted in 2010 (Chakrabarti et al., 2011). We had two criteria
to determine if an article should be included in the review:

• Does the research show the development of new methods for
the application of graph transformation for engineering design?

• Does the research show how graph transformation can be
applied for a specific engineering design problem?

If the research meet one of these criteria, we included the jour-
nal article in the review. To thoroughly check the relevance of the
found articles, first the abstracts of the articles were read. If the
article seemed to meet one or both of the criteria, based on read-
ing the abstract, we read the article to check if the article was rel-
evant for the review. Table 1 shows the number of articles
returned for a specific keyword and the number of articles
included in the review. Due to the general search terms, a large
number of articles was found. In the first step, 41 journal papers
were identified. The journals, in which these 41 papers were pub-
lished, formed the basis for a more detailed search in the individ-
ual journal databases.

The aim of the second step was to find articles that might have
been missed in the search of the Web of Science database. For the
second step, journals with a 5-year impact factor higher than 1.0
for the year 2019 were selected from the journals identified in the
Web of Science search. In these journals, a search in the individ-
ual journal database was conducted. The search of the individual
journal databases used the same parameters and the same proce-
dure as the Web of Science search. In the journal search, 271 arti-
cles were returned as search results. The articles where screened

Fig. 1. Selection process for the papers included in the review.
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using the same method as during the search in the Web of Science
database. If an article met one of the criteria, it was included in
the review. Seven additional articles were identified for the review
through the search in the individual databases of the different
journals. In total, 48 journal articles were found. These articles
48 journal articles include one review article, the article by
Chakrabarti et al. (2011).

Table 2 gives an overview of the number of articles per journal
considered in this review. In many journals, just one article was
found for the 10-year period considered in this review. This rein-
forces the need for an overview, since the research is dispersed
among a large number of journals. In the next step, the articles
were categorized. The categorization was done based on the con-
tent of the articles. In the following step, the authors analyzed
common themes in the use of graph transformation for engineer-
ing design.

Research areas

To give an overview of the reviewed articles, the articles are
grouped according to the research content. The two main cate-
gories are “method development” and “application of graph trans-
formation” for engineering design. For some articles, these two
categories are not mutually exclusive, since some authors present
a new method to use graph transformation for engineering design
and the application of this new method for a certain engineering
problem. In these cases, the research is presented in both cate-
gories. Table 3 gives an overview of the categories and subcate-
gories used to classify the articles as well as the number of
articles in each category.

Method development

In order to use graph transformation for engineering design, new
methods have been proposed by different researchers. The devel-
opment of new methods can be motivated by shortcomings of
current software applications. The research in this category is clas-
sified in the subcategories “representation” and “processing.”
Research that focuses on issues concerning the definition of the
vocabulary and the rules is presented in the subcategory “repre-
sentation.” In the subcategory “processing,” new methods for
the processing of the vocabulary and the rules are presented.

Representation
The simplest representation of a graph consists of nodes and
edges. The vocabulary and the corresponding rules need to be
defined to use graph transformation for engineering design.
One difficulty in the representation of a design problem is the for-
malization of the relevant knowledge and breaking down the sys-
tem into parts that can be easily managed. For larger projects, it

Table 3. Categories used to classify the articles

Category Subcategory
Number of articles in

subcategory

Method development Representation 8

Processing 11

Application of graph
transformation

Engineering 23

Architecture 6

Shape
grammars

5

Table 1. Web of Science search results

Keyword
Returned
articles

Number of articles
included in review

Design language 382 6

Design languages 50 7

Graph grammar 103 21

Graph grammars 105 16

Graph rewriting 75 5

Graph transformation 310 2

Graph transformations 155 4

Graph-based design
language

2 2

Graph-based design
languages

5 5

Table 2. Found articles by journal

Journals
Found
articles

ACM Transactions on Graphics 1

Advanced Engineering Informatics 1

Aerospace Science and Technology 3

Applied Sciences 1

Architectural Science Review 1

Artificial Intelligence for Engineering Design, Analysis and
Manufacturing

7

Automation in Construction 2

Computer-Aided Design 1

Computers & Structures 1

Concurrent Engineering 1

Decision Support Systems 1

Design Science 1

Engineering Optimization 1

Environment and Planning B: Planning and Design 2

Expert Systems with Applications 1

Forschung im Ingenieurwesen/Engineering Research 1

Genetic Programming and Evolvable Machines 1

IEEE Computer Graphics and Applications 1

Journal of Computing and Information Science in
Engineering

6

Journal of Engineering Design 2

Journal of Mechanical Design 9

SN Applied Sciences 1

Swarm Intelligence 1

The Computer Journal 1

Total 48

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3
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can be a challenge to represent the vocabulary in a concise man-
ner. The use of the concepts of object-oriented design have been
investigated in order to keep the description of the vocabulary
manageable. Metamodels have been used to describe the
vocabulary. In this context, the term metamodel refers to a
model that defines the elements from which another model
may be instantiated. The approaches include the use of a metamo-
del to implement the function-behavior-structure representation
(Helms and Shea, 2012), and the use of abstraction ports to con-
nect instances on the functional and the behavioral level, based on
physical effects described in the bond-graph methodology (Helms
et al., 2013). Metamodels can also be defined for particular
aspects shared by many different design tasks. This is illustrated
by the so-called “abstract geometry,” a description of geometry
using the Unified Modeling Language (UML) class diagram that
allows instances of the classes to be mapped to the corresponding
implementation in CAD programs (Schmidt and Rudolph, 2016).
Newer research presents approaches where the classes used to
describe product design also contain methods and interfaces
(Vogel and Arnold, 2020).

The use of a metamodel has an impact on the rules. If inheri-
tance is used in the definition of the metamodel, very generic
rules can be defined that allow extending the metamodel without
resulting in changes to the defined rules (Helms and Shea, 2012).
In order to successfully apply graph transformation in engineer-
ing design, designers or engineers need to understand how rules
interact with each other and how rules relate to certain objective.
Different methods have been developed to aid designers in defin-
ing rules, the “Grammar Rule Analysis Method” (Königseder and
Shea, 2014) and the “Network-Based Rule Analysis Method”
(Königseder et al., 2016). A good understanding of how the
rules interact is necessary to avoid confluence. Confluence occurs
if the same graph can be created with the application of different
rules or rules applied in a different order. To avoid confluence in a
collaborative design environment, the dynamic rule independence
analysis method has been developed (Eichhoff and Roller, 2016).
Generally, the vocabulary and the rules are created by a designer
or engineer. In order to make this task easier, the induction of
graph grammars for engineering design from existing datasets
has been proposed (Whiting et al., 2018).

Processing
The next identified subcategory covers how the vocabulary and
the rules are processed and how good solutions are found during
the search process. The majority of the research in this subcate-
gory was developed for graph grammars.

Graph grammars are used to create the language of the gram-
mar, that is the possible solutions described by the vocabulary and
the associated rules. When used for engineering design, it is not
always possible to create the complete language, especially for
cases where computationally expensive evaluations are part of
the design process. For this reason, a good understanding of the
interaction of different rules and the exploration of the design
space is necessary. Visualizations have been used to support
designers in developing a grammar (Königseder and Shea,
2016). For graph grammars, transition graphs have been used to
analyze how rules interact and how the design space is explored
(Königseder et al., 2016).

