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ABSTRACT

It has been argued in previous studies that the expected utility decision criterion
provides useful insights for certain insurance problems, such as underwriting,
reinsurance and portfolio optimization problems. In this study three new models
are developed which extend and generalize previous results. The first model
analyses modified stop-loss reinsurance. The second model analyses risk pooling
where both inward and outward reinsurance occur. Expected utility calculations
can be used to provide insight on the attractiveness of competing reinsurance
and risk pooling options. The third model is for strategic planning, where
risk/reward tradeoffs for all the insurer's business activities (underwriting, invest-
ment, reinsurance) can be considered in aggregate. The simpler models can often
be solved analytically however the strategic planning model is relatively complex
and uses Monte Carlo techniques to determine retained earnings distributions.
The expected utility approach has been found to be powerful, flexible and
comprehensive as a decision aiding mechanism. From a normative viewpoint,
this approach accounts very well for all the important decision elements. Recent
developments in decision support systems will allow these models to be made
available to practitioners in user friendly forms.

INTRODUCTION

A considerable volume of research has been conducted into the application of
the expected utility decision criterion in risk and insurance. Much of the funda-
mental work was done by BORCH (1974) and important contributions were made
by BUHLMANN (1971) and FREIFELDER (1979). SAMSON and THOMAS (1983)
applied the criterion to reinsurance decision making and subsequently (SAMSON
and THOMAS, 1985) showed how such a decision criterion could be used as a
screening device as well as a decision aiding tool.

In this study the earlier developments in using expected utility models for
underwriting and reinsurance decision making are extended and generalized such
as to facilitate comparisons of reinsurance and risk pooling. It is further argued
that in general, from a normative standpoint these "risk position" decisions
should not be taken in isolation of all other strategic decisions. Finally, a utility
theory model is developed which encompasses all the strategic decisions of the
insurer (underwriting, investment, reinsurance).
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MODEL 1: MODIFIED STOP-LOSS REINSURANCE

Deductibles and coinsurance agreements have become very popular in both
personal and commercial lines of insurance. In reinsurance, modified stop-loss
contracts (where a form of deductible exists) are also much used. In this section,
upper bound premiums are developed for modified stop-loss reinsurance using
the methods of SAMSON and THOMAS (1983). These principles, which allow a
reinsurer to understand tradeoffs between retention levels and coinsurance pro-
portions apply equally well to primary insurance where optimal deductible and/or
coinsurance decisions can be made simultaneously.

Modified stop-loss reinsurance is a proportional transfer of risk (claims liability)
above a specified retention. Hence it contains elements of both proportional and
nonproportional reinsurance. In quota share reinsurance or stop-loss reinsurance
there are only two primary parameters of interest, namely the premium and either
the proportion ceded or retention level. All three of these elements enter into
modified stop-loss reinsurance. Indeed quota share or pure stop-loss reinsurance
forms can be defined as special cases of modified stop-loss reinsurance.

The advantages of modified stop-loss treaties for the insurer are in their
flexibility and ability to allow the insurer to retain 100% of the claims liability
for amounts below the retention level and cede portions above that level. For
the reinsurer, an attractive feature of such treaties is the proportional participation
of the insurer in large claim amounts (an advantage over pure stop-loss reinsur-
ance). The need for the reinsurer to participate in small claims is obviated in
modified stop-loss reinsurance (an advantage over quota share reinsurance).

Expected Utility Upper Bound Premiums

From the normative perspective of expected utility theory, the advantages of
modified stop-loss reinsurance over quota share or stop-loss forms can be demon-
strated. From SAMSON and THOMAS (1983, p. 253) we can write the expected
utility indifference condition for the insurer:

(1) E[UD(AD-PRMAX-Y)] = E[UD(AD-X)]

where claims X are transformed by reinsurances into retained claims Y. UD is
the utility function and AD represents all other assets. PRMAX is the upper bound
reinsurance premium.

