
TPLP: Page 1–38. c© The Author(s), 2025. Published by Cambridge University Press. This is an

Open Access article, distributed under the terms of the Creative Commons Attribution licence

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution

and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068425100069

1

Checkification: A Practical Approach for Testing
Static Analysis Truths

DANIELA FERREIRO, IGNACIO CASSO and JOSE F. MORALES
Universidad Politécnica de Madrid (UPM), Madrid, Spain

IMDEA Software Institute, Madrid, Spain

(e-mails: d.ferreiro@alumnos.upm.es, ignacio.casso@imdea.org, josefrancisco.morales@upm.es)

PEDRO LÓPEZ-GARCÍA
Spanish Council for Scientific Research (CSIC), Madrid, Spain

IMDEA Software Institute, Madrid, Spain

(e-mail: pedro.lopez@csic.es)

MANUEL V. HERMENEGILDO
Universidad Politécnica de Madrid (UPM), Madrid, Spain

IMDEA Software Institute, Madrid, Spain

(e-mail: manuel.hermenegildo@upm.es)

submitted 17 January 2025; revised 22 April 2025; accepted 30 April 2025

Abstract

Static analysis is an essential component of many modern software development tools.
Unfortunately, the ever-increasing complexity of static analyzers makes their coding error-prone.
Even analysis tools based on rigorous mathematical techniques, such as abstract interpretation,
are not immune to bugs. Ensuring the correctness and reliability of software analyzers is crit-
ical if they are to be inserted in production compilers and development environments. While
compiler validation has seen notable success, formal validation of static analysis tools remains
relatively unexplored. In this paper we present checkification, a simple, automatic method for
testing static analyzers. Broadly, it consists in checking, over a suite of benchmarks, that the
properties inferred statically are satisfied dynamically. The main advantage of our approach lies
in its simplicity, which stems directly from framing it within the Ciao assertion-based validation
framework, and its blended static/dynamic assertion checking approach. We demonstrate that
in this setting, the analysis can be tested with little effort by combining the following compo-
nents already present in the framework: 1) the static analyzer , which outputs its results as the
original program source with assertions interspersed; 2) the assertion run-time checking mech-
anism, which instruments a program to ensure that no assertion is violated at run time; 3) the
random test case generator , which generates random test cases satisfying the properties present
in assertion preconditions; and 4) the unit-test framework , which executes those test cases. We
have applied our approach to the CiaoPP static analyzer, resulting in the identification of many
bugs with reasonable overhead. Most of these bugs have been either fixed or confirmed, helping
us detect a range of errors not only related to analysis soundness but also within other aspects
of the framework.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069
https://orcid.org/0009-0002-1072-8989
https://orcid.org/0000-0001-9782-8135
mailto:d.ferreiro@alumnos.upm.es
mailto:ignacio.casso@imdea.org
mailto:josefrancisco.morales@upm.es
https://orcid.org/0000-0002-1092-2071
mailto:pedro.lopez@csic.es
https://orcid.org/0000-0002-7583-323X
mailto:manuel.hermenegildo@upm.es
https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.2

KEYWORDS: static analysis, testing, run-time checks, assertions, abstract interpretation, logic
programing, constraint logic programing

1 Introduction

Static analysis tools play an important role in different stages of the software devel-

opment cycle, such as code verification and optimization. However, building modern

analyzers for programing languages presents significant challenges since these systems

are typically large and complex, making them prone to bugs. This is a limitation to

their applicability in real-life production compilers and development environments, where

they are used in critical tasks that need reassurance about the soundness of the analysis

results.

However, the validation of static analyzers is a challenging problem, which is not well

covered in the literature or by existing tools. This is probably due to the fact that direct

application of formal methods is not always straightforward with code that is so complex

and large, even without considering the problem of having precise specifications to check

against —a clear instance of the classic problem of who checks the checker. In current

practice, extensive testing is the most extended and realistic validation technique, but

it poses some significant challenges too. Testing separate components of the analyzer

misses integration testing, and designing proper oracles for testing the complete tool is

challenging.

In this paper we propose checkification, a simple, automatic, technique for testing static

analyzers. We believe the approach is general in nature, and can be applied effectively to

a wide class of static analyzers, provided some kind of run-time checking is feasible for

the properties inferred. Herein we develop the proposal for concreteness in the context

of the Ciao (Hermenegildo et al. 2012) logic programing-based, multi-paradigm lan-

guage. The Ciao programing environment includes CiaoPP, a large and complex abstract

interpretation-based static analysis tool which faces the specific challenges that we are

addressing. Recently, there has been some interesting work (Stade et al. 2024) aimed at

verifying the partial correctness of the PLAI analysis algorithm (also referred to as “the

top-down solver”) that lies at the heart of CiaoPP using the Isabelle prover (Paulson,