Other researchers are concerned with different strategies to
guide the search process. One way to guide the search process
to find well-performing solutions quickly is by using different
sets of rules. Using a set of lower-tier rules that make minor

changes to the design and higher-tier rules, which consist of sev-
eral lower-tier rules, was investigated for truss design and wave
energy converter design (Puentes et al., 2019). A similar approach
examined strategies to use sets of rules with the BURST algorithm
(Königseder and Shea, 2015). Königseder and Shea distinguish
between topologic and parametric rules. Topologic rules are
rules that change the product architecture, and parametric rules
are rules that change the parameters of components
(Königseder and Shea, 2015). Other authors propose the use of
special algorithms to guide the search process. The developed
algorithms include the “topologic and parametric tune and
prune” ((TP)2) algorithm (Patel and Campbell, 2010), a stochastic
tree-search algorithm to interactively asses proposed solutions
(Campbell et al., 2012), and the “Graph Heuristic Search”
algorithm (Zhao et al., 2020).

Transferring the problem to another domain can also be used
to find valid solutions. If the problem can be redefined as a prob-
lem of Boolean satisfiability, a Boolean Satisfiability Solver can be
used to find valid solutions (Münzer et al., 2013). Using bond
graphs, the resulting solutions can be simulated (Muenzer and
Shea, 2017).

Design tasks can be broken down to consist of separate
domains. For each domain, separate graph transformation systems
with a separate vocabulary and rules may be used. Often the
vocabulary is not completely distinct, since changes concerning
one domain lead to changes in other domains. The synchroniza-
tion of rule application concerning shared elements has been
investigated to avoid cases where the rule application in one
domain would lead to illegal states concerning the other domain
(Kotulski et al., 2014). Rules are used to make a particular change
to the graph representing the design. This can lead to situations
where rules can be very big. A possible solution is to use break
these large rules into several smaller rules that need to be executed
in a sequence. However, these rule sequences can be difficult to
maintain and prohibit code reuse. In order to deal with this
issue, methods have been introduced to better support the design
of complex products with graph-based design languages (Vogel
and Arnold, 2020). As a result, design steps that have previously
been explicitly modeled in one or several rules can now be hidden
in methods, enabling better information hiding (Vogel and
Arnold, 2020).

Application of graph transformation

A large part of the reviewed research falls into the category of how
graph transformation can be applied for a specific engineering
design problem. In this category, graph transformation is applied
to problems of different engineering fields and at different stages
of the product development process. In order to give an overview,
the research activities were grouped in three subcategories: the
domain of engineering, the domain of architecture, and the use
of graph transformation in the development of new approaches
for shape grammars.

Engineering
In engineering, graph transformation can be applied to many dif-
ferent design tasks and in different stages of product development
process. This can include the early stages of product development.
An example for the use of graph transformation in the very early
stages of product development is the use of graph transformation
to automatically create a technology compatibility matrix, which
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is used to determine which technologies should be applied in an
engineering project (Roelofs and Vos, 2020).

Many examples are focused on the conceptual design stage of
product development. Graph grammars have been used for the
design of a coffee grinder, which covers the design process starting
with the initial definition of a system boundary to the final design
(Kurtoglu et al., 2010). Other research focuses on the design of
sheet metal parts (Patel and Campbell, 2010), fluid channels
(Hooshmand and Campbell, 2014), or trusses (Hooshmand and
Campbell, 2016). Further examples include the case where
graph grammars have been used in an automated design process
to optimize the design at the conceptual stage for tank suspension
systems (Li and Zhao, 2015). Graph grammars have also been
used in the design of different robots, where they have been
used for the design of passive dynamic brachiating robots
(Stöckli and Shea, 2017) and for the design of robot structures
for different terrains (Zhao et al., 2020).

Often there is just one example of the use of graph transforma-
tion for a particular design task. This makes it difficult to evaluate
these implementations. In the case of the design of gear systems,
this situation is different. There are several examples how graph
transformation has been applied to design different gear systems.
Gearbox synthesis was used as an example to create better search
methods using GrGen.NET (Königseder and Shea, 2015;
Königseder et al., 2016). Königseder et al. also give an overview
where graph grammars have been used in the past to design
gear systems (Königseder et al., 2016). A solution that creates
the possible configurations for simple, compound, bevel, and
worm gears has been implemented using GraphSynth
(Swantner and Campbell, 2012).

Graph-based design languages have also been used to design
gears for electrical trains (Holder et al., 2017, 2019). In this con-
text, graph-based design languages have been used for the man-
agement of the requirements (Holder et al., 2017) and for a
process that incorporates special gear design software used in
the industry (Holder et al., 2019).

The design of the FireSat satellite is a comprehensive example
that shows the potential of graph transformation (Gross and
Rudolph, 2016a, 2016b, 2016c). The authors describe how the
vocabulary of the satellite is modeled using the UML, how rules
are used to describe graph transformations, and how different
design alternatives are explored (Gross and Rudolph, 2016b).
An emphasis is put on how geometry and simulations are mod-
eled (Gross and Rudolph, 2016a). The design of the satellite
shows how thermal simulations and cable routing can be auto-
mated (Gross and Rudolph, 2016a) and how different design
cycles can be solved iteratively (Gross and Rudolph, 2016c).

The design process does not always need to be fully automated.
Some researchers explicitly call for a human-in-the-loop approach
to show designers the consequences of design decisions at the
conceptual design stage (Arlitt and Bossuyt, 2019). In Arlitt and
Bossuyt’s research, graph transformation was used to generate
alternative functional models of an electrical power system to gen-
erate solutions with lower failure rates (Arlitt and Bossuyt, 2019).
Another example can be found in civil engineering, where graph
transformation has been used for the semi-automatic model gen-
eration of shield tunnels (Vilgertshofer and Borrmann, 2017).

Graph transformation can be used in the context of manufac-
turing. How technical processes can be modeled with the use of
graph grammars is shown with the examples of riveting and weld-
ing (Stanković et al., 2013). Graph grammars have been used to
determine if solid models can be manufactured (Fu et al., 2013)

and for defining lathe operations (Fu et al., 2014). A case study
from spindle production has been used to show how graph trans-
formation systems can be used to automate the production pro-
cess planning for product families (Zhang and Jiao, 2013).
Graph grammars have also been used to control the self-assembly
of robotic modules (Haghighat and Martinoli, 2017). It has been
shown that the rulesets for self-assembly of robotic modules can
be automatically created using algorithms (Haghighat and
Martinoli, 2017).

Architecture
For the period covered in this review, the majority of the research
on the application of graph transformation to find valid engineer-
ing designs is situated in the field of engineering. Next to engi-
neering, architecture is also an important field. In contrast to
engineering, graph transformation is not only used for the crea-
tion of new designs, but also for the analysis of existing designs.

