SOME GENERAL RESULTS ON RANDOM WALKS,
WITH GENETIC APPLICATIONS

P. A. P. MORAN
(received 11 June 1962)

1. Introduction

Consider a random Markovian process in which the state of the system
is defined by a random variable which can take the finite set of values
¢=0,1, -+, N, and which is such that transitions can only occur from any
state ¢ to the two nearest states ¢4-1. This restriction brings about an essen-
tial simplification of the theory for the basic reason that in order for the
system to move from state ¢ to state § (§ < § say) it must first move to
71, then ¢+2 and so on until it reaches 7. From this it follows that the
first passage distribution from ¢ to § is the convolution of the first passage
distributions from ¢ to ¢+1, ¢41 to ¢4-2,---,j—1 to § each of which is
comparatively easy to find.

In this paper we exemplify the resulting simplification in two ways.
In the first we consider a continuous time process and obtain explicit
representations of the Laplace transforms, with respect to time, of the first
passage distributions and the transition probability densities. In the second
we consider a process with one absorption state and obtain an explicit ex-
pression for the mean time of absorption. Under certain symmetry as-
sumptions this can be generalised to the case of two absorption states
and is then used to obtain the mean time required for a genetic population
to become homozygous when the heterozygote is selectively advantageous
over equally fit homozygotes.

2. The continuous-time random walk

Suppose that time is continuous and that the probabilities of moving
from a state ¢ to §—1 and ¢+1 in the time interval (¢, £4-d?) are equal to
pidti-o(dt) and A dt4-o(df) respectively. We take A,> 0, p;> 0 except
that uy = Ay = 0. Then starting from any initial state % the probabilities,
pa(t), of being in the state 7 at time ¢ satisfy the differential equations:

Polt) = —Apaa(t)+dult),
(1) ?;k(t) = }"—1?‘—1.1:(‘)—(M'H‘t)?a:(t) +I“+1Pd+1,h(t) (t=1,--- N-1),

1’.;%(‘) = "'N—le-l,b(t) —.“N?N,k(t)-
468
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The resulting process is usually described as a finite Birth and Death
Process with birth coefficients A, and death coefficients u,. In general
the solutions of these equations is of the form

N
@ Pa(t) = goau e’

where the a,, are constants chosen to fit the initial conditions, and the
6, are the roots of the matrix

[ — (A+6) h 1
Ao — (A4, +6) Hg
A — (A +1a51-0)
®3)
BN
1 —(un+0) |

whose determinant we write as M (6). The roots of (3) are known to be
all real and distinct but it can be quickly verified that even for very simple
definition of 4; and u, as functions of , the 6, are usually very complicated
and difficult to evaluate.

Karlin and McGregor ([6], [7]) have represented the transition prob-
abilities of Birth and Death process as the Laplace-Stieltjes transforms
of products of polynomials, the integrals being taken with respect to discrete
distribution functions whose points of increase are the roots of M (). The
use of this representation involves finding these roots and it is convenient
to put off doing this as long as possible. Here we give a different representa-
tion by showing how the Laplace transforms, with respect to time, of the
Pa(?) can be represented as the ratios of polynomials satisfying recurrence
relations which are necessarily very similar to those of Karlin and McGregor.

Write
) Pu(0) = [ e palt)at,
which exists for all 8§ > 0. We then have
(5) [ e pinlt) = 0P (6)—da,

where 9, is Kronecker's 6. The set of equations (1) becomes

—8g = — (Ag+0) P (0) +1, P1(0),
(6) —0y = AOPOk(e)""(}'1+/‘1+0)P1k(0)+ﬂ2P2k(0)x

—Onke = AN=1 Py, 1(0) — (un+0) Py (6).
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The matrix of coefficients on the right hand side of (6) is given by
(3) and thus whenever M () = 0 we can solve (6) in the form

") Py(0) = Ma(6)M(6)7,

where M 4(f) is a matrix obtained by replacing the (¢4-1)th column in
(3) by a column consisting of zeros except for —1 in the (k4-1)th row.

We can now find M, (6) in a simpler form. Write L,(6) for the determi-
nant of the matrix of the first £41 rows and columns of (3), and N,(f)
for the determinant of the last N—i+1 rows and columns. Then
Ly(0) = No(8) = M(6), and Ly(0) = —(4g+0), Ny(8) = —(uy+0). It is
convenient to make the convention that L_;(0) = Ny, ,(8) = 1.