1990), but verification of the actual implementation remains a challenge. Like other “clas-

sic” analyzers, the CiaoPP formal framework has evolved for a long time, incorporating

a large number of abstract domains, features, and techniques, adding up to over half a

million lines of code. These components have in turn reached over the years different lev-

els of maturity. While the essential parts, such as the fixpoint algorithms and the classic

abstract domains, have been used routinely for a long time now and it is unusual to find

bugs, other parts are less developed and yet others are prototypes or even proofs of con-

cept (see Table 1 for an overview of some of the abstract domains that are bundled with

the system and their maturity status). We show in Section 4.3 how our proposed method

reveals bugs, not only in the less-developed parts of the system but also in corner cases

of the more mature components, such as the handling of built-ins, run-time checking

instrumentation, etc.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 3

Table 1. Abstract domains

Properties
Abstract Domain Abstracted Maturity Level Reference

gr aliasing, modes intermediate Bueno et al. (Bueno et al., 2006)
def aliasing, modes intermediate Garćıa de la Banda et al. (1996)
sharing aliasing, modes mature Muthukumar and Hermenegildo

(1992)
shfr aliasing, modes mature Muthukumar and Hermenegildo

(1991)
shfr+nonvar aliasing, modes intermediate
shareson aliasing, modes intermediate Codish et al. (1993)
shfrson aliasing, modes intermediate
son aliasing, modes mature Søndergaard (1986)
share amgu aliasing, modes mature
shfr amgu aliasing, modes mature
shfrlin amgu aliasing, modes,

linearity
mature

share+clique aliasing, modes mature Navas et al. (2006)
shfr+clique aliasing, modes mature Navas et al. (2006)
share+clique+def aliasing, modes experimental
shfr+clique+def aliasing, modes experimental
eterms types mature Vaucheret and Bueno (2002)
polyhedra numerical experimental Bagnara et al. (2002)
depth-k term structure intermediate Sato and Tamaki (1984)
det determinacy mature Lopez-Garcia et al. (2005, 2010)
nfg (non)failure intermediate Debray et al. (1997); Bueno et al.

(2004)

A feature of Ciao that will be instrumental to our approach is the use of a unified

assertion language across the components of the Ciao framework (Hermenegildo et al.

1999, 2003), which together implement a unique blend of static and dynamic assertion

checking. These components (and their algorithms) include:

1. The static analyzer (Muthukumar and Hermenegildo, 1992; Hermenegildo et al.

2000; Garcia-Contreras et al. 2020), (top-down analysis framework) which expresses

the inferred information as assertions interspersed within the original program.

2. The assertion run-time checking framework (Stulova et al. 2015, 2016), which

instruments the code to ensure that any assertions remaining after static verifi-

cation are not violated at run time.

3. The (random) test case generation framework (Casso et al. 2020), which generates

random test cases satisfying the properties present in assertion preconditions.

4. The unit-test framework (Mera et al. 2009), which executes those test cases.

In this paper, we propose an algorithm that combines these four basic components in a

novel way that allows testing the static analyzer almost for free. Intuitively, it consists in

checking, over a suite of benchmarks, that the properties inferred statically are satisfied

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.4

dynamically. The overall testing process, for each benchmark, can be summarized as

follows: first, the code is analyzed, obtaining the analysis results expressed as assertions

interspersed within the original code. Then, the status of these assertions is switched

into run-time checks, that will ensure that violations of those assertions are reported at

execution time. Finally, random test cases are generated and executed to exercise those

run-time checks.

Given that these assertions (the analyzer output) must cover all possible concrete

executions (and assuming the correctness of our checking algorithm implementation),

if any assertion violation is reported, assuming that the run-time checks are correct, it

means that the assertion was incorrectly inferred by the analyzer, thus revealing an error

in the analyzer itself. The error can of course sometimes also be in the run-time checks,

but typically run-time checking is simpler than inference. This process is automatable,

and, if it is repeated for an extensive and varied enough suite of benchmarks, it can be

used to effectively validate (even if not fully verify) the analyzer or to discover new bugs.

Furthermore, the implementation, when framed within a tool environment that follows

Ciao assertion model, is comparatively simple, at least conceptually.

The idea of checking at run time the properties or assertions inferred by the analy-

sis for different program points is not new. For example, Wu et al. (2013) successfully

applied this technique for checking a range of different aliasing analyses. However, these

approaches require the development of tailored instrumentation or monitoring, and sig-

nificant effort in their design and implementation. We argue that the testing approach

is made more applicable, general, and scalable by the use of a unified assertion-based

framework for static analysis and dynamic debugging, as the Ciao assertions model. As

mentioned before, by developing the approach within such a framework, it can be imple-

mented with many of the already existing algorithms and components in the system, in

a very simple way. As a result, our initial prototype was quite simple, even if, inevitably,

the current working version has of course grown quite a bit in order to add functionality,

make it easier to use, include specific instrumentation, collect performance data, etc.

Moreover, the components and algorithms of the Ciao system used by our implementa-

tion have been extensively validated, providing greater confidence in the correctness of

our approach. Consequently, when our method flags a runtime checking error, we can be

more certain that it identifies an actual error in the analyzer. If no error exists in the

analyzer, such runtime checking errors help us locate and fix bugs in our implementation.

These fixes will likely address bugs in other Ciao system components used by our imple-

mentation. Importantly, these components can also serve other purposes in the software

development process. In conclusion, any runtime checking error flagged by our approach

contributes to improving the entire Ciao system.