In the analysis of existing designs, the relationship between
rooms is considered. The justified plan graph used in space syntax
is used to analyze house designs of the architect Glenn Murcutt
and a graph grammar is used in combination with a 3D shape
grammar to create the analyzed designs as well as alternatives
to the analyzed designs that adhere to the discovered design prin-
ciples (Lee et al., 2015). A reserved graph grammar is used to con-
firm, whether a design for a house, represented by a graph
depicting the paths in a house conforms with a set of constraints
(Wang et al., 2019). Examples of house designs by Frank Lloyd
Wright are used, to show that it is possible to validate the designs
and to create new path-graphs that conform to a style (Wang
et al., 2019).

Part of architectural design is defining the shape of a building
or of building elements. A graph representation that is very close
to geometry, where each node represents a point in 3D space has
been used for graph grammars in combination with evolutionary
computing for 3D beam design (McDermott, 2013). Other
researchers focus on assisting designers in building design.
Graph transformation has been used to create different design
solutions and to check whether these solutions meet predefined
criteria (Ślusarczyk, 2018). In this research, graph requirements
have been used to validate design solutions for floor layouts cre-
ated by hierarchical layout graph grammars (Ślusarczyk, 2018).
Existing floor plans are used in combination with graph transfor-
mation to design floor plans with identical connectivity, while
giving user the possibility of add or remove rooms (Wang et al.,
2018). In another approach, designs for floor plans are also gen-
erated based on a set of requirements using graph grammars
(Wang and Zhang, 2020). User requirements can include plan
size, the aspect ratio of the rooms, as well as the room orientation
(Wang and Zhang, 2020).

Shape grammars
Several researchers have used graph transformation to implement
shape grammars. The Palladian grammar, originally developed by
Stiny and Mitchell (Stiny and Mitchell, 1978) for the design of
Palladio’s villas, has been implemented using a graph grammar
(Grasl, 2012). Grasl first used the graph grammar to create a
graph representing the design which was transformed into a 2D
plan in a second step. Since the graph depicts a Palladian design,
certain conventions for the transformation of the graph into a 2D
plan can be assumed (Grasl, 2012). Another example is a graph
grammar, developed to implement the Rabo-de-Bacalhau trans-
formation grammar (Strobbe et al., 2016). According to Strobbe
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et al., input for the grammar can be created in a CAD program
and can be transferred as an IFC file. The graph grammar imple-
mentation of the Rabo-de-Bacalhau grammar uses geometric and
symbolic entities (Strobbe et al., 2016).

GRAPE is a general approach that uses graph grammars to
implement shape grammars (Grasl and Economou, 2013).
GRAPE uses GrGen.Net as a backend for the graph transforma-
tion (Grasl and Economou, 2018). Grammars can be executed
in different CAD programs, as well as a web interface, while
rules are described using GrGen.NET or a visual editor (Grasl
and Economou, 2018). Examples for implemented shape gram-
mars were given in a recent publication (Grasl and Economou,
2018). Graph grammars have also been used to implement a
tool that allows design space exploration of shape grammars
(Strobbe et al., 2015).

Documentation of the production system

Implementations should not only be well documented to facilitate
reimplementation: The primary reason for documentation is to
provide a better understanding of the documented system
(Parnas and Clements, 1986). The vocabulary and the rules
should be documented in a precise manner to provide a better
understanding for coworkers and, in the case the results are pub-
lished, to the readers of the article. The management of research
data should adhere to the FAIR principles, that data is findable,
accessible, interoperable, and reuseable (Wilkinson et al., 2016).
As part of research data management, the documentation of the
engineering research will play an important role in the future.
Currently, efforts are being made to facilitate and to standardize
research data management in engineering that adheres to the
FAIR principles (Schmitt et al., 2020). For these reasons, the doc-
umentation of the vocabulary and the rules in the reviewed arti-
cles are examined.

Vocabulary

Different approaches to document the vocabulary can be seen in
the reviewed literature. Some researchers just present a few ele-
ments of the vocabulary, while other researchers document the
complete vocabulary used in their research. The vocabulary can
be documented in different ways. One approach is to describe
the vocabulary in the body of the text of the research article.
Another approach is to use diagrams. The elements of these dia-
grams can be defined specifically for the project they are used for
or a formally defined notation, like the UML class diagram or the
PROGRES graph schema, can be used for the diagrams that
explain the vocabulary.

Examples
The metamodel can be presented in different ways. In order to
explain the underlying concepts for a certain design problem,
some researchers just describe what the nodes, edges, and labels
that constitute the vocabulary stand for. The use of a metamodel
is not explicitly mentioned and no extra means, like diagrams, are
used to present the vocabulary. The elements may be very simple,
as in the case where the nodes just have the Euclidean coordi-
nates, a timestamp, and the index of the rule as a label
(McDermott, 2013). Where this approach is used, the underlying
concepts are not too complex and just employ a limited number
of node and edge types, as well as different labels (Campbell et al.,

2012; Fu et al., 2013, 2014; Hooshmand and Campbell, 2014,
2016).

Structuring the metamodel can be beneficial in case the
vocabulary gets more complex. Here, it is beneficial to comple-
ment the description of the elements by diagrams. Nodes and
edges may be presented graphically in a hierarchy using arrows
(Grasl, 2012; Grasl and Economou, 2013, 2018). These diagrams
can be used to show the inheritance relationship between the
nodes and edges of the metamodel (Stöckli and Shea, 2017;
Vilgertshofer and Borrmann, 2017).

In some cases the metamodel is not limited to nodes and
edges, but consists of a set of elements, ports, and edges (Helms
and Shea, 2012; Münzer et al., 2013; Muenzer and Shea, 2017).
Separate diagrams may be presented, depending on how the
metamodel is defined. There may be separate diagrams for the
different types of elements, ports, and edges (Helms and Shea,
2012). In other cases, the diagrams depicting the inheritance rela-
tion are limited to elements and ports, since only one edge type
has been implemented (Münzer et al., 2013; Muenzer and Shea,
2017). Abstract types are used for top-level elements (Helms
and Shea, 2012; Münzer et al., 2013).

It is not necessary to present the types of nodes and edges in
separate diagrams. How node and edge types relate to each other
can be shown in the same diagram. A type graph can be used to
show how nodes and edges relate to each other (Strobbe et al.,
2016). Presenting node and edge types in the same diagram is
especially useful where the use of certain edge types is constrained
to certain node types.

Formalized notations are used to define the elements of the
metamodel in a detailed way that allows incorporating both the
inheritance and the definition of special edges between different
classes, as well as attributes. An example of such a formalized
notation is the PROGRES graph schema. The PROGRES graph
schema has been used to define the metamodel for production
process planning (Zhang and Jiao, 2013). Another approach is
the use of the UML class diagram (Gross and Rudolph, 2016a,
2016b, 2016c; Schmidt and Rudolph, 2016; Holder et al., 2017;
Vogel and Arnold, 2020). Where the UML class diagram has
been used, excerpts of the class diagram (Gross and Rudolph,
2016a, 2016b, 2016c) or a simplified version of the class diagram
are presented (Schmidt and Rudolph, 2016; Holder et al., 2017).