When ¢ = % examination of M,(6) shows that expansion by the
({+1)th column gives

(8) Mik(o) = —L4—1(6)Ni+1(0)-

By inspection of the determinant we also see that if ¢ > &,
(9) Mu(0) = (—1)"* W heyy -+ 44 L1 (O)N 4 (6),

and if 7 < &,

(10) Mu(0) = (1) papig® L1 (6)Nern (0)-

Hence the problem of finding the Laplace transforms of the transition
probabilities is reduced to that of evaluating the determinants L,{6) and
N,(8) for all 4.

Inspection of (3) shows that

(11) L,(6) = —(A~+p+0)L,,(0)—2A,_1u,L; 5(6)
for { =1, -, N, using the above convention about L_,(8), and similarly
(12) N(6)= — (AtpiH0)N ;11 (0) — A, 18541 N 110 (0).

It is useful to relate these results to first passage time distributions.
Write g,(¢)d¢ for the probability that a first passage to state ¢ occurs in
the interval (¢, {++dt) when the system was in state % at time ¢ = 0, and
define the Laplace transform by

(13) 0u6) = [ equ(n)ac.

Similarly let s,(£)d¢ be the probability that the system remains in the
state & from ¢ = O until £ > 0 and then leaves % in the interval (¢, {4d¥).
Clearly

s;()d@t = (Ri4-p;)e~Aetritdy,

and the Laplace transform is
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(14) Si0) = »,(v,4+0)7%,

where v, = A;+u;.

Because of the linear arrangement of the states and the fact that
nearest neighbour transitions only are permitted we can find the M ()
in terms of the Q. (f). Consider first M ;(0).

9;:(f) is the probability that the system is in state 7 at time £ if it was
also in state 7 at £ = 0. This could have happened in three different ways.

In the first there might have been no change in the interval (0, t).
This has probability ¢+, Th the second the system stays in ¢ until a time
u(< t), passes to i—1 in (u, u+du), passes back to ¢ for the first time
after % in (v, v+dv), where ¥ << v < {, and then whatever happens after
v, is in ¢ at time £ The probability of this sequence is

#i€7" g 1 (v—1) Py (¢—v)dudo.

The third possibility is similar but the system moves to i1 in (4, u-+du)
and back to ¢ for the first time in (v, v4-dv). Adding these possibilities
we have

Dult) = e 4 f ‘: J.: €7 G, 11 (V—1) P (E—v)dudy
+ J.o‘ J: €7 241,501 (v — )Py, (E—v)dudv.
Taking Laplace transforms we have

Py;i(0) = (v;+0)"24-u,(v;4-6)72Q, ;1 (0) P,;(6)
+ 4;(vi+0) 7104, 141 (0) Py (0),

and hence

(15) Pu(0) = {»+0—p,Q ¢ 1(0)—24,Q4,+2(0)}
If £ <74, it is also clear that

(16) Qih(o) = QHI,E(G)QE+2,E+1(6) ot Qi,i—l(o)’
and

(17) Pu(o) = Qs’k(e)Pii(B)'

Next we must find the @’s. Consider Q,,, ;(). A first passage from
fat¢ = 0tos+1 at ¢ can occur in two ways. In the first there is no change
between ¢ = 0 and ¢{—dt, but during (¢—d¢, f) there is a jump from ¢ to
¢+1. This has probability

A,

In the second there is no change between 0 and % (0 < # < ¢), a jump
to 1—1 in (#, 4+du), a first passage from ¢—1 to ¢ in (v, v-+4dv)
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(0 < u < v < t), and a first passage from 7 to i4-1 in {({—d¢, ¢). Integrating
over the values of # and v, this has probability

[ ]2 e .gu (09— 0)gisn o(t—v)dudvat.
Taking Laplace transforms we obtain
Qut1,4(0) = A(v+6) 24, (v +0) 10, 41 (0)Q112,4(0),
and hence
(18) Qi41,:(0) = A{pi+0—p, 0.1 (0)} 7,

which provides us with a recurrence relation for the Q. ((6) from which
they can be found successively starting from

(19) Q1,0(0) = (A +0).
Similarly we have
(20) Qi1,6(0) = p{vi+0—24,0,:11(0)} 7
and)]
(21) On-1n(0) = pn{un+0}2

We now show that
(22) Qur,i0) = —A4,L, 1 (O)L,(0)7,
and
(23) Qi-1,4(0) = —p. N, (0)N,(0)

Equation (22) is clearly true for ¢ = 0 from (19) and the known values
of L_,(6) and L4(f). Supposing that (22) is satisfied for all values of ¢
up to ¢ = s, substituting in (18) and using the recurrence relation (11) we
see that (22) is true for ¢ = s+1, and therefore for =10, 1,---N. (23)
may be similarly verified.