We also argue that our approach is particularly useful in a mixed production

and research setting like that of CiaoPP, in which there is a mature and domain-

parametric abstract interpretation framework used routinely, but new, experimental

abstract domains and overall improvements are in constant development. Those domains

can easily be tested relying only on the existing abstract-interpretation framework,

run-time checking framework, and unified assertion language, provided only that the

assertion language is extended to include the properties that are inferred by the domains.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 5

The rest of the paper is structured as follows: Section 2 provides the background needed

for describing the main ideas and contributions of the paper. In particular, we describe

the basic components used in our approach. Section 3 then presents and discusses our

proposed “checkification” algorithm for testing static analyzers, with an initial illustrative

example, the basic reasoning behind the approach (Section 3.1), the operation of the

algorithm (Section 3.2), and discussions of some of additional issues involved (Sections

3.3 and 3.4). In Section 4 we present our experimental evaluation and results. We explain

the evaluation setup (Section 4.1) including experiments, analyzer configuration, abstract

domains and properties studied, and programs analyzed. We then present and discuss

the results of this evaluation (Section 4.2), in terms of the errors found and cost of the

technique. Section 4.3 then presents further discussion with examples of the classes of

errors detected which also serves to go over some of the practical uses of the approach.

We conclude by discussing additional related work in Section 5, and presenting some

conclusions and perspectives in Section 6.

2 Basic components

2.1 Assertion Language

Assertions are syntactic objects which allow expressing properties of programs that

should hold at certain points of program execution. Assertions are used everywhere in

Ciao, from documentation and foreign interface definitions to static analysis and dynamic

debugging. Two types of Ciao assertions that are relevant herein are predicate asser-

tions (pred for short) and program-point assertions:1 The first ones are declarations that

provide partial specifications of a predicate. They have the following syntax:

:− [Status] pred Head [: Calls] [=> Success] [+ Comp].

and express that a) calls to predicate Head that satisfy precondition Calls are admissible

and b) that, for such calls, the predicate must satisfy post-condition Success if it succeeds,

and global computational properties Comp. If there are several pred assertions, the set

of Calls fields define the admissible calls to the predicate. Program-point assertions are

reserved literals that appear in the body of clauses and describe properties that hold in

the run-time constraint store every time execution reaches that point in the clause at run

time. Their syntax is Status(State). Both of these kinds of assertions can have different

values in the Status field depending on their origin and intended use. Assertion statuses

relevant herein include:

• true, which is the status of the assertions that are output from the analysis (and

thus must be safe approximations of the concrete semantics);

• check, which indicates that the validity of the assertion is unknown and it must

be checked, statically or dynamically, and is the default value of Status when not

indicated; and,

• trust, which indicates that the analyzer should assume this assertion to be correct,

even if it cannot be automatically inferred.

1 We will also use an additional form, entry assertions, that will be introduced later.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.6

Example 2.1

(Some assertions). The following code fragment provides examples of both types of

assertions, predicate and program-point; all these assertions have status check:

1 :- check pred append(X,Y,Z) : (list(X),list(Y),var(X)) => list(Z) + det.
2 :- check pred append(X,Y,Z) : (var(X),var(Y),list(Z)) => (list(X),list(Y)) + multi.
3
4 append([],X,X).
5 append([X|Xs],Ys,[X|Zs]) :-
6 append(Xs,Ys,Zs),
7 check(list(Xs),list(Ys),list(Zs)).

The first two pred assertions define two different ways in which append/3 is expected to

be called. The first one states that append/3 may be called with the two first arguments

instantiated to lists and the third a variable, and that, if such a call succeeds, then the

third argument should be bound to a list. This first assertion also states that when called

like this, the predicate should have only one solution and should not fail (det, a global

computational property). The second pred assertion states that append/3 may also be

called with the third argument instantiated to a list and the first two variables, and that,

if such a call succeeds, then the first and second arguments should be bound to lists, and

that in this case the predicate should produce one or more solutions (multi, also a global

computational property), but, again, not fail. There is also a program-point assertion in

the second clause of append/3 that states that if execution reaches that point in that

clause, all of Xs, Ys, and Zs should be bound to lists. For all these assertions the check

status indicates that these are desired properties that need to be checked, statically or

dynamically, but have not been proven true or false yet.

Assertion fields Calls , Success , Comp and State are conjunctions of properties . Such

properties are predicates, typically written in the source language (user-defined or in

libraries), and thus runnable, so that they can be used as run-time checks. For our

purposes herein, we will consider typically properties that are native to CiaoPP, that is

that can be abstracted and inferred by some domain in CiaoPP. This includes a wide range

of properties, from types, modes and variable sharing, to determinacy, (non)failure, and

resource consumption. We refer the reader to Puebla et al. (2000); Hermenegildo et al.

(2005, 2012) and their references for a full description of the Ciao assertion language.

In the Ciao assertion syntax, properties can also be in-lined in the predicate arguments,

also referred to as using modes . Such modes are property macros that serve to specify in

a compact way several properties referring to a predicate argument. A specific syntax,

resembling that of predicate assertions is used to define modes.