Summary
Under the premise that an exchange between different software
applications or research groups should be facilitated, the docu-
mentation and publication of the complete vocabulary is neces-
sary. This can be done in various forms. In order to describe
simple metamodels, an explanation that relies only on text can
be enough. For more complex cases, the use of diagrams is ben-
eficial. Diagrams give a good overview of the vocabulary and
allow expressing relationships in a concise manner.

In the reviewed research, some researchers use their own nota-
tion to present the vocabulary. They use a custom set of symbols
or show a hierarchy presenting the inheritance relationship
between different classes. While this will work well for an
exchange within the own research group, the use of a custom
notation can entail some difficulties when used for the exchange
between different research groups. The meaning of the symbols
that are used needs to be understood in order to comprehend
what has been documented, and great care needs to be taken
when creating such a custom notation. In order to avoid these dif-
ficulties, formally defined and standardized notations can be used.
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The use of a formally defined notation avoids ambiguity or mis-
understandings. Using a standardized notation facilitates the
exchange between different researchers or engineers.

Rules

The representation of the design task is not limited to the
vocabulary. The rules, consisting of a LHS and a RHS, also need
to be represented. To specify the LHS and the RHS of a rule, dif-
ferent nodes, edges, and labels are used. The rules are presented
in different notations. Some researchers use a graphical notation,
some a textual notation, and some a mixture of graphical and text-
ual notation, for example to further constrain the search pattern.
Only some researchers present the complete set of rules.

Examples
Rules can be presented in a graphical notation using symbols. The
description of the Palladian grammar is a good example where a
self-defined set of symbols is used to describe the rules (Grasl,
2012). Similar approaches are pursued for gearbox synthesis
(Königseder and Shea, 2014, 2015), bicycle frame synthesis
(Königseder and Shea, 2015), and truss and wave energy conver-
ter design (Puentes et al., 2019). The rules for truss layout design
or the design of fluid channels can also be represented using 2D
drawings (Hooshmand and Campbell, 2014, 2016). The research-
ers using symbols or pictograms show a large variety of different
rules, indicating that the complete set of rules is shown.

Individual representations for the graph patterns, showing
named nodes and edges as lines, are used by a variety of research-
ers. Some show one or a few rules to illustrate the principle of
defining a rule (Kurtoglu et al., 2010; Patel and Campbell, 2010;
Campbell et al., 2012; Swantner and Campbell, 2012; Fu et al.,
2013, 2014; Kotulski et al., 2014). Other researchers show the
complete list of rules (Stöckli and Shea, 2017). In a formalized
approach, the UML object diagram is used for the left-hand
side (LHS) and the right-hand side (RHS) of graphical rules
(Gross and Rudolph, 2016b).

In other cases, a notation that combines graphical and textual
elements is used. The rule set for the generation of hybrid power-
train solution spaces is shown, consisting of a graphical representa-
tion of the rule and additional constraints explained using English
sentences, along with an example application of the rule (Helms
and Shea, 2012). Other approaches combine pictograms with a
set of constraints and include an example of a rule in textual nota-
tion (Grasl and Economou, 2013, 2018). The graphical representa-
tion of the rules can be combined with attribute conditions and
negative application conditions (Strobbe et al., 2016). The complete
rule set used for the production process planning of spindles is
shown, using the PROGRES notation for rules (Zhang and Jiao,
2013). In graph-based design languages, either graphical rules or
rules written in JAVA are used (Vogel and Arnold, 2020). The gra-
phical rules consist of a LHS and a RHS, can be modeled using a
graphical notation based on the UML object diagram, and allow to
call methods (Vogel and Arnold, 2020).

Relatively few researchers present the rules using a textual
notation. Backus-Naur form is used to describe the transforma-
tions (Stanković et al., 2013). Königseder et al. discuss how a
rule can be modeled with negative and positive application condi-
tions in GrGen.NET using a textual notation (Königseder et al.,
2016). The graph before and after rule application is presented
in order to show how a rule defined in textual notation modifies
the graph (Vilgertshofer and Borrmann, 2017).

Summary
Three approaches are used to document the rules used for graph
transformation. These approaches are the use of a textual nota-
tion, the use of a graphical notation, and a notation that combines
graphical and textual elements. Each approach has its own par-
ticular strength and weakness. Graphical notations can be used
to provide a good overview over the rules used. This is especially
the case when pictograms are used to show all the rules of a par-
ticular implementation. However, the intricacies of the different
rules are lost in this approach, since the involved nodes, edges,
and labels may not be clearly defined using self-defined symbols.
Graphical notations, such as UML, can be used to represent the
instances in the graphs. These graphical notations are better sui-
ted than pictograms to document the exact pattern used in a rule.
For complex application conditions, a completely graphical repre-
sentation may not be sufficient.

Textual representations, on the other hand, can be very expres-
sive, but may not be as easy to understand as graphical repre-
sentations. The surveyed papers indicated that in order to
represent complex patterns that use concepts like application con-
ditions, the use of at least some textual notation is necessary. This
means that either a complete textual notation such as in
GrGen.NET will be used (Jakumeit et al., 2010) or a notation
that combines textual with graphical elements as in PROGRES
(Schürr et al., 1999).

Documentation of an example

Documenting the vocabulary and the rules provides a better
understanding of the application of graph transformation for
engineering design. It also enables to reproduce the research
and facilitates the implementation in different software applica-
tions. Currently, there is no common approach to document
the vocabulary and the rules. We are going to show how UML,
a formally standardized notation, can be used to document the
application of graph transformation for engineering design. To
illustrate the approach, we will use the simple example of a vehi-
cle. The example was created using the software Design Cockpit
43. The advantages and disadvantages of this approach will be
discussed in the following section.

The vocabulary used in the example is described in the UML
class diagram in Figure 2. The vocabulary consists of several classes.
These classes are the metamodel from which the actual instances are
instantiated. The diagram depicts the relationships between the dif-
ferent classes as well as the attributes of the classes.
Generalizations are shown in black with an hollow triangle as an
arrowhead and depict a relationship between a superclass and a sub-
class. Associations are shown in blue with an open arrowhead and
describe how different classes are linked. Associations with an
arrow are unidirectional. The class Vehicle, for example, has the attri-
butes length, width, height, and numberOfWheels. It also has an asso-
ciation to DriveSystem. The italic name of DriveSystem indicates that
it is an abstract class. Its subclasses are ElectricEngine and
CombustionEngine. ElectricEngine and CombustionEngine inherit
the attribute power from DriveSystem. The Vehicle also has a Body
and a Chassis. The Chassis has Wheels and Suspensions.

Different graph transformation rules describe how the model of
a particular vehicle is created. Figure 3 shows four rules that are
executed in consecutive order. The figure also shows how the
graph is changed through the rule application. The first column
shows the state of the graph before the rule application. In the cen-
ter, the rule with the LHS and the RHS is presented. The rule is
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applied, if the pattern that is described in the LHS of the rule, is
found in the graph. The last column shows the state of the graph
after the application of the rule. The first rule is used to define
the vehicle instance. Since this rule should be applied without
any conditions, the LHS of this rule is empty. The second rules
defines a vehicle instance as search pattern. If a vehicle instance is
found in the graph, a body instance, a electricEngine instance,
and a chassis instance are added to the vehicle instance. In the
third rule, four wheel instances are added to the chassis instance.
In the final rule, the search pattern on the LHS consists of a chassis
instance and a wheel instance that are connected through a link.
This rule is applied four times, since the pattern defined in the
LHS can be found four times in the graph. For each occurrence
of the search pattern, a suspension instance is added between the
chassis instance and the wheel instance.