For quota share insurance:

Y = FX for all X, where F is the fraction retained.

For pure stop-loss reinsurance:

Y = X forXssC

Y=C f o r a l l X > C

where C is the retention limit.
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For modified stop-loss reinsurance:

(2) Y = X forX=sC

Y=C + F(X-C) forX>C

where C is the retention limit and F is the fraction retained for Y> C.
To illustrate the upper bounds for modified stop-loss reinsurance we choose

the exponential utility function U(A) = -e~kA. This choice is based on its previous
use by BORCH (1974), FREIFELDER (1979) and SAMSON and THOMAS (1983) and
does not imply that its use is recommended without empirical justification. Indeed,
as a matter of implementation a number of plausible utility functions should be
considered and a new methodology for doing so is presented as an Appendix.

For this form of utility function, equation (1) becomes

(3) \ -e °
Jo

-e-«*D-x)f(X) • dX.-f
JoThis equation can be solved for any loss distribution although in some cases due

to intractability, numerical methods may be necessary. Exact solutions can be
found for the negative exponential loss function:

The solution to equation (3) for this case is

(4) P m M x - T - l n f , , (t_A)c „ , * , m f / , _ 1 .
A / J J

For the special case of quota share reinsurance, C = 0 and equation (4) reduces
to equation (22) in SAMSON and THOMAS (1983, p. 259). For the special case of
pure stop-loss reinsurance, F = 0 and equation (4) reduces to equation (20) in
SAMSON and THOMAS (1983, p. 258). Table 1 shows values of PRMAx for k =
O.OOOOSS"1 and A =$1/2380.95 (as used by SAMSON and THOMAS (1983) and
FREIFELDER (1979).

The insurer may have a large number of reinsurance possibilities available and
the data in Table 1 (or else similar sets of data for whichever utility function
form and parameters are appropriate) can be used to support those decisions.
The calculated upper bound premiums are not market quotations, but represent
the intrinsic value of the various reinsurance options to the insurer. The tradeoffs
between proportional and nonproportional elements can be made by comparing
alternatives with approximately equal upper bound values. For example, a
maximum premium of $260 applies to positions of:

1. Pure stop-loss reinsurance (F = 0) with a retention level of C = $6000.
2. Approximately F = 0.56 above C = $4000.
3. Approximately F = 0.79 above C = $2000.
4. Approximately F = 0.90 with C = 0 (quota share reinsurance).
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TABLE 1

VALUES O F PRMAX FOR fc = 0.00005, A = 1/2380.95

F
Fraction
Retained

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0

2535

2295
2053
1807

1559
1307
1052

794
533
268

0

2000

1169
1062

953
842
728
613
495
375
252
127

0

Retention Level C

4000

549
499
449
397
344
290
234
178
120
60
0

6000

260
236
213
188
163
137
111
84
57
28
0

8000

123
111
101
89
77
65
53
40
27
13
0

10,000

58
53
48
42
37
31
25
19
13
6
0

These comparisons can similarly be made for any premium level.
A second mode of using this form of analysis is to compare market quoted

premiums for various alternatives with calculated upper bound values both as a
screening device (SAMSON and THOMAS, 1985) and as a method of ultimate choice.

A third mode is to obtain premium quotes and substitute them into the left
side of equation (1) (or in the illustrative case, equation (3)) such as to evaluate
the expected utility for each alternative.

Reinsurance agreements usually involve processes of negotiation between the
insurer and a broker or reinsurer, hence the most valuable approach is likely to
be the "upper bound" method. An insurer can quickly and efficiently know its
preferences and determine its strategy if data such as in Table 1 is available
during such negotiation processes. There would be potential advantages for the
reinsurer toknow the utility function of the insurer (as well as its own) so that
it too could find an optimal negotiation strategy.