Example 2.2

(Modes). For example, if the following modes are defined:2

1 :- modedef +(A,P) : P(A). % A has property P in calls
2 :- modedef -(A,P) : var(A) => P(A). % A is var on calls and has property P on success

2 Note that “-” is often also defined simply as: :- modedef -(A,P) => P(A). As mentioned before, in
Ciao modes are user-definable.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 7

Fig. 1. The Ciao assertion framework (CiaoPP’s verification/testing architecture).

then the assertions in the previous program can be expressed equivalently as follows:

1 :- check pred append(+list,+list,-list) + det.
2 :- check pred append(-list,-list,+list) + multi.

Figure 1 depicts the overall architecture of the Ciao unified assertion framework.

Hexagons represent tools, and arrows indicate the communication paths among them.

Most of this communication is performed in terms of assertions. The input to the process

is the user program, optionally including some assertions. Such assertions always include

any assertions available in the libraries for built-ins (the basic operations of the source

language), or for predicates exported by such libraries that are used by the code being

analyzed (left part of Figure 1).

2.2 Static Program Analysis

Abstract interpretation is a formal framework for static analysis that allows inferring

program properties that hold for all possible program executions. Different abstractions,

called abstract domains, are used in this process for approximating sets of concrete

run-time states. The CiaoPP analyzer is abstract interpretation-based, and its design

consists of a common abstract-interpretation framework based on fixpoint computation

parameterized by different, pluggable abstract domains (the Static Analysis hexagon in

Figure 1). This means that the set of properties that are used in assertions is extensi-

ble with new abstract domains defined as plug-ins to support them. Depending on the

selected domain or combination of domains for analysis, CiaoPP constructs a program

analysis graph, starting from the program entry points . In this graph, nodes represent the

different ways in which predicates are called. A predicate can have multiple nodes asso-

ciated with it if it is called in different ways (calling contexts). For each calling context,

properties are inferred that hold if the predicate succeeds (and also global properties).

These properties will be emitted also as assertions, which will have status true (repre-

sented by the Analysis Info box in Figure 1). Optionally, a new source file is generated

for the analyzed program, which is identical to the original but with true program-point

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.8

assertions interspersed between every two consecutive literals of each clause, and with

one or more true predicate assertions added for each predicate. In particular, if there are

several different calling contexts for a given predicate, there will typically be a predicate

assertion added for each of these contexts (this is also referred to as multivariance in the

analysis). Further details of this process can be found in Muthukumar and Hermenegildo

(1989, 1990, 1992). In any case, when discussing the identified bugs later in the paper,

we will provide more explanations as needed.

2.3 Run-Time Checking

Static analysis is used for compile-time checking of assertions. However, due to the inher-

ent undecidability of static analysis, sometimes properties cannot be verified statically. In

those cases, the remaining unproved (parts of) assertions are written into the output pro-

gram with check status and then this output program can (optionally) be instrumented

with run-time checks to make it run-time safe. These dynamic checks will encode the

semantics of the check assertions, ensuring that an error is reported at run time if any

of these remaining assertions is violated (the dynamic part of the Ciao assertion model).

Note that almost all current abstract interpretation systems assume in their semantics

that the run-time checks will always be executed. However, CiaoPP does not make this

assumption by default, that is it is configurable as an option, since in some use cases

run-time checks may in fact be disabled by the user for deployment.

Checking at run time program state properties, such as traditional types and modes,

can be performed relatively easily: as mentioned before, most properties are runnable,

and the check/1 wrapper will ensure that the check will succeed or raise an error, without

binding any arguments. For example, calling check(list(X)) with X = [], X = [a], or

X = [A,B], will succeed, without binding any variables, while calling check(list(X))

with X = a, X = f(a), or X = A, will raise an error.3 In practice a quite rich set

of properties is checkable, including types, modes, variable sharing, exceptions, deter-

minacy, (non-)failure, choice-points, and more, blending smoothly static and dynamic

techniques. On the other hand, checking at run time other global properties such as cost

and, specially, termination, is obviously less straightforward. While checking these types

of properties could conceptually be done with our proposed algorithm, in this paper we

concentrate on the other properties mentioned.

2.4 Unit Tests, Test Case Generation, and Assertion-based Testing

Test inputs can be provided by the user, by means of test assertions (unit tests). The

run-time checking mechanism can test these assertions but also any other assertion in any

predicate called by the test case, that was not verified in the static checking. The unit-

testing framework in principle requires the user to manually write individual test cases for

each assertion to be tested. However, the Ciao model also includes mechanisms for gener-

ating test cases automatically from the assertion preconditions, using the corresponding

3 A discussion of instantiation checks and compatibility checks is appropriate at this point but beyond
the scope of the paper. Checks are instantiation checks unless otherwise stated. The reader is referred
to (Hermenegildo et al. 1999, 2003) for details.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 9

property predicates as generators. For example, calling list(X) with X uninstanti-

ated generates lazily, through backtracking, an infinite set of lists, X = [], X = [],

x = [,], etc. Stating a type for the list argument will then also generate concrete

values for the list elements. This enumeration process can be combined in Ciao with the

different supported search rules (breadth-first, iterative deepening, random search, etc.)