In Figure 3, the graph, representing the model of the vehicle, is
depicted with nodes and edges. The UML object diagram can also
be used to represent the graph. This view of the model is shown in
Figure 4. Figure 4 shows the graph after the application of the
rules depicted in Figure 3. In Figure 4, the links between the dif-
ferent instances as well as the parameters of the different attri-
butes of the instances are shown.

Discussion

Documenting the vocabulary and the rules is the first step to facil-
itate the application of graph transformation for engineering
design in different software applications. This is due to the lack
of a common, widely used language for defining the vocabulary
and the rules. In the absence of an exchange standard, the

reimplementation of the vocabulary and the rules in different
software applications seems to be the approach that is currently
more likely to be taken.

The documentation of the vocabulary and the rules should be
clear and precise to reduce the likelihood of misunderstandings.
Natural language or pictograms and symbols, that were created
specifically for a particular design problem, are too ambiguous
to serve as means for the documentation. For a precise documen-
tation, a formalized notation should be used. The formal notation,
that is used to document the vocabulary or the rules, can either be
a graphical or a textual notation.

The documentation of the vocabulary can be carried out using a
formally defined notation. For the appliaction of graph transforma-
tion for engineering design, the PROGRES graph schema as well as
the UML class diagram are already in use (Zhang and Jiao, 2013;
Vogel and Arnold, 2020). In the field of computer science, the
UML class diagram has been used for this purpose (Hermann
et al., 2008; Cabot et al., 2009). Using these notations to document
the vocabulary could facilitate the exchange between different
researchers and would allow to manually implement the vocabulary
in different software applications. The use of a graphical notation
seems to be especially promising. Graphical notations like the
UML have been standardized and are widely used for software devel-
opment. The UML class diagram may be used to model the relation-
ships between the different elements of the vocabulary in a concise
manner and provides a good overview over the vocabulary.

The documentation of the rules may not be as straightforward
as the documentation of the vocabulary. For the simple example
of the design of a vehicle, presented in this section, the use of a
graphical notation is sufficient, but for more complicated cases,

Fig. 2. Vocabulary for the design of a simple car model using the UML class diagram.
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that involve application conditions for the rules, the use of a text-
ual notation or a mixture of textual and graphical notation may be
necessary. Graphical notations may be used to model application

conditions, but this approach leads to large diagrams, that consist
of several fields (Hermann et al., 2008). While the graphical rep-
resentation of the rules may be more intuitive, it has been pointed

Fig. 3. Graph transformation described with the UML object diagram.
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out that the main criterion for the representation of the rules is
the expressiveness of the notation, and concerning this criterion
textual notations perform better (Jakumeit et al., 2010). As a
result, it is unlikely that the rules will be documented only by a
graphical notation, since the documentation should be as expres-
sive as the representation. One approach to deal with this issue is
to present the code, that was used to define the rules as well as
additional diagrams depicting the corresponding graphs
(Königseder et al., 2016; Vilgertshofer and Borrmann, 2017).

Depending on the size of the vocabulary and the number of
rules, a complete documentation and subsequent publication
can be a cumbersome task. For this reason, the creation of the
documentation is ideally automated. For large implementations,
the documentation of all the rules may exceed the scope of a
research article.

Improved documentation of the production system

We suggest that formally defined notations should be used to
document the vocabulary and the rules in research on the appli-
cation of graph transformation for engineering design. If authors
documenting their research find it necessary, these notations may
be complemented by additional diagrams using pictograms or
symbols. Depending on the complexity of the rules, different
approaches may be necessary for the documentation of the
vocabulary and the rules.

For the documentation of the vocabulary, a standardized gra-
phical notation should be used. The examples in the reviewed lit-
erature show that the vocabulary can be documented using
standardized graphical notations such as PROGRES or UML. If
the vocabulary was defined using a textual notation, a standard-
ized graphical notation, that supports the principles of
object-orientation, such as UML or the Systems Modeling
Language (SysML) should be used to document the vocabulary.
The use of a graphical notation for the documentation of the

vocabulary ensures that readers get a good overview of the differ-
ent elements of the vocabulary.

Depending on the complexity of the rules, different documen-
tation approaches may be necessary. A graphical notation is well
suited for simple rules. For more complicated rules, the use of a
graphical notation may not be sufficient or may produce large
diagrams that consist of several fields and may be difficult to
understand. In order to avoid this situation, the rules may also
be documented using a textual notation.

Processing

In this section, three common approaches to the use of graph
transformation for engineering design are presented. The classifi-
cation of the existing research is done following the example by
Blostein et al. (1996), which distinguished implementations
according to the organization of the graph transformation rules.
We present features of the approaches and provide examples. In
a subsequent step, advantages and disadvantages as well as the
applicability of each approach are discussed.

There are different approaches using graph transformation for
engineering design. For engineering design, graph transformation
can be used on its own or as part of a larger process. If it is used
without any other software applications, it is used directly to solve
a certain engineering problem. Another approach is to use graph
transformation as part of a larger process. In this case, graph
transformation is used in combination with other components
to solve a certain engineering problem. An example for this
case is the use of graph transformation to create a design and
the subsequent simulation of the potential solution using another
software application. In both of these cases, different approaches
can be implemented on how the rules are processed. In the fol-
lowing, three different approaches are presented.

Blostein et al. (1996) distinguished implementations according
to the organization of the graph transformation rules. Blostein

Fig. 4. Graph representing finished model.
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et al. have distinguished between unordered graph rewriting,
ordered graph rewriting, event-driven graph rewriting, and graph
grammars. While the first three categories distinguish between
the type of rule application, graph grammars refer to cases where
a language is defined, although Blostein et al. have acknowledged
that in practice the term grammar is sometimes used without
regard to the language definition characteristic (Blostein et al.,
1996). In the context of engineering design, it is not always clear
if the term graph grammar is used according to this strict defini-
tion. For engineering design, the creation of all solutions may not
necessarily be the goal. Often the goal is to find solutions that per-
form well in respect to certain requirements and can be found
within an acceptable time frame. As a result, the category of
graph grammar is omitted and only the organization of the rewrite
rules is taken into account. Since the focus of the use of graph
transformation for engineering design is on the automation of
design processes, the use of external events such as user input to
structure graph transformation is also not taken into account.