This analysis of modified stop-loss reinsurance can also be applied to primary
insurance, where a potential insured is considering an optimal deductible (C)
and an optimal coinsurance level (F). In most personal lines, F = 0 (there is no
coinsurance element above the deductible) however risk managers often need to
make decisions involving tradeoffs between C, F and P (premiums) in commercial
lines. The present analysis generally applies to aggregate loss distributions (i.e.,
implicitly assumes only one claim or an aggregation of losses from many claims)
and can be modified to incorporate claim frequency distributions.

MODEL 2: RISK POOLING

BORCH (1974, p. 25) has commented that:
An insurance company generally wants to retain as much of its

portfolio as possible. If it is not obliged to reinsure to satisfy government
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requirements, a company will not usually give a part of its portfolio
away to a reinsurer unless it gets another more or less equivalent portfolio
in return.

The advantages of risk pooling, sharing or reciprocal agreements are principally
that in such cases the net premium base of the insurer is eroded less than in the
case of pure outward reinsurance.

For reciprocal reinsurance or risk pools, the expected utility of entering the
risk pool is:

(5) E[UD(AD-Y-Z-1P)]

where Z is the inward claims liability and AP is the net premium adjustment
(outward-inward).

In general the insurer wishes to maximize expression (5). Pure outward cession
occurs where Z = 0 and AP = PR (the outward reinsurance premium). If Y and
Z are statistically independent then expression (5) can be evaluated for various
alternatives of Y and Z as:

IT
Jo Jo

(6) UD(AD-Y-Z-AP)f(Y)-dYf(z)-dZ.
Jo Jo

In most cases this integral will not be analytically tractable, and numerical
methods involving risk analysis are recommended. If Y and Z are statistically
dependent then the attractiveness of risk pooling is altered. If the covariance of
Y and Z is high relative to the variances of Y and Z then risk pooling may be
unattractive, and certainly may be worse than pure outward reinsurance. This
can be demonstrated using normally distributed claims distributions (see HOGG
and KLUGMAN, 1984, p. 35 for a discussion of this distribution in the insurance
claims context), and assuming that mean-variance efficiency is desired.

For an a risk pool,* a point of minimum variance exists for the pool only if
the covariance of the claims distributions is less than the average of their variances.

Prior to pooling, let the claims variance of participating companies 1 and 2 be
<r2 and a\ respectively.

For company 1, risk pooling transforms its claim variance to

a2' = (\- a)2cr\+ a2al + 2{\- a){a)an.

At critical points, 8a2*/ 8a = 0.

da-2*
(7) — — = - 2 ( l - a 2 2

da

The second derivative is given by:

(8) ^j- =
da

* An insurer forms an "a risk pool" when it lays ofi a proportion a of its risk liability and accepts
the same proportion a from another party (which may be another insurer, reinsurer or a multi-party
pool). The term a2' denotes variance including the effects of risk pooling.
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Hence:

(9) &\2<~ " for a minimum.

The minimum variance (found by equating expression (7) to zero) occurs at

do) «*= /'T'2 .
(Tj + <T2 —2<7j2

If this minimum is to exist in the range 0=s a*«£ 1 then:

8a? Saj
—-=s0 ata=0 and -r-^O at a = 1
5a oa

implying additional conditions a-] 2= cr12 and <r2 > «T12 .
Note that if cr\ = ar\ then the critical point is at a* = \ regardless of cr12. This

critical point may however be a maximum, minimum or stationary point depend-
ing on the value of expression (8).

To facilitate a comparison of risk pooling and modified stop-loss reinsurance,
we calculate upper bound premiums in the case of exponential utility functions,
i.e., for the equation:

°° f°° _
o Jo

(11) -e-k°(A°-Y-z-p)f(y)-dY-f(z)-dz=\-e-k°(A°-X)f(x)dx

where X is the original claims distribution of the insurer which is negative
exponential with parameter A,, Y is the retained claims of X; Y= aX; Z is the
original claims distribution of the other party, and the insurer accepts a proportion
(1-/3) of this risk. Z is assumed negative exponential with parameter A2. The
solution to equation (11) is

> = T l n [ A2(k-A,) J

and if A2 = A! = l/$2380.95 and k = 0.00005 as before, the upper bound net
premiums are shown in Table 2. Note that the solution (12) generally applies to
the range fc<Aj. Implicit in this illustration is the assumption of independence
between X and Z and hence between Y and Z.