to produce, for example fair enumerations. This idea has been extended recently (Casso

et al. 2020) to a full random test case generation framework, which automatically gener-

ates, using the same technique, random test cases that satisfy assertion preconditions. We

refer to the combination of this test generation mechanism with the run-time checking

of the intervening assertions as assertion-based testing . In other words, assertion-based

testing involves generating and running relevant test cases that exercise the run-time

checks of the assertions in a program to test if those assertions are correct. This tech-

nique (present in the Ciao model since its origins) yields similar results to property-based

testing (Claessen and Hughes, 2000) but in a more integrated way within the overall

assertion model and within CiaoPP, rather than as a separate technique. Such automatic

generation is currently supported for native properties, regular types , and user-defined

properties as long as they are restricted to pure Prolog with arithmetic or mode and

sharing constraints. In addition, users can also write their own generators and of course

other test generation techniques and tools can be used (Fortz et al. 2020).

3 The checkification algorithm

This section provides a detailed overview of the proposed algorithm for testing the static

analyzer, which incorporates all the components mentioned above.

Illustrative example. Let us start by sketching the main idea of our approach with

a motivating example. Assume we have the following simple Prolog program, where we

use an entry assertion to define the entry point for the analysis. The entry assertion

indicates that the predicate is called with its second argument instantiated to a list and

the third a free variable (we use the mode definitions of Example 2.2):

1 :- entry prepend(_,+list,-).
2
3 prepend(X,Xs,Ys) :-
4 Ys=[X|Rest],
5 Rest Xs.

Assume that we analyze it with a simple modes abstract domain that assigns to each

variable in an abstract substitution one of the following abstract values:

• ground (the variable is ground),

• var (the variable is free),

• nonground (the variable is not ground),

• nonvar (the variable is not free),

• ngv (the variable is neither ground nor free), or

• any (nothing can be said about the variable).

Assume also that the analysis is incorrect because it does not consider sharing (alias-

ing) between variables, so when updating the abstract substitution after the Rest=Xs

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.10

�
1 :- entry prepend(_,+list,-).
2
3 :- true pred prepend(X,Xs,Ys)
4 : (any(X), nonvar(Xs), var(Ys))
5 => (any(X), nonvar(Xs), nonground(Ys), nonvar(Ys)).
6
7 prepend(X,Xs,Ys) :-
8 true(any(X), nonvar(Xs), var(Ys), var(Rest)),
9 Ys=[X|Rest],

10 true(any(X), nonvar(Xs), nonground(Ys), nonvar(Ys), var(Rest)),
11 Rest=Xs,
12 true(any(X), nonvar(Xs), nonground(Ys), nonvar(Ys), nonvar(Rest)).

� �

Fig. 2. An incorrect simple mode analysis.

literal, the abstract value for Ys is not modified at all.4 The result of the analysis will be

represented, as explained in the previous section, as a new source file with interspersed

assertions, as shown in Figure 2 (lines 3-5, 8, 10 and 12). Note that the correct result, if

the analysis considered aliasing, would be that there is no groundness information for Ys

at the end of the clause (line 12), since there is none for X or Xs at the beginning either. Ys

could only be inferred to be nonvar, but instead is incorrectly inferred to be nonground

too (line 10). Normally any/1 properties (i.e., top, or unknown) would not actually be

included in the analysis output for conciseness, but are included in Figure 2 for clarity.

The objective of our approach is to check dynamically the validity of these true asser-

tions from the analyzer, that in this case contain an error. The insight is that, thanks

to the different capabilities of the Ciao model presented previously, this can be achieved

by (1) turning the status of the true assertions produced by the analyzer into check , as

shown in Figure 3.5 This would normally not make any sense since these true assertions

have been proved by the analyzer. But that is exactly what we want to check, that is

whether the information inferred is incorrect. To do this, (2) we run the transformed pro-

gram (Figure 3) again through CiaoPP (Figure 1) but without performing any analysis .

In that case, the check literals (stemming from the true literals of the previous run) will

not be simplified in the comparator (since there is no abstract information to compare

against) and instead will be converted directly to run-time tests. In other words, the

check(Goal) literals will be expanded and compiled to code that, every time that this

program point is reached, in every execution, will check dynamically if the property (or

properties) within the check literal (i.e., those in Goal) succeed, and an error message

will be emitted if they do not. The only missing step to complete the automation of

the approach is to (3) run prepend/3 on a set of test cases. These may in general be

already available as test assertions in the program or, alternatively, the random test case

generator can be used to generate them. for example for prepend/3 the test generation

framework will ensure that instances of the goal prepend(X,Xs,Ys) are generated, where

Xs is constrained to be a list, and Ys remains a free variable. However, X and the elements

of Xs will otherwise be instantiated to random terms. In this example, as soon as a test

case is generated where both X and all elements in Xs are ground, the program will report

4 Note that early LP analyzers often had errors of this kind, which led to very active development of
variable sharing analysis domains. These constituted some of the very first Abstract Interpretation-
based pointer aliasing analyses for any programing language.