Substituting in (16) and (17) we find for & < ¢,

Pu6) =
(24) , (=) - 4y L 1 (0)N.1, (0)
{(1"+9)L‘_1 (B)Nﬂl (6) _,uili—le'—z(e)NH-l (0) —}'i!‘i+1Li—;1 (B)Ni+2(9)}

which is otherwise obvious by expanding (7).

The advantage of this method of procedure is that in any particular
case we can obtain L,(8) and Ny_,(0) explicitly for small values of ¢ and
knowing the recurrence relation we can try to guess the resulting polynomials.
A systematic investigation of all the simplest functions A, u; would be
desirable. Here we draw attention to a few known cases.
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3. Special cases

If either all the A,, or all the y;, are zero, the roots of (3) are obvious
and it is not in principle difficult to write down an explicit solution. In
particular if all u, = 0 and the A, are constant the equations are easy to
solve. If u, = 0 and A; = i¢ we have the well-known linear birth pracess.
If 4, =0 and A, is a quadratic function of 7 we have a quadratic birth
process considered by John [5].

If 4, and yu, are both non-zero constants the recurrence relations can
be solved explicitly and inversibn of the Laplace transforms results in
modified Bessel functions of the first kind (Heathcote and Moyal [3]).

Not many other explicit solutions are known. When N is infinite
and 4; = 47, u, = A7 we have the well known simple birth and death process
first solved by Palm (see Kendall [9]). It is usually more realistic in practice
to put an upper bound to the size of the population, thus making the
methods of the present paper applicable, and for biological populations
the natural approach is to comnstruct an analogue of the deterministic
logistic process in the manner described by Kendall. We suppose that the
population is confined between two limits N,, Np,sothat 0 < N, <7 < N,,
and that the birth and death rates per individual are linear functions of ¢;

(26) Ay = A (Ny—i),
(26) py = pi(i—Ny).

This makes the death rate per individual increase linearly with ¢,
and the birth rate per individual decrease linearly. In order to get simpler
equations Prendiville [14] suggested that (25) and (26) be modified to

(27) ho = ANy —i),

(28) sy = p(i—Ny),

thus making the birth and death rates per individual proportional to
Nyi~'—1 and 1—N,;i"! respectively, which vary in the right direction.
He did not, however, publish his analysis and the first published solution
was given by Takashima [15].

The present theory makes the reason for the simplicity of the solution
clearer. Shifting the origin of definition of 7 to N, we can write (27) and
(28) in the form

(29) A= A(N—i),
(30) My == ut,

and the roots of the determinant M(6) come out simply by using the
factorisation of the determinant
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r a

n(a—1) r—1 2a

(n—1){(a—1) r—2

r—n+1 na
a—1 r—n

n
=TT (r+na—n—s(2a—1)),
5=0
which is given by Painvin [13] and described in Muir [12] p. 432. This
can be easily reduced to the above case.
Another process in which the roots can be found explicitly is the
continuous time analogue of a genetic model due to the author which has
been discussed in detail by Karlin and McGregor [8].

4. First passage times when ¢ is discrete

Itisclear that the above theory can be developed in an exactly analogous
manner for discrete time processes, generating functionsreplacing the Laplace
transforms. We do not do this here but consider only a closely related
problem of determining the mean first passage time to an absorbing state
in a general random walk described by a Markov chain with discrete time.
This was developed for the purpose of obtaining a partial answer to an
unsolved problem in population genetics, that of finding the time required
for a population to become homozygous when heterozygotes are selectively
advantageous and there is no mutation.

