
S O M E A S P E C T S OF C O N S T R U C T I N G L O N G 

E P H E M E R I D E S O F T H E S U N , M A J O R P L A N E T S 

A N D T H E M O O N : E P H E M E R I S A E 9 5 

G.I. EROSHKIN, N.I. GLEBOVA, M.A. FURSENKO 

AND 

A. A. TRUBITSINA 

Institute of Theoretical Astronomy, Russian Acad, of Sciences 
St. Petersburg, Russia 

1. Introduct ion 

The construction of long-term numerical ephemerides of the Sun, major 
planets and the Moon is based essentially on the high-precision numerical 
solution of the problem of the motion of these bodies and polynomial re­
presentation of the data. The basis of each ephemeris is a mathematical 
model describing all the main features of the motions of the Sun, major 
planets, and Moon. Such mathematical model was first formulated for the 
ephemerides D E / L E and was widely applied with some variations for se­
veral national ephemeris construction. The model of the AE95 ephemeris is 
based on the DE200/LE200 ephemeris mathematical model. Being an eph­
emeris of a specific character, the AE95 ephemeris is a basis for a special 
edition "Supplement to the Astronomical Yearbook for 1996-2000", issued 
by the Institute of the Theoretical Astronomy (ITA) (Glebova et al, 1995). 
This ephemeris covering the years 1960-2010 is not a long ephemeris in it­
self but the main principles of its construction allow one to elaborate the 
long-term ephemeris on an IBM PC-compatible computer. A high-precision 
long-term numerical integration of the motion of major bodies of the So­
lar System demands a choice of convenient variables and a high-precision 
method of the numerical integration, taking into consideration the specific 
features of both the problem to be solved and the computer to be utilized. 
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2. Numer ica l Solut ion of t h e P r o b l e m 

2.1. EQUATIONS OF MOTION 

The appropriate variables for the problem assume both the boundedness 
of their values and a simple algorithmic form of the differential equations 
for these variables. When describing the orbital motions of the bodies it 
is natural to deal with their barycentric rectangular coordinates. For the 
Moon's motion the choice of such coordinates depends on the compiler in 
use. If a compiler represents real numbers with 16 or 18 decimal figures 
then one has to use the geocentric rectangular coordinates. The compiler 
representing real numbers with 24 or more decimal figures permits one to 
perform the integration of the Moon's orbital motion equations in terms 
of the barycentric coordinates. When describing the rotational motions of 
celestial bodies it is preferable to use four Rodrigues-Hamilton parameters 
instead of three Euler angles, because Rodrigues-Hamilton parameters vary 
only periodically while one or two Euler angles grow linearly with time. It 
is quite possible to complete the mathematical model of the Solar System 
motion by the differential equations of the Earth 's rotation. In this case 
another advantage of the Rodrigues-Hamilton parameters utilization is re­
vealed. The differential equations of the Earth 's rotation constructed for 
the Rodrigues-Hamilton parameters can be integrated numerically relati­
vely either to the ecliptical or equatorial coordinate systems, whereas those 
in the Euler angles can be integrated only in the ecliptical coordinate sy­
stem. When constructing the AE95 ephemeris the rectangular coordinates 
for the orbital motion (barycentric for the Sun and planets and geocentric 
for the Moon) and Rodrigues-Hamilton parameters for the Moon's rotatio­
nal motion were used. 

2.2. NUMERICAL INTEGRATOR 

The numerical integration for the AE95 ephemeris was performed by means 
of a one-step predictor-corrector method of numerical integration based on 
the almost-uniform approximation of the right-hand sides of the differential 
equations by truncated Chebyshev polynomial series (Belikov, 1993). The 
essential advantage of this method consists in the polynomial representation 
both of the position and velocity components, providing almost-uniform 
approximation at any point of a step interval. For reducing round-off errors 
of the numerical integration the following ideas were realized: 

a) Performing the integration with a constant step-size, since the diffe­
rential equations of the Solar System motion represent a sufficiently smooth 
dynamical system; 
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b) Decreasing the number of steps by means of enlarging the step length, 
with a corresponding increasing the degree of the approximating polyno­
mial; 

c) Dividing the right-hand sides of all equations of the orbital motion 
by the heliocentric gravitational constant in order to improve the internal 
convergence control of the iterative process of the numerical integration 
performed on a IBM P C compatible computer. 

A high-precision numerical integration of the equations of motion is 
carried out with a 8-day constant step-size and a 24-th degree of the ap­
proximating polynomial. The internal convergence control was determined 
by a permitted error ( 1 0 - 1 4 ) of the convergence of the relative values of all 
the right-hand sides at each nodal point of the integration step (Eroshkin 
et al., 1993). A comparison of the numerical integration results with the 
DE200/LE200 ephemeris da ta has revealed discrepancies not exceeding 80 
mm in the radius vector values for the Sun, major planets and Moon over 
the interval from 1960-2010. Figure 1 shows the differences in the nume­
rical integration of the AE95 equations with the initial conditions taken 
from the DE200/LE200 minus DE200/LE200 (for the geocentric distances 
for the Moon and the barycentric distances for the Mercury, Earth, Jupiter, 
Saturn, and Sun over the interval 1969-2019). 