5 Again, we include the any/1 property in Figure 3 for clarity of exposition, and for consistency with
Figure 2.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 11

�
1 :- entry prepend(_,+list,-).
2
3 :- check pred prepend(X,Xs,Ys)
4 : (any(X), nonvar(Xs), var(Ys))
5 => (any(X), nonvar(Xs), nonground(Ys), nonvar(Ys)).
6
7 prepend(X,Xs,Ys) :-
8 check(any(X), nonvar(Xs), var(Ys), var(Rest)),
9 Ys=[X|Rest],

10 check(any(X), nonvar(Xs), nonground(Ys), nonvar(Ys), var(Rest)),
11 Rest=Xs,
12 check(any(X), nonvar(Xs), nonground(Ys), nonvar(Ys), nonvar(Rest)).

� �

Fig. 3. The instrumented program.

a run-time error in the check in line 12, letting us know that the third program point,

and thus the analysis, is incorrect.6

The same procedure can be followed to debug different analyses with different bench-

marks. If the execution of any test case reports a run-time error for one assertion, it will

mean that the assertion was not correct and the analyzer computed an incorrect over-

approximation of the semantics of the program. Alternatively, if this experiment, which

can be automated easily, is run for an extensive suite of benchmarks without errors, we

can gain more confidence that our analysis implementation is correct, even if perhaps

imprecise (although of course, we cannot have actual correctness in general by testing).

3.1 Basic reasoning behind the approach

We start by establishing more concretely the basic reasoning behind the approach in

terms of abstract interpretation and safe upper and lower approximations. The mathe-

matical notation in this subsection is meant for providing a more precise explanation,

rather than deep formalization, which is arguably not really necessary, thanks to the

simplicity of the approach that builds on the different parts of the system that act as

trusted base.

An abstract interpretation-based static analysis computes an over-approximation S+
P

of the collecting semantics SP of a program P . Such collecting semantics can be broadly

defined as a control flow graph for the program decorated at each node with the set

of all possible states that could occur at run time at that program point. Different

approximations of this semantics will have smaller or larger sets of possible states at

each program point. Let us denote by S′
P ⊂P S′′

P the relation that establishes that an

approximation of SP , S
′′
P , is an over-approximation of another, S′

P . The analysis will be

correct if indeed SP ⊂P S+
P .

Since SP is undecidable, this relation cannot be checked in general. However, if we

had a good enough under-approximation S−
P of SP , it can be tested as S−

P ⊂P S+
P . If it

does not hold and S−
P �⊂P S+

P , then it would imply that SP �⊂P S+
P , and thus, the results

6 In the discussion above we have assumed for simplicity that the original program did not already
contain check assertions. In that case these need to be treated separately and there are several options,
including simply ignoring them for the process or actually turning them into trusts (assertions to be
taken as granted by the analyzer), so that we switch roles and trust the user-provided properties while
checking the analyzer-inferred ones. This very interesting issue of when and whether to use the user-
provided assertions to be checked during analysis, and its relation to run-time checking is discussed in
depth in Garcia-Contreras et al. (2019).

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.12

of the analysis would be incorrect, that is the computed S+
P would not actually be an

over-approximation of SP .

An under-approximation of the collecting semantics of P is easy to compute: it suffices

with running the program with a subset I− of the set I of all possible initial states. We

denote the resulting under-approximation SI−
P , and note that SP = SI

P , which would be

computable if I is finite and P always terminates. That is the method that we propose for

testing the analysis: selecting a large and varied enough I−, computing SI−
P and checking

that SI−
P ⊂P S+

P .

A direct implementation of this idea is challenging. It would require tailored instrumen-

tation and monitoring to build and deal with a partially constructed collecting semantic

under-approximation as a programing structure, which then would need to be compared

to the one the analysis handles. However, as we have seen the process can be greatly

simplified by reusing some of the components already in the system, following these

observations:

• We can work with one initial state i at a time, following this reasoning: SI−
P ⊂P

S+
P ⇐⇒ ∀i∈ I−, S{i}

P ⊂P S+
P .

• We can use the random test case generation framework for selecting each initial

state i.

• Instead of checking S
{i}
P ⊂P S+

P , we can instrument the code with run-time checks

to ensure the execution from initial state i does not contradict the analysis at any

point. That is, to make sure that the state of the program at any program point is

contained in the over-approximation of the set of possible states that the analysis

inferred and output as Ciao assertions.

3.2 Operation of the algorithm

We now show the concrete algorithm for implementing our proposal, that is the

driver that combines and inter-operates the different components of the framework to

achieve the desired results. The essence of the algorithm (Alg. 1) is the following: non-

deterministically choose a program P and a domain D from a collection of benchmarks

and domains, and execute the AnaTest(P,D) procedure until an error is found or a

limit is reached. Unless the testing part is ensured to explore the complete execution

space, it could in principle be useful to revisit the same (P,D) pair more than once.7

There is no restriction regarding the number of entry points or inputs to a program to

be analyzed for. It is common in tools related to ours to use as benchmark programs

with a single entry point with no inputs (for example just a single void main() function

as entry point for C). In Ciao program signatures and types are optional. Admissible

inputs (i.e., the initial set of possible states for analysis or test case generation) can be

specified by writing assertions for the exported predicates or skipped altogether. Note

also that if the program P had the restriction mentioned above (in our case, exporting

only a main/0 predicate), then test case generation would not be needed for our algo-

rithm. In the absence of assertions, the test case generation framework has already some