The used categories for the classification are unordered graph
rewriting and two subcategories of ordered graph rewriting, par-
tially ordered graph rewriting, and fully ordered graph rewriting.
The categories follow the classification outlined by Blostein et al.
(1996). Following the classification outline by Blostein et al.
(1996), the categories used in this review exhibit the following
characteristics. In unordered graph rewriting, the rules are not
ordered and theoretically any applicable rule can be chosen to
rewrite the graph. Partially ordered graph rewriting uses different
methods to impose some order on the rewrite rules. To be consid-
ered as partially ordered in this review, the rewriting process may
be divided into different phases, in which the rules are either
unordered or partially ordered, probabilities may be assigned to
each rule to influence rule selection, or special algorithms may
be used to guide the rule-selection process. In fully ordered
graph rewriting, the focus is less on the exploration of different
results and more on the automation of the model creation. For
fully ordered graph rewriting, the exact order of the rewrite
rules is defined and rules are either applied once, or as many
times as the search pattern is found, depending on the conven-
tions of the software application used, or rules are not applied
in case the search pattern is not found. Depending on how multi-
ple occurrences of a search pattern are handled, additional control
structures may be necessary to produce a deterministic result
(Schürr et al., 1999). These categories are based on the work by
Blostein et al. (1996) and were chosen to fit the purpose of this
review to examine the use of graph transformation in engineering
design. This classification differs from the classification of differ-
ent exploration approaches in probabilistic, tree-traversal, and
rule-based agents that was given by Grasl and Economou
(2018). The classification based on graph rewriting was chosen
to account for the different approaches examined in this review.

Unordered graph rewriting

In the case of unordered graph rewriting, the application of rules
does not follow a predefined order. No order concerning the rule
application is imposed by the designer of the graph transforma-
tion system or the graph grammar. In some cases, all possible
solutions are created, while in other cases termination criteria,
such as a certain performance of a valid design, the number of
created solutions, or the elapsed time, are defined. Graph trans-
formation can be part of a larger process to find a satisfying engi-
neering solution. In this case, the process can have additional

steps. If graph transformation is used as part of a larger process,
graph transformation can be used to define the topology of a
design solution, while the parameters of the instances are opti-
mized in a separate step.

Examples
Unordered graph rewriting can be used to create all possible solu-
tions defined by the vocabulary and the rules. Graph grammars
are especially well suited for this case. An example for this
approach is the graph grammar that is used to model technical
processes (Stanković et al., 2013). The grammar is used to enu-
merate all possible solutions for a stiffened panel assembly line
(Stanković et al., 2013).

The generation of all possible solutions is not always possible. If
only some solutions need to be generated, the search needs to be
constrained. The search can be understood as a search in a search
tree, with a starting configuration of the graph as the root of the
tree as depicted in Figure 5. For this reason, tree-search algorithms
are often used to explore the search space. Breadth-first search is
used in an example for the Network-Based Rule Analysis Method
(Königseder et al., 2016). This analysis method provides the
designer with a better understanding of rule matches and allows
detecting rules that slow down the search process, because they
undo each other or lead to confluence (Königseder et al., 2016).
Dealing with confluence is especially important in order to provide
an efficient search (Eichhoff and Roller, 2016). For this reason, the
“dynamic rule independence analysis” was proposed by Eichhoff
and Roller. Dynamic rule independence analysis can be used to
reduce the number of operations and was tested with unordered
and partially ordered graph rewriting (Eichhoff and Roller, 2016).

While tree-search algorithms are used to navigate the search
space, custom algorithms are used to guide the search process
towards promising solutions. Custom algorithms may be used
when the search process involves several steps, for example
including a step where the parameters of a design are optimized.
The “topologic and parametric tune and prune” ((TP)2) algo-
rithm is an example for this approach (Patel and Campbell,

Fig. 5. Example of search in the search tree. Starting from an initial graph, many dif-
ferent solutions can be generated.
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2010). In the presented research, (TP)2 used a maximum number
of iterations or a maximum elapsed time as termination criteria.
The algorithm was tested for the design of sheet metal parts
and outperformed genetic algorithms (Patel and Campbell, 2010).

The definition of the design problem influences the search
strategy. Regions of the search tree that are too close to the root
may not satisfy all the constraints of the design problem and
after a certain depth is reached, it can be likely that the solutions
do not perform well in terms of objective functions (Swantner and
Campbell, 2012). For this reason, a best-first search has been used
to find solutions for the topology of gear trains by Swantner and
Campbell. Other aspects of the design were solved in a subsequent
optimization step (Swantner and Campbell, 2012).

Graph transformation can also be used to modify the topology
of an existing graph, instead of adding elements to the graph that
have not been part of the graph. The modification of a user-
defined start graph, by either removing elements, adding existing
paths, or adding existing elements in series, has been investigated
in order to find solutions where failure events are less likely to
affect the system performance (Arlitt and Bossuyt, 2019). Arlitt
and Bossuyt used a custom algorithm to guide the search process.
According to Arlitt and Bossuyt, in each iteration of this algo-
rithm, the best-performing solutions were selected using roulette
wheel selection and a random rule is applied to all selected
designs. The search ended when predefined performance criteria
had been met (Arlitt and Bossuyt, 2019).

Discussion
The examples show that unordered graph rewriting can be used
for engineering design. Depending on how the design process is
defined, unordered graph rewriting can be used on its own
(Stanković et al., 2013) or as part of a larger design process
(Patel and Campbell, 2010). The approach works well for cases
where design topologies are explored. Here, graph transformation
is used to define the topology of the design, while the parameters
of the design are determined in a subsequent optimization step
(Patel and Campbell, 2010; Swantner and Campbell, 2012).

Confluence can be an issue, depending on the definition of the
vocabulary and the design of the rules. Finding duplicate results
should be avoided, in case the evaluation of the designs is compu-
tationally costly or the runtime of the program is too long. In this
case, confluence needs to be addressed.

Partially ordered graph rewriting

Depending on the design problem, an approach using unordered
graph rewriting can take too long to be processed or can produce
many invalid solutions. For these cases, partially ordered graph
rewriting may be used. In order to avoid rule applications that
do not serve the overall design goal, at least some order of the
rule application is established. Various approaches are possible.
Rule sets can be used for design problems that consist of a
sequence of different phases or steps. An example of such an
approach is illustrated in Figure 6. Rule sets constrain the applica-
tion of rules to rules from a certain set during the development of
the design. The different rule sets are then used in consecutive
order.

Another approach is to assign each rule a probability, accord-
ing to which it will be used. This ensures that rules that are ben-
eficial for a certain design goal are executed more often. Special
algorithms can be used to choose which rules are applied. A com-
bination of the approaches is also possible: for example using rule

sets, where the selection of each rule has a certain probability.
Graph transformation can be part of a larger process where
subsequent steps to the application of graph transformation
might involve the optimization or the evaluation of the created
designs.

Examples
Rule sets can be used to structure the order in which rules are
applied. If the design consists of different phases, each phase
can have its own rule set. This is demonstrated with the design
of a coffee grinder using GraphSynth (Kurtoglu et al., 2010).
Kurtoglu et al. present a design process, where in the first
phase, the function structure for the design problem is created,
then the configuration flow graph is created and finally compo-
nents are selected. The first phase is further subdivided into
three phases with separate rule sets, while the second and third
phase each employ just one rule set (Kurtoglu et al., 2010).
Rule sets do not necessarily have to deal with design decisions.
In order to determine the manufacturing operations for 3D solids,
different kind of rule sets have been used: decision rule sets for
alternative design decisions and rule sets used for pre- or postpro-
cessing as well as asserting a certain state (Fu et al., 2013).