A number of observations can be made about the data in Table 2 and about
comparisons between Table 2 and Table 1. First, there is symmetry in Table 2
across the non-leading diagonal. The insurer is indifferent (only in cases where
the inward and outward claims density functions are identical) between positions
of (outward, inward) proportions of (a, /3) and ( 1 - / 3 , 1 - a ) for any a and /3
pair. Secondly P is not zero in Table 2 for cases where a = /3 unless a = )S = 0
or a = /3 = 1 (in which cases no effective change occurs). For cases where a
and fit are equal but not 0 or 1, P is positive, indicating that for a risk averse
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TABLE 2

VALUES OF PRMAX FOR A TWO PARTY RISK POOL

p

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0

0
268
533
794
1052
1307
1559
1807
2053
2295
2535

0.1

-240
28
293
555
813
1068
1319
1568

'1813
'2055
2295

0.2

-482
-214

51
312
570
825
1077
1325
1571
1813
2053

0.3

-728
-459
-194

67
325
580
831
1080
1325
1568
1807

0.4

-976
-708
-443
-181

77
331
583
831
1077
1319
1559

a

0.5

-1228
-959
-695
-433
-175
80
331
580
825
1068
1307

0.6

-1483
-1214
-949
-688
-430
-175
77
325
570
813
1052

0.7

-1741
-1472
-1207
-946
-688
-433
-181
67
312
555
794

0.8

-2002
-1734
-1469
-1207
-949
-695
-443
-194
51
293
533

0.9

-2267
-1999
-1734
-1472
-1214
-959
-708
-459
-214
28
268

1.0

-2536
-2267
-2002
-1741
-1483
-1228
-976
-728
-482
-240

0

a = proportion retained of outward risk transfer.
1 - 0 = proportion accepted of inward risk transfer.

A2 = A, = 1/2380.95.
fc = 0.00005.

insurer there is a considerable advantage from forming equitable risk pools. For
cases where a = /3, P takes on a maximum value at a = f5 = 0.5.

Implementation: Aided Decision Making Using Expected Utility Models

An insurer may have a number of alternatives open to it as methods of modifying
its claims liability position, including various reinsurance and risk pool oppor-
tunities. Each of these may involve a number of parameters (retention limits,
proportions retained, premiums, etc.) and comparisons (to determine the best
option) cannot be accurately made without reducing the effects of these complex
choices to a single measure. In decision theory, one useful procedure for compar-
ing alternatives is to identify the one with the highest expected utility, however
practical difficulties may preclude such processes from directly occurring in
negotiation sessions because of the extensive calculations which are required.
For example, with only a two party risk pool and tractable distributions and
utility functions, the left hand side of equation (11) has to be calculated. More
generally, numerical solutions are often required. The upper bound approach
can be used to produce tables which can be readily used in evaluating reinsurance
and risk pooling options.

As an illustration, consider an insurer (with exponential utility, k = 0.00005)
which is considering the following five options on its claims liability (which has
exponential claims probability density function and A = l/$2380.95).

1. Modified stop-loss reinsurance of 50% retention above a limit of $2000,
costing a premium of $700.

2. Modified stop-loss reinsurance with 80% retention above a retention of
$4000 costing $118.
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3. Forming a risk pool with another party having an identical claims liability
where the fraction retained a = 0.8 and the fraction accepted (1 - 0) = 0.2. There
is no premium.

4. Entering a risk pool with another party having an identical claims liability
where a = 0.8, 1 -)8 = 0.1 and the premium charged is $300.