7 Clearly, coverage of the program and coverage of the analyzer code could be a useful metric here to
decide when to finish.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 13

Algorithm 1 The “Checkification” Analysis Testing Algorithm

1: procedure AnaTest(P, D) � For program P and domain D
2: result← None

3: Pan← analyze and annotate P with domain D (incl. program-point assertions).
4: Pcheck← Pan where true assertion status is replaced by check
5: Prtcheck← instrument Pcheck with run-time checks
6: repeat
7: Choose an exported predicate p and generate a test case input
8: if p(input) in Pcheck produces a run-time error at line l then
9: result← Error(input, l)
10: else if maximum time or number of test executions is reached then
11: result← Timeout

12: until result �= None return result

mechanisms to generate relevant test cases, instead of random, nonsensical inputs which

would exercise few run-time checks before failing. However, these generators have lim-

itations, and the assertion-based testing framework is in fact best used with assertions

that have descriptive-enough calling contexts, or with custom user-defined generators in

their absence.

When the algorithm detects a faulty program-point assertion for some input

(Error(input, l)), it means that the concrete execution reaches a state not captured by

the (potentially safely over-approximated) result of analysis. It is important to note that

although error diagnosis and debugging are primarily left for the user to manually per-

form, our tool facilitates the task in some aspects. Firstly, it is possible to reconstruct (or

store together with the test output) additional information comparing the concrete exe-

cution trace (which is logged during testing) with the analysis graph (recoverable from

Pan, the program annotated with analysis results), domain operations (inspecting the

analysis graph), and transfer functions (from predicates that are native to each domain).

Secondly, the assertion-based testing tool supports shrinking of failed test cases, so we can

expect reasonably small variable substitutions in the errors reported. Lastly, as sketched

in Algorithm 1, the error location and trace reported by the run-time verification frame-

work provide an approximate idea of the point where the analysis went wrong, even if

not necessarily of the original reason why (which requires a different step of diagnosis).

If the run-time check error points to a program-point assertion right after a call to an

imported predicate, then the analysis erred in applying the entry declaration for the

predicate, the entry declaration was wrong, or if there was no entry declaration, the

analysis failed to compute the “topmost” abstract state reachable from the call abstract

state.

3.3 Some considerations on properties

In order to test an analysis with the algorithm proposed, two conditions must be met.

The first one is to have a translation from the internal representation of the abstract

values in the domain to Ciao user-level properties. These properties that can represent

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.14

the information inferred by a given domain or domains are called the native properties

of the domain(s). Note that these are already requirements for any abstract domain

intended to make full use of the framework, so normally all implemented domains include

the definition of the corresponding native properties and the translation from abstract

domain values to them.

The other condition is to be able to perform run-time checks for those properties, that

is that they can be used by the run-time checking framework. As discussed in Section 2,

such run-time checks can range from very simple or even already built into the language

(like, e.g., var/1), to intermediate (like, e.g., aliasing or groundness), to more complex and

costly (like, e.g., costs or side-effects), to theoretically impossible (like, e.g., termination).

But they can also be safely approximated to detect errors or to issue warnings (e.g., in the

case of termination by detecting repeated identical calls which lead to non-termination or

by timeouts). It is also important to note that complex analyses such as termination are

typically dependent on a number of other instrumental analyses which can themselves

be checked.

In general, the availability of run-time checks is a standard requirement for domains to

be able to make full use of the framework, in order to support the dynamic checks that

are generated when properties cannot be proved statically. This functionality is normally

implemented when a new abstract domain is added to the system, by also defining the

related properties to be used in assertions. If the definition of these native properties

is provided directly in the source language, then such properties are typically already

runnable and thus available for run-time checking; however, it is also possible to provide

an implementation specialized for run-time checking if desired. For properties that are

declared native but are not written in the source language, then a run-time test version

must be provided. In practice, most current Ciao abstract domains include the mentioned

functionalities and can be tested as is with the proposed approach.

3.4 Multivariance and path-sensitivity

As presented, it could appear that our approach could miss some analysis errors even if the

right test cases are used, since we have, to all appearances, disregarded multi-variance

and path-sensitivity . In fact, in CiaoPP the information inferred is fully multi-variant,

and separate path information is kept for each variant (i.e., calling context). However, by

default, the analyzer produces an output that is easy for the programmer to inspect, that

is close to the source program. This means that when outputting the analysis results,

by default the different versions of each predicate (and the associated information) are

combined into a single code version and a single combined assertion for each program

point and predicate. If this default output is used when implementing our approach, it

is indeed entirely possible that the analysis errs at a program point in one path but the

algorithm never detects it: this can happen if, for example, in another path leading to the

same program point (such that the two paths and their corresponding analysis results

are collapsed –lubbed– together at the same program point) the analysis infers a too

general value (higher in the domain lattice) at that program point and thus, the error

is not detected. This issue is controlled by a flag that, when enabled, ensures that the

different versions are not collapsed and are instead materialized into different predicate

instances. This way, multiple versions may be generated for a given predicate, if there

are separate paths to them with different abstract states, and the corresponding analysis

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 15

information will be annotated separately for each abstract path through the program in

the program text of the different versions, avoiding the problem mentioned above.