Structuring the search into different phases enables a broad
search in the beginning of the search process and a more narrow

Fig. 6. Example of a search using different phases with different rule sets for each
phase.
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search for later phases. This is achieved by only selecting a certain
percentage of solutions for later phases. This approach is used for
the design of fluid channels (Hooshmand and Campbell, 2014).
In this work, the graph grammar is complemented by two conse-
cutive steps, where the best candidates from the shape and topol-
ogy generation are transformed from the graph to 3D shapes and
evaluated in a computational fluid dynamics (CFD) evaluation
(Hooshmand and Campbell, 2014). A similar approach was
used for the design of truss layouts (Hooshmand and Campbell,
2016). Hooshmand and Campbell used a breadth-first search
algorithm to create all valid topologies and transform the results
from the graph to 3D shapes. To handle the creation of duplicate
solutions, the application of confluent rules was prevented and the
results were checked for duplicates (Hooshmand and Campbell,
2016).

The order of rule application can also be influenced by assign-
ing probabilities for each rule. Here, the difficulty lies in deter-
mining which probability should be assigned to which rule. For
cases where no clear quality measure is defined, interactive user
input can be used to evaluate the solutions and assign the prob-
ability of rule application accordingly in a subsequent step
(Campbell et al., 2012). The assignment of probabilities for rule
selection can be combined with rule sets. For the design of
Palladian floor plans, probabilistic agents were used by Grasl
and Economou to structure the sequence of rule application
(Grasl and Economou, 2018). In this research, the probabilistic
agents selected rules from different rule sets with an assigned
probability for each rule within the set. Grasl and Economou sug-
gest assigning the probability based on intuition or based on an
analysis of the architectural work that is represented by the gram-
mar (Grasl and Economou, 2018).

Special algorithms can also be used to guide the search strat-
egy. The “Graph Heuristic Search” algorithm uses deep-learning
to create a heuristic which is used to decide which rule appli-
cation will lead to the best-performing candidates (Zhao et al.,
2020). For the design of robot structures, the “Graph Heuristic
Search” algorithm performs better than a Monte Carlo
Tree-Search algorithm and a random search algorithm (Zhao
et al., 2020).

Different search strategies for topologic and parametric rules
have been explored, finding that the search strategy depends on
the definition of the design task (Königseder and Shea, 2015).
Königseder and Shea used the BURST algorithm in this research.
Different search strategies should be used, depending on the sen-
sitivity of the design task to the application of topologic rules
(Königseder and Shea, 2015).

Discussion
Similar to unordered graph rewriting, partially ordered graph
rewriting can be used to explore different design solutions.
Partial ordering of the rules allows influencing the search process.
Depending on the design problem, different approaches can be
used to establish some kind of order for the rules. Rule sets are
particularly fitting for design problems were the design process
contains different stages. For cases where certain rules have a
higher influence on finding a valid design than other rules, prob-
abilities may be assigned for rule selection. In order to assign
probabilities, either a heuristic function needs to be created or
the probabilities need to be assigned manually. Whether the
manual assignment of probabilities works better than a redesign
of the rules or a reworked partial ordering of the rules in sets is
unclear.

The use of special algorithms to guide the search process pro-
duces promising results. Since the use of a particular algorithm is
problem-specific, the trade-off between the implementation of the
algorithm and the runtime of the search should be considered. If
the runtime of the search process is an issue, the search strategy
should be chosen carefully. For these cases, confluence should
also be addressed. Partially ordered graph rewriting can be used
alone or as part of a larger design process. In this case, steps
to evaluate or optimize the design are included in the search process.

Fully ordered graph rewriting

Compared with unordered or partially ordered graph rewriting,
fully ordered graph rewriting takes a different approach. In fully
ordered graph rewriting, the application of rules follows a prede-
fined order. This approach allows to create a certain result for a
certain input, as illustrated in Figure 7. The focus of this approach
is less on the exploration of novel solutions and more on the auto-
mation of a process. Depending on the language and the environ-
ment, the application of a rule can be nondeterministic, if the
graph contains multiple occurrences of the search pattern and
the rule is randomly applied to one occurrence of the search pat-
tern (Schürr et al., 1999). In this case, additional control struc-
tures may be used to ensure a deterministic behavior (Schürr
et al., 1999).

This does not necessarily mean that this approach cannot be
used to explore the design space. In order to explore the design
space, the process simply needs to be started with different
input parameters. Using fully ordered graph rewriting does not
necessarily imply the use of only one linear sequence of rules.
The description used for rule execution can involve loops and
conditionals.

Fig. 7. Example of changes to the graph using fully ordered graph rewriting.
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Examples
To describe the production process planning for product families,
the language PROGRES is used (Zhang and Jiao, 2013). In this
research, the order of the rewriting rules is described using
imperative control structures (Zhang and Jiao, 2013). In some
cases of design, the same result for a certain input is expected.
This can be the case in the creation of architectural floor plans.
For this reason, rule-based agents that exhibit deterministic
behavior are used to generate designs that satisfy a set of require-
ments by using if-then rules (Grasl and Economou, 2018).

Graph-based design languages use rules that are presented in a
predefined order. The transformation of the graph is either
described by graphical rules consisting of a LHS and a RHS or
procedural JAVA code (Vogel and Arnold, 2020). Several design
languages can be arranged in a hierarchy to model a system as
a combination of subsystems, as shown with the example of satel-
lite design (Gross and Rudolph, 2016b). Through the change of
initial requirements and executing the design language for each
set of requirements, solutions that differ in topology as well as
parameters can be explored, as shown with the example of 3444
different satellite layouts for different communications systems
(Gross and Rudolph, 2016c). The results are used to assess how
different communication subsystems perform according to certain
requirements in order to keep the overall system as light as pos-
sible, which is an important design factor in satellite design
(Gross and Rudolph, 2016c).

Discussion
With fully ordered graph rewriting, the focus is less on exploration
of a design space and more on the automation of a particular design
process. As a result, confluence is less of an issue. Even with this
focus on the automation of the design process, the design space
can still be explored. By restarting the design process with different
input parameters, fully ordered graph rewriting can also be used as
an exploratory tool, as the example for satellite design indicates
(Gross and Rudolph, 2016c). In this case, the focus of the search
process is less on finding new topologies and more on getting a bet-
ter understanding on how different elements of a system interact.

Future research directions

Previous sections presented a content analysis, different
approaches to document the production system, and how differ-
ent types of graph rewriting can be used for engineering design.
In this section, future research directions for the application of
graph transformation for engineering design are proposed.
Apart from the reviewed literature, conference papers were also
taken into consideration.

Better support of graph transformation in engineering design

In current practice of using graph transformation for engineering
design, most practitioners define their own custom vocabulary for
specific design problems. As a result, it is difficult to exchange
implementations. Practitioners always need to familiarize them-
selves with the concepts used in a specific implementation. One
way of addressing this challenge is to define common concepts
once and reuse them for different problems. The "abstract geom-
etry" can be seen as such an approach (Schmidt and Rudolph,
2016). Similar approaches for continuum mechanics have been
investigated (Vogel, 2018). Another approach is to use ontologies
(Roelofs and Vos, 2020).

