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ON FACTORIZATION OF POLYNOMIALS
MODULO n

BY
ROBERT GILMER

Let A be an ideal of the commutative ring R with identity. There is a canonical
homomorphism ¢4 from the polynomial ring R[X] onto (R/A)[X], obtained by
reducing all coefficients modulo 4. If f€ R[X], then we say that f is reducible
(irreducible) modulo A4 if ¢ ,(f) is reducible (irreducible) in (R/4)[X]. If f is monic
and is reducible in R[X], then f'is reducible modulo A4 for each nonzero proper ideal
A of R, for f can be written as g - 4, where g and 4 are monic polynomials in R[X]
of positive degree. Hence ¢ 4(f)=¢4(g) - ¢4(%), where ¢ ,(g) and ¢ ,(h) are monic
of positive degree, and consequently, are nonunits of (R/4)[X](*). The purpose of
this note is to prove that the converse of the preceding statement is false, even for
the ring Z of integers. For example, @3y, the 39¢h cyclotomic polynomial, is
reducible modulo # for each positive integer n, but @, is irreducible in Z[X]. This
statement will follow from more general considerations.

LEMMA 1. Assume that {A;};_, is a finite set of pairwise comaximal ideals of the
commutative ring R with identity, and that f € R[X] is reducible modulo A; for each i
between 1 and n. Then f is reducible modulo A;A," + *A,,.

Proof. By induction, it suffices to prove the lemma in the case where n=2. Thus
we choose polynomials 4, &,, g1, g, € R[X] such that

f=gh(mod 4,), where ¢4(g,) and ¢a(h)

are nonunits modulo A4,. Since the ideals 4; and A4, are comaximal, there exist
polynomials g, # € R[X] such that

g = g, (mod 4,) h = hy(mod A4)).

Therefore, f—gh € 4;[X] N A,[X]=(4; N 4,)[X]=(A4,4,)[X]. Moreover, if g or
h were a unit modulo 4,4,, this would contradict the fact that g, and 4, are nonunits
modulo 4,. Consequently, fis reducible modulo 4,4,.
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M If fe S[{X;}], where S is a commutative ring with identity and {X;} is a set of indeter-
minates over S, then f'is a unit of S[{X;}] if and only if the constant term of f is a unit of S and
each other coefficient of fis nilpotent [5].
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THEOREM 1. If f€ Z[X] is a monic polynomial of positive degree, and if f has at
least two nonassociate irreducible divisors modulo p for each prime p, then f is
reducible modulo n for each positive integer n.

Proof. By Lemma 1, it suffices to prove that f is reducible modulo p* for each
prime p and each positive integer k. By assumption, there are monic polynomials
g, h € Z[X] of positive degree such that f=gh (mod p), where g and /4 are relatively
prime modulo p. If 4,, is the ring of p-adic integers, it follows that f=gh (mod pA4,),
and Hensel’s lemma [4, p. 185] implies that there are monic polynomials g, #; €
A,[X] such that f=g,h;, deg g,=degg, degh,=degh, g;=g (mod p4,), and
h,=h (mod pA,). Hence f=g,h,(p¥4,) for each positive integer k, and since
A [p*A,~Z[p*Z [2, p. 224], it follows that there are polynomials g,, /1, € Z[X]
such that g,=g,(p*4,), h.=h,(p*A4,), deg g,=deg g, deg hy=deg h;, and f=g,h,
(mod p*). Therefore, f'is reducible modulo p*, and our proof is complete.

ReMARK. In Theorem 1, it is easy to give a direct proof, without invoking
Hensel’s lemma, that fis reducible modulo p* for each positive integer £ (cf. [7,
p- 205]). Thus if we assume, by induction, that f=g,_,4,_, (mod p*~'), where
8r1=g (mod p) and #,_;=h (mod p), then we prove the existence of polynomials
r, s € Z[X] such that if g, =g, ,4p*'r and b =Hh,_;+p*Ls, then f=g; /1, (mod p*),
gx=g (mod p), and i, =h(mod p). We let f—g;,_1h._,=p*t, where ¢t € Z[X]. Then
modulo p*, f—gih=f—(ga+p ) t+p* )=l y—sg)p" " If u,
veZ[X] are such that wug, ;+vh,_;=1 (mod p), then 71— (tw)h,_,—(tu)g,_=0
(mod p). Hence, if we take r=tv, s=tu, and we define g,=g, ;+p*'r and h,=
hy_1+p*1s, then g, and 7, have the desired properties.

By means of Theorem 1, we can give examples of monic polynomials f € Z[X]
such that f is reducible modulo » for each positive integer n>1, while f is ir-
reducible in Z[X]. A case of special interest here is that of the cyclotomic poly-
nomials ®,. The factorization of @, modulo p, for p prime, is known [3, p. 512],
[1]. In fact, the following is true.

If (p, k)=1, then O, factors modulo p into a product of ¢(k)[r nonassociate ir-
reducible polynomials, each of degreer, where r is the order of p modulo k. If (p, k)#1
and if k=p™s, where (s, p)=1, then modulo p, (Dk=<Df“’m).

In particular, @, is irreducible modulo some prime p if and only if the multipli-
cative group of units of Z/(k) is cyclic(?). Therefore, @, is reducible modulo p for
each prime p, and since Qg4 is separable modulo p for each p>#3, 13, it follows that
@, has at least two irreducible prime divisors modulo p if p#3 or 13. Moreover,
13 has order 1 modulo 3 and 3 has order 3 modulo 13, so that ®@,, factors modulo

(A If n is a positive integer greater than one, then the multiplicative group of units of Z/(n)
is cyclic if and only if n=2, 4, p*, or 2p* for some odd prime p [6, p. 92].
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13 as (X—3)'*(X—9)'%, and modulo 3 as f’ if?fgfi, where the f; are distinct ir-
reducible polynomials modulo 3 of degree 3. Hence, Theorem 1 implies that @, is
reducible modulo # for each positive integer n(5).
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(®) Other integers k such that ¢ is reducible modulo » for each positive integer n are 55, 95,
111, 3°13¢, 5911°, 5°19°, and 3°37° for all positive integers @ and b. On p. 408 of History of the
Theory of Numbers, Volume II, L. E. Dickson remarks that the polynomial #4+13¢2+81 is ir-
reducible in Z[t], but reducible modulo p* for each prime p and each positive integer e.
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