5. Entering a risk pool where the other party has an exponential claims density
function with parameter A2 = A!/2. For this pool the proposed retained claims
on the outward risk is a = 0.8 and the fraction accepted on the inward risk is
1 - p = 0.3 with net (inward) premium of $860.

For option 1, the upper bound premium from Table 1 is $613, hence option 1
can be immediately screened out as being unattractive in an absolute sense (this
reinsurance option is worse than no reinsurance).

For option 2, the upper bound premium is $120, hence this option is slightly
better than the original "no reinsurance" position.

Option 3 has an upper bound premium of $51 and since this is a pooling of
identical risks, no premium need be paid and a significant advantage can be
gained. Note that in this situation of identical risks, a 20% sharing of risks
provides a benefit of over 60% of the maximum (a $51 equivalent gain when
a = )3 = 0.2 compared to a maximum of $80 when a = {} = 0.5).

Option 4 has an outward premium which is above the upper bound ($293 from
Table 2) and is rejected.

For option 5 the indifference premium is a lower bound on an inward premium,
and is -$949 (calculated in the same manner as for options 3 and 4) meaning
that an inward payment of at least $949 must occur to make this option worthwhile.
Since the premium offered is only $860, this offer is rejected.

In conclusion the most attractive option is 3 and it would be to the advantage
of the insurer to increase the mutual participation in the risk pool from the
suggested 20% up to 50%. Had more than one option passed the screen and
been attractive in an absolute sense, the expected utility of these options could
be calculated and compared.

A number of other important implementation issues exist, including estimation
problems and problems of intractability. The expected utility model inputs are
the claims density functions and the utility functions. Much work and many
advances have occurred in estimation for both these elements, for example, HOGG
and KLUGMAN (1984) on loss distribution estimation, and FARQUHAR (1984)
and SAMSON (1984) on utility function assessment. Although inaccuracy always
exists in these empirical procedures, improved methods are continuously increas-
ing the ability of researchers and practitioners in fitting functions to claims and
utility functions.

In more complex reinsurance and risk policy arrangements than those illus-
trated above, analytical solutions to the equations cannot generally be found and
either numerical integration techniques or Monte Carlo procedures can be used
to give close approximation solutions. Monte Carlo procedures are particularly
powerful and flexible, and can account for correlations between variables (HERTZ
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and THOMAS, 1983). These techniques also readily allow for sensitivity analysis
to be performed. Monte Carlo methods would be most suitable in complex
multi-party risk pools or layered reinsurance arrangements, where direct integra-
tion of the appropriate equations would be difficult or impossible. In such cases
the Monte Carlo techniques would be used to approximate total claims distribu-
tions and the expected utility function can then be numerically applied to the
total claims function.

MODEL 3: TOWARDS A GENERAL THEORY OF INSURANCE

Utility theory provides a useful basis for modelling the activities of an insurer
such as to produce the best overall or aggregate result. Consider an insurer with
assets A, at time t, which must make decisions regarding underwriting, investment,
reinsurance and other functions such that at time t + l its assets will be At+l,
where A,+l = A, + AA Although accounting practices vary considerably across
insurers particularly in an international context we develop a simplified but
representative decomposition of AA below based on a number of balance sheets.

where AC is a change in paid up capital, AR is a change in reserves (share
premium, asset revaluation, surplus, etc.), RE is retained earnings.

One simplified decomposition for RE is:

(13) RE = (1 - T)[ I (Pj - X,- E,) + R + PI + Re]- D

Pi = premiums in line f,
X, = claims in line i,
Ej = expenses in line i,
R = investment returns,

PI = profit/loss on sale of investments,
Re = reinsurance effects (premiums and claims, both outward and

inward), and
D = dividends paid,
T = representative tax rate.

Most companies' retained earnings equations contain many other terms,
however the primary operating effects are contained in equation (13).