The presented approaches probably need to be reworked or
extended as they become more widely used. Theoretically, existing
standards, libraries, or ontologies from other domains could also
be used to define the vocabulary. Further research is necessary, to
investigate how these standards, libraries, or ontologies can be
adapted. It should also be investigated to which other domains
beside geometry and physics the use of a common vocabulary
can be applied.

This reuse is not limited to the vocabulary, but may contain
design processes where graph transformation is used in combina-
tion with algorithms to solve domain specific tasks. A good exam-
ple of this approach is the automated routing of system equipment
for electrical wire harness design (Eheim et al., 2021) and the
automated piping of landing gear (Neumaier et al., 2021). Once
the design process is defined, it may be reused in other contexts.
Similar approaches may be implemented for other design
processes.

Different approaches to guide the synthesis of new designs
have been explored. Depending on the formulation of the design
problem, certain strategies to guide the search process are more
promising than others. One strategy to guide the search process
is the use of different rule sets (Königseder and Shea, 2015;
Puentes et al., 2019). The synthesis of new designs may also be
guided by the overall system reliability. Here, different strategies
may be applied to increase the overall system reliability (Arlitt
and Bossuyt, 2019; Riestenpatt gen. Richter and Rudolph, 2019;
Riestenpatt gen. Richter, 2021).

Another approach is the use of different algorithms, such as
(TP)2 (Patel and Campbell, 2010), BURST (Königseder and
Shea, 2015, 2016; Stöckli and Shea, 2017), and Graph Heuristic
Search (Zhao et al., 2020). Depending on the formulation of the
design problem, different algorithms are more effective than
others (Patel and Campbell, 2010). For researchers or practi-
tioners using graph transformation for engineering design, a com-
parison of the different algorithms, developed to guide the search
process in engineering design, and the associated identification
for which types of design problems the algorithms are suited,
would be beneficial.

In the past, the lack of benchmark cases and criteria was iden-
tified as an obstacle for the evaluation of different software appli-
cations used for computational design synthesis (Chakrabarti
et al., 2011). In the context of graph transformation for engineer-
ing design, this is a persistent obstacle. Currently, there is little to
no exchange of existing implementations between different soft-
ware applications. Strengthening the exchange between different
research groups by better documenting the vocabulary and the
rules might be a good start to foster cooperation and lay the
groundwork for the development of common criteria, which
could be used to identify benchmark cases.

Product development process

Graph transformation in engineering design has been used in dif-
ferent domains and for different products in various stages of the
product development process. The majority of the research falls in
the domain of engineering, particularly mechanical engineering,
and is situated in the conceptual design phase. Ideally, the appli-
cation of graph transformation for engineering design should be
extended beyond this phase. This could mean the extension of
existing research to include a broader scope, or the application
of graph transformation for engineering design in areas in
which it has not been applied yet.
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Existing examples should be extended towards multidiscipli-
nary design. The example of satellite design shows that graph
transformation can be used for multidisciplinary design (Gross
and Rudolph, 2016a). It should be examined how graph transfor-
mation for multidisciplinary design can be applied in other
domains, including the field of architecture.

Another approach is to focus on particular fields for the appli-
cation of graph transformation for engineering design. Two areas
are especially promising: the beginning of the product develop-
ment process and the end, when the product is manufactured.
Requirements management has been explored for the develop-
ment of gear systems (Holder et al., 2017). The use of require-
ments has also been explored for the design of floor plans
(Ślusarczyk, 2018). In practice, requirements are mostly defined
as text. Existing approaches can detect redundancies in test speci-
fications through formalization of the specifications (Walter et al.,
2017). A similar approach could be used to incorporate require-
ments into design processes that use graph transformation.
Further investigations in this area could facilitate the application
of graph transformation in the industry. Graph transformation
may also be used to enable individualized mass customization
of products, as shown with the example of individual coffee
maker designs (Tonhäuser and Rudolph, 2017). Using the coffee
maker design of Agarwal and Cagan (1998) as a reference, graph-
based design languages have been used to implement a generic
design process for coffee makers that allows for the customization
of individual designs by dedicated customer inputs for “lot-size 1”
designs (Tonhäuser and Rudolph, 2017).

The other end of the product development process should also
be further explored. Once a product is designed, it needs to be
manufactured. Graph transformation has already been applied to
determine whether solid models can be manufactured (Fu et al.,
2013) and for defining lathe operations (Fu et al., 2014). Graph
transformation has been used for production process planning
(Zhang and Jiao, 2013). Further research needs to be conducted
to include other production processes. An extension of the applica-
tion of graph transformation to the digital factory is also possible.

Integration with existing processes

A better integration of the tools that use graph transformation into
the design process is a continuing issue. This issue has been raised
by Chakrabarti et al. (2011). In some cases, as in the shape gram-
mar implementations that use graph transformation, the tools can
be integrated into existing CAD software (Grasl and Economou,
2018). However, approaches that use graph transformation differ
significantly from established CAD-centered approaches. In the
field of geometry, it could be possible to bridge the gap between
the approaches through the application of round-trip engineering
(Schmidt and Rudolph, 2016). This would make the transition
easier for people trained to use CAD software.

For other approaches that are not centered on the geometry,
graph transformation may be a natural fit. Currently,
object-orientation is applied in the modeling of the vocabulary
used for graph transformation. This lays the groundwork to use
graph transformation in combination with MBSE to automate
design processes. In MBSE, the V-model is used as a model to
represent system development (Forsberg and Mooz, 1991;
Graessler et al., 2018). An approach to enhance the MBSE devel-
opment process with a machine-executable V-model has been out-
lined (Walter et al., 2019). A key challenge will be the integration
of the machine-executable V-model with existing MBSE processes

and the adaptation and implementation of the approach for dif-
ferent products.

If graph transformation is used for engineering design, the
vocabulary and the associated rules contain a significant amount
of company knowledge (Eichhoff and Roller, 2016). One resulting
challenge is how this knowledge can be protected from clients or
competitors in collaborative design environments (Eichhoff and
Roller, 2016; Vogel and Arnold, 2020).

There are two challenges for the integration of graph transfor-
mation into design processes in engineering design. The first chal-
lenge is the need for a better integration of graph transformation in
existing design processes. The second challenge is related to how
engineers collaborate using graph transformation in engineering
design. While an exchange between the different parties involved
in an engineering project is wanted, the protection of the knowl-
edge, codified in the vocabulary and the rules, can become an
issue and needs to be addressed in future research.

Conclusion

In this article, different approaches to use graph transformation
for engineering design have been presented. In total, 48 different
journal articles that were published between 2010 and 2020 have
been reviewed. The articles were analyzed for the content of the
research. Two main research areas were identified: the develop-
ment of new methods to use graph transformation for engineering
design and the application of graph transformation for engineer-
ing design. Furthermore, it has been examined how production sys-
tems are documented. It was presented how different approaches to
process the rules, unordered graph rewriting, partially ordered
graph rewriting, and fully ordered graph rewriting can be used
for engineering design. Based on the review of the examined jour-
nal articles, future research directions for the application of graph
transformation for engineering design were identified. Graph trans-
formation has been used for a wide array of different design prob-
lems in the research community. The next step will be to facilitate
the application in the industry.
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