Suppose then that we have a Markov chain with N4-1 states,
=20, 1, - - - N such that the probabilities of a jump from 7 to s—1, 7, i+1
are ¢,, r;, p; respectively, where ¢,+7,+p, =1, and ¢y =py=0. If
2o = gy = 0 the states ¢ = 0, N are absorbing, and we suppose there are
no other absorbing states. Let T, be the mean time, measured in units of
one jump, for the system to reach an absorbing state starting from the
state 7. Put Ty = Ty = 0, and suppose all states are ultimately accessible
from the states § =1, - N—1. Then the T, are finite and

(31) T, = 14, T, 3+, T+0:T 44,

for i =1,---N—1. These give N—1 equations for N—1 unknowns but
in general are not easily soluble. If, however, there is only one absorbing
state an explicit solution is simple. Suppose this absorbing state is 1 = M
so that p, > 0. Let ¢, be the mean first passage time from ¢ to 4-1. Then
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(32) T,= ittt o v

If the system is in state ¢ it will remain there for a period s, and then
move either to #—1 or to ¢+ 1, where s, clearly has a geometric distribution,

prob (s, = n) = ;Y (1—r)), n=12---
Thus

(33) E(s;) = (1—7).

If the systermn moves to {41, s; will be the first passage time. If it
moves to -1 the expected remaining time to reach 141 will be ¢,_;--¢,.
Thus
ty= (1—7) gt H) (1—7) T
so that

(34) it = 14q,8; 4.

It is also possible to obtain a recurrence formula for the variance of the
first passage time from ¢ to -1 but this is more complicated.
Since £, = p;* we can find ¢, #;, - - - in succession, thus obtaining

1 71
by = — 4+ ,
YUb ' pobr

1 q2 7192
ty= — 2 D
2= 5 T bt T Botntn

and in general

1 g gy 4y
{ = — e o S
! b: + 1’1—11’1 + Doty Dy
(35) e ;

9i+19:° *° Gir1

- kgo PinaPiPia ?i—k.

From (35) T, can be found by summation. These results can be found in
Harris [2] and Chung (see references in the latter’s book [1]), and also
Hodges and Rosenblatt [4]. Notice that similar methods can be used with
continuous time models.

The above theory depends essentially on the assumption that there
is only one absorption state. However, we can still deal with the case where
both ¢ = 0 and 7 = N are absorbing states if we have the symmetry con-
dition ¢, = py_,. To do this we identify the states ¢ and N—¢ which is
now permissible. If N is even and equal to 2M we get a Markov chain
with M+1 states E,, E,, - - -, Ep such that E, is not an absorbing state
but E,, is.
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5. An application to genetics

We now apply this result to discuss the behaviour of some genetic
populations. The majority of such populations consist of diploid individuals
but the mathematics is then so complicated that for the most part mathe-
matical geneticists have been content to study modelsin which the individuals
are haploid and the effects of selection are of such a kind as to provide a
good imitation of the diploid case.

One model of such a population is as follows (Moran {10] [11]). Suppose
the population consists of N = 2M haploid individuals which are genetically
either 4 or a. The number of A individuals is 7 and defines the state of the
system where == 0, 1, - - -, N. At successive unit intervals of time a haploid
individual, chosen at random, dies and is replaced by a new individual which
is A or a with probabilities equal to the relative proportion of these in the
population before the death occurred. If the system was in the state 4, it
can only move to the states i—1, 4, and ¢-}-1 at each step, and does so with
probabilities,

Pia,i = t(N—1)N-2,
(36) pii = P+ ENN-OPN3
Pi1,e = H{N—4)N2

The behaviour of this process has been very thoroughly studied and
in particular Watterson [16] showed that if it starts from the state 7, the
expected number of steps to one of the absorbing states 0, N, is given by

E(T) = NWN—){(N—1)"+ - +(N—))3
+N{ 1)+ - 4 (=1)7).

This can be obtained by the above methods as we shall see, and so
also can Watterson’s similar formula for Var (7).

One of the main problems in the study of genetic models of this kind
is to determine how fast real genetic populations become homozygous
as the result of random assortment of genes. In the haploid models this
corresponds to the states j = 0, N and we often use the expression “rate
of progress to homozygosity”’ for such models in spite of the fact that
there are no zygotes, the individuals being haploid. Thus what we are
really concerned with is the rate of absorption into the states j =0, N
and in so far as the haploid model is an adequate description of the real
diploid population, this provides an answer to the problem.