In maximizing the expected utility of the insurer's aggregate earnings,
risk/reward decisions within particular insurance accounts or investment
decisions are evaluated in terms of their effect on the firm as a whole. Figure 1
shows the flow diagram for the computerized decision support system on which
this model has been implemented. For any set of strategic variables, Monte Carlo
methods were used based on probabilistic inputs about premium volumes, claims,
expenses and investments to calculate a probability distribution of retained
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Policy Design, Price

1
Portfolio Design

1
Underwriting Module

Premium
Volume

Claims Expenses

Policy Design, Cost

Reinsurance
Module

Investments Module

Return on Investment

Retained
Earnings

Calculation
(Monte Carlo Procedure)

Claims Cost Recovered
I

Retained Earnings Distribution

I
Utility Function

Expected Utility

F I G U R E 1

earnings. A utility function, with form and parameters identified using the method
in the Appendix, is applied to this output distribution, and expected utilities can
be calculated and compared for a large number of potential strategies in a short
time.

The model can be used for generalized strategic planning, single unit changes
(such as entering a new market or line of business), or fine tuning. This normative
model of insurer management does not in itself constitute a general theory of
insurance, but provides decision makers with important insights regarding optimal
operating strategies.

The reinsurance models in SAMSON and THOMAS (1983) considered reinsur-
ances in isolation of other important decision variables such as underwriting and
investment. Although in some circumstances this may be reasonable, the present
approach generalizes the use (and hence increases the power) of expected utility
models such that underwriting, investment and reinsurance problems can be
solved simultaneously.

KEENEY (1982) suggested that the aim of decision analytic models is to provide
insights not answers, and similarly the aim of decision support systems and
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models is to aid decision and judgement processes and not replace them. The
system can be used to provide insight and evaluate decisions such as:

1. Increasing (decreasing) claim adjustment efforts as a means of reducing
(increasing) claims. Secondary effects such as changes in cash flow for investments
and reinsurance premiums can be automatically accounted for by the system.

2. Underwriting new business, including effects on profit using various reinsur-
ance agreements [based on the developments in SAMSON and THOMAS (1983)]
and including reserving and investment policy effects.

3. Changing premium structures for existing business, in which case estimates
of demand elasticities are required. Insights on changing premium structures can
best be gained by considering the many secondary effects (as well as primary
demand effects). In this decision context, the effects of changing premiums cause
nearly every parameter shown on Figure 1 to change and the aggregate effect of
such changes can be calculated using an expected utility approach.

This generalized strategic planning model can be implemented as a decision
support system. It was developed at the University of Illinois as a user-friendly
interactive system capable of being implemented on micro or mainframe com-
puters. The user inputs a variety of data on claims distributions, investment
returns, reinsurance options, etc., and can iterate with the system and evaluate
various strategies in this computer aided manner, eventually converging upon a
satisfactory (and hopefully optimal) solution. The user friendly character of such
systems allow top management to participate in the creative, structuring processes
and sensitivity analyses rather than merely to choose between previously struc-
tured options.

Decision support systems can also be artificially intelligent. In this system a
useful feature is its ability to suggest a strategic response (or at least a direction
of response) to a change in an exogenous variable. For example, if general market
prices begin to move in a particular direction, the system could consider the
effect of various options not only on underwriting profit but also on investments,
reinsurances and ultimately on the retained earnings distribution.

DISCUSSION OF THE USE OF EXPECTED UTILITY MODELS

Many researchers have suggested that expected utility could be used in insurance.
BUHLMANN (1971) suggested a "principle of zero utility" premium calculation
method and FREIFELDER (1979) proposed exponential utility ratemaking rules.
BORCH (1974) usefully applied utility theory to a number of aspects of insurance.
None of these studies, however, proposed a unifying insurance theory which
involved both a decision aiding mechanism (the structuring and evaluation model
of Figure 1) and an axiom based (see KEENEY, 1982) objective function (i.e.,
maximize expected utility) which would use this approach to simultaneously set
effective strategies for all of the insurer's activities.