Figure 1. Comparison of the numerical integration with DE200/LE200 in the geocentric 
distance of the Moon, in the barycentric distances of the Earth, Mercury, Sun, Saturn, 
and Jupiter. All differences are in millimeters. 

For every body the residual behavior is characterized by the presence of the 
harmonic with a period determined by the mean motion of the body and, in 
general, an increasing amplitude. One can see a tolerable accumulation of 
the round-off errors of the numerical integration for the interval 1969-2019. 
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3 . Po lynomia l Representa t ion 

The polynomial approximation procedure uses as basic da ta the coefficient 
sets of the Lagrange-Chebyshev interpolation polynomials for the accele­
rations at each integration step in the INCH procedure. As a result of the 
numerical integration, a large volume of information for the polynomial 
coefficients is obtained at each step of integration. It is expedient to store 
the results in such a form. Proceeding from practical requirements one may 
choose an approximation interval T >• h. The required accuracy can be 
achieved by selecting a proper degree of an approximating polynomial. For 
the polynomial representation of AE95 the truncated Fourier-Chebyshev 
series approximations were used, because they provided more accurate uni­
form approximation in comparison with the interpolation polynomial. The 
original software is developed for creating the ephemeris file simultaneously 
with the process of numerical integration (Trubitsina, 1995). In Table 1 the 
summary of the numerical tests of the problem is shown. The accuracy 
criterion for AE ephemerides is that an approximation error should be less 
than 10 millimeters at each point in the approximation interval for the 
planets and 1 millimeter for the Moon. 

TABLE 1. Characteristics of the polynomial representation of AE95. 

Object Maximum approx. Approx.interval (days) Polyn.degree 

Mercury 
Venus 
E-M barycenter 
Mars 
Jupiter 
Saturn 
Uranus 
Neptune 
Pluto 
Geocentr.Moon 
Sun 
Earth 

errors (mm) 

3.8 
1.6 
0.52 
2.2 
0.53 
0.79 
0.9 
0.43 
0.52 
0.98 
3.5 
2.2 

AE(LE/DE) 

8(8) 
32(32) 
16(16) 
32(32) 
32(32) 
32(32) 
32(32) 
32(32) 
32(32) 
8(4) 
32(32) 
16 

AE(LE/DE) 

12(11) 
11(11) 
12(14) 
8(9) 
8(8) 
7(7) 
7(7) 
5(5) 
5(5) 
14(11) 
12(14) 
12 

4 . Observat ional Bas is 

On the basis of the model of numerical integration of the motion of major 
bodies, the AE94 ephemeris was employed for the reduction of optical ob­
servational da ta of the Sun and major planets and the radar ranging data 
for the inner planets. 
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Figure 2. The geocentric differences AE95-DE200 in distance (kilometers), declination, 
and right ascension (arcseconds) for the Sun, Mercury, Venus, and Mars. 

Some of these data covering the interval 1960-1991 were taken from the 
optical and radar observations data bank created in ITA by Dr. M.L. Sves-
hnikov. The observations were carried out at the observatories in Washing­
ton, Herstmonceux, Tokyo, Pulkovo and Kislovodsk (Russia), Nikolaev and 
Goloseevo (Ukraine), and Tashkent (Uzbekistan). The optical observations 
were done on the following instruments: the meridian circle, vertical circle, 
and transit instrument. The photographic observations were carried out by: 
the normal astrograph, zonal astrograph, 26" refractor, and AKD astro-
graph. All the observations were reduced to the FK4 coordinate system, 
except the observations performed in the FK5 coordinate system. The re­
duction of the optical observations includes the corrections to a precession 
motion and an equinox drift. The preliminary processing was performed 
in order to determine the accuracy and the weight of every group of the 
observations. The weights of the groups of the radar ranging were used for 
the solution. For the optical observations of Mercury, Venus and the Sun an 
accuracy of 1" was adopted; and for those of Mars an accuracy of 0'.'5 was 
employed. Some variants of the solution of the normal systems containing 
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different groups of observational da ta were investigated. The corrections to 
the orbital elements of some planets were determined and afterwards the 
corrections to the initial conditions of the planets ' motion were calculated. 
A numerical integration of the equations of motion with improved initial 
conditions was carried out. As a result of the reduction of 37730 optical 
observation data for the Sun, Mercury, Venus and Mars and 8370 radar 
ranging data for the inner planets, spanning the interval 1960-1991, the 
ephemeris AE95 has been constructed in the form of Chebyshev polyno­
mials for the time interval 1960-2010 . The reference frame of AE95 is the 
FK5 reference system. The AE95 initial epoch is JD 2440400.5. The AE95 
ephemeris provides the barycentric positions, velocities, and accelerations of 
the Sun, the major planets, and the Earth-Moon barycenter, the geocentric 
position, velocity, and acceleration of the Moon, and the orientation of the 
lunar axes of the principal moments of inertia by means of four Rodrigues-
Hamilton parameters values and their first and second derivatives with 
respect to time. The independent time variable of the AE95 ephemeris is 
the Dynamical Barycentric Time (TDB). Figure 2 shows differences bet­
ween AE95 and DE200/LE200 for Mercury, Venus, Mars, and the Sun in 
the geocentric distances, declinations, and right ascensions (Ar, A6,Aa). 
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