The probability that § # 0, N will be asymptotically equal to CA‘,
where C is a constant, 4 is the largest non-unit root of the matrix of tran-
sition probabilities, and ¢ is the number of birth-death events. Much
research has been devoted to the calculation of C and 4 for varying genetic

(37)
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assumption but hardly any progress has been made when there is any
kind of selection. In particular the most interesting case arises when, in
populations of diploids, the heterozygote Aa has a selective advantage over
the two homozygotes AA and aae. This leads to the simplest example
of a “selectively balanced polymorphism”, and it is of great practical
interest to determine how large such selective forces must be to keep a
natural population polymorphic for a given number of generations.

In such circumstances 4 has not been found and would be extremely
‘difficult to find theoretically. However, a different approach can be made
by calculating not the probablhty that the process is heterozygous as a
function of ¢, but simply the mean time necessary to become homozygous.
We shall show that the mathematics is then not difficult provided the
two homozygotes, A4 and aa, have equal selective value.

In a haploid model, diploid selection has no meaning. However, a
satisfactory model could be constructed by modifying the transition
probabilities in the haploid model in such a way that the change in gene
frequency from ¢ to £4-1 has the mean and variance it should have in a
diploid model.

Consider first what happens in an infinitely large population with
diploid individuals which are AA, Aa, or aa. Let the frequency of the
A gene be $, and assume random mating so that the frequencies of the
AA, Aa, and aa individuals are $2, 2pg, and ¢%(¢g = 1—p). Suppose that
AA and aa have the same selective value unity, and that the heterozygote
Aa has the relative selective value 14-s where s > 0. It is then well known
and easy to show that the expected change in gene frequency from one
generation to the next is approximately

(38) 4p = —spq(p—q)
the approximation being satisfactory when s is small compared with unity.
Since #N~1 is the relative gene frequency in the haploid model, and

since one generation corresponds to N birth-death events, a suitable model
is given by

Do = Py = 1 (N—3)N-2{1—sN-1(2i—N)},

P =7, = {PF+(N—i)N2,

P, = ¢ = {(N—4)N*{1+4sN-1(2:—N)}.

We can now find the mean time of absorption. Suppose N is even and
equal to 2M. Since p, = gy_, we can replace the system by a Markov chain
with M1 states E,, 2= 0,1, -+, M, for which

Prsre = P = (M2 (M2—R%){1—4skM -1}, (k>0),
Prx =7 = (CMA)(M2+E2),
Pr-1,2 = Qo = (M) (M2—R2) {1+ IskM 1}, (k> 0).
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We substitute from these in (32) and (35) and obtain

M-1 §
(39) E(T,) = Zi kE_ﬁoAm
where
Ao 4M*(N+sj) - - - (N+s{j—k+1))
oy T PO GO G—AM N —s) + (N=sG—A+1)

. 4M2IP(Ns-14j+1)T(Ns-1—j)
= =R —Ls(G— k)M T(Ns ' +j—k+ 1) \Nsi+k—j)

We assume that s is of the same order as M~! and we put s = M1
where o is to be kept fixed as M gets large. Consider the expression

I'(x+a)(x+b)t

where @ and & are kept fixed and x increases indefinitely. Using Stirling’s
formula this is asymptotically equal to

z*~% exp {b—a+ (x+a—14) log (1+ax?)
—(z+b—1) log (1+d271)}.

Expanding the logarithm and taking the largest term we get
z*~® exp {}(a2—b2)z1—L(a—b)z1}.
Using this result in (40) we find that 4, is asymptotically equal to
4M2{M2— (j—k)2} 1 exp YoM 2k (2f—k+1).
We can therefore approximate to the double sum in (39) by the integral
2 (1Y 1 — (y—2z)2)-1 -
M L Jo {1—(y—2)*} exp }02(2y—2)dzdy,
where & = :M-, 7 being the initial state. Putting # = y—z this becomes
(41) 4M2 J': f: (1—u2)~! exp Yo (y>—u?)dudy.

In the particular case z = 0 so that the process starts with the numbers
of A, a genes equal, this is easily transformed into

(42) E(T,) = 4M? J’ol (1—u?)~1 exp —}ou? f: exp doy?dydu,
which can be fairly easily evaluated in particular cases by numerical inte-

gration. When ¢ = 0, (41) can be verified to be asymptotically to equal
to (37) which can also be derived directly from (39).
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