The strength of the proposed approach is its ability to relate decisions such as
reinsurance and investment decisions to an aggregate "whole firm" context. Many
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other approaches have been suggested for insurer management including risk
theory and portfolio theory. From the viewpoint of expected utility analysis, we
find these approaches to be merely special cases involving assumptions on the
form of the utility function. Risk of ruin theory can be interpreted as involving
a two state utility function (ROY, 1953, p. 432) which is impractical and generally
unrealistic. Portfolio theories usually assume either quadratic utility or joint
normally distributed returns which, particularly in an insurance context, do not
seem to be justifiable. CUMMINS and NYE (1981) used a utility theory approach
to indicate optimal operating positions on a mean-variance efficient frontier.
While this approach is a useful one, the assumption that utility can be expressed
in terms of mean and variance may not be appropriate in all cases. The present
(Monte Carlo) approach has the advantage of being completely flexible with
regard to distributional forms. We believe that many returns distributions in
insurance companies are skewed (HOGG and KLUGMAN, 1984) and/or truncated
by reinsurances (SAMSON and THOMAS, 1983).

CONCLUSIONS

First, since it has been demonstrated that quota share and stop-loss reinsurances
are merely special cases of modified stop-loss reinsurance, insurers should be
aware that optimal solutions need not generally occur when fractions retained
(F) or retention limits (C) are zero. Modified stop-loss reinsurance forms with
F 5"* 0 and C ̂  0 have advantages over the special cases for both insurers and
reinsurers and the expected utility solutions can be used to aid decision makers.

Second, risk pooling has the advantage (over pure outward reinsurance) of
achieving risk diversification while not eroding the premium base of the insurer.
An expected utility model was developed for risk pools which is generally able
to evaluate competing alternatives. Through such analyses, pure reinsurance can
be viewed as a special case of risk pooling [where no inward risk transfer occurs,
i.e., Z = 0 in equation (6)]. A risk pool involving two idential risks is shown to
reduce variance only if the covariance of the claims distribution is less than the
average of the variances.

Third, in generalized strategic planning models, alternative options are evalu-
ated in terms of their aggregate effect; only rarely is it reasonable to make decisions
in isolation. The expected utility model can be generalized to encompass under-
writing, risk transfer and investment actions, with the expected utility of strategy
sets being found using numerical (Monte Carlo) methods. This model's utility
is its capability of relating decisions involving individual business units of the
insurer to the context of the "firm as a whole".
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APPENDIX: A UTILITY FUNCTION FITTING METHODOLOGY

The computer program elicits from the decision maker a set of certainty
equivalents to gambles for use in fitting a utility function. These gambles are of
the form:

{X,,P,, Yt)~Ct

where C, is the certainty equivalent of a gamble involving a probability Pt of
outcome Xt and a probability (1 - Pt) of an outcome Yt. The decision maker can
specify any three of these four parameters (or have the system to do so) and
make a subjective judgment about the fourth. Single parameter utility functions
(such as the commonly used exponential and logarithmic) can be fitted to the
data from just one gamble, however the function would be highly sensitive to
judgment errors under such conditions. To minimize the affect of these random
errors, N gambles are used and random errors are assumed to be independent.
Hence if judgments on C, are made, errors (et) are given by:

or

The system can find least square error fits of various utility functions and
recommends the use of that function which has the least square total error.

For the exponential utility function

we find

e, = -C,--r In [P, e-rX< + (1 - P , ) e~rY'l

For the logarithmic utility function,
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e, is given by:

These methods have distinct advantages over traditional utility fitting
methodologies in that:

1. "Chaining" of gambles is not used in this method, hence biases are not
propagated and compounded as in other methods.

2. The "range effect" is eliminated because the decision maker can specify
any values of X, and Y, that are convenient.

3. By carefully choosing values of Xt, Y, and Pt to be relevant to the types of
decisions being made, other biases such as the certainty effect and the probability
effect can be minimized.
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