4 Evaluation

In this section we report on the different experiments that we have conducted in order

to benchmark the checkification approach and assess its practicality.

4.1 Evaluation setup

4.1.1 The experiments

The experiments have consisted in, for a set of benchmarks, analyzing them with different

abstract domains, performing the checkification transformation on the analysis results,

and testing the resulting programs on sample inputs with run-time checks activated. The

objective has been to assess whether we can indeed find errors using the technique and

to estimate the cost involved in detecting those errors.

4.1.2 Analyzer configuration

The experiments were run with Ciao/CiaoPP version 1.23. The tested analyses used

the standard, default configuration of the abstract interpretation framework, that is the

default values of the different flags, such as, for example, using multi-variance on calls,

using the original PLAI fixpoint algorithm, etc., but, of course, differ in the abstract

domain selected for performing each analysis.

4.1.3 Properties and domains

In the experiments we used a wide range of analyses for different properties that are

typically of interest when describing or verifying logic programs (the list of all the abstract

domains used is provided in Table 1):8

• The first class of properties is aimed at capturing variable instantiation state, that

is which variables are bound to ground terms, or free, and, if they are not ground,

the variable sharing relationships among them. These properties are approximated

using aliasing and modes-style abstract domains.

• The second set of properties refers to the shapes of the data structures constructed

by the program in memory. These properties are tracked by the term structure and

types classes of abstract domains.

• The third class of properties that we have considered refers to the numerical relations

among program variables, which are useful to describe properties of numerical parts

of programs. For these, we use in our experiments numerical -style abstract domains.

• Finally, we also evaluate the approach on analyses for computational properties,

that is properties of whole computation subtrees, in particular determinacy and

(non)failure. These analyses sometimes do not provide the information at the pro-

gram points between literals, but rather at the predicate level. In these cases, the

transformation and tests are done at the predicate level.

8 The table also provides references for each domain, except for some that are combinations of other
domains not explicitly described in other papers.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.16

Table 2. Benchmarks

Bench

mmatrix matrix multiplication for two matrices with dimensions n× n;
qsort the quicksort program;
exp exponential calculation;
aiakl initialization for abstract unification in AKL analyzer;
ham a program that generates the sequence of Hamming numbers;
fft fast Fourier transformation calculation;
factorial recursive factorial calculation;
witt the WITT clustering system implementation;
poly a program that raises a polynomial (1 + x+ y+ z) to the 10th power

symbolically;
deriv symbolic differentiation of a given formula;
grammar a simple sentence parser;
fib a program that finds N -th Fibonacci number;
boyer a theorem prover implementation based on Lisp by R. Boyer (nqthm

system), performs symbolic evaluation of a formula;
queens the N queens program (number of the queens being the input);
jugs the water jugs problem;
bid compute opening bid for bridge hand;
nreverse naive list reversal;
guardians prison guards game;
crypt crypto-multiplication puzzle solver;

4.1.4 Programs analyzed

The programs used in our experiments can be divided into two different groups:

The first group, listed in Table 2, comprises a number of well-known, classic bench-

marks. Some of them also represent kernels of applications. For example, aiakl is the

main part of an analyzer for the AKL language; boyer is the kernel of a theorem prover;

and witt is the central part of a conceptual clustering application.

The second group comprises complete systems that are in current use:

• A filtering tool (Ferreiro et al. 2023), used regularly for creating teaching materi-

als. This tool contains 1.1K lines of code in its kernel, and uses also a number of Ciao

libraries. It is an interesting example since it includes different built-in predicates

for handling files and streams.

• Deepfind (Garcia-Contreras et al. 2016), a tool that facilitates searching code repos-

itories and libraries by querying for semantic characteristics of the code. Its kernel

consists of around 10 files where the Prolog code is about 1.5K lines, and uses

in addition a good number of CiaoPP libraries to perform program analysis and

assertion comparison.

• The classic chat-80 program (Warren and Pereira 1982), a natural language inter-

face to a geographical database. It comprises 4.8k lines of code across 22 files.

While typically used more as a demo than a real application, we have included

it in this group because it is of good size, contains a number of system libraries

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 17

using different Prolog built-ins and library predicates, and is known to stress several

abstract interpretation domains.

• LPdoc, a documenter for LP systems used by Ciao and XSB (Hermenegildo, 2000;

Hermenegildo and CLIP Group, 1997). This is the largest example with its kernel

Prolog code being analyzed comprising about 22K lines, plus the use of many Ciao

libraries.

• Spectector (Guarnieri et al. 2020), a tool for automatically detecting leaks intro-

duced by speculatively executed instructions in x64 assembly programs. It consists

of 15 modules with around 1.6K lines of code.

• The s(CASP) (Arias et al. 2018) system is a top-down interpreter for ASP programs

with constraints. The Prolog code is distributed into 44 modules.

No special analysis-related criteria were used in benchmark selection, and the code

was analyzed and run as is, without modifications. The classic benchmarks, by default,

include annotations with program assertions that describe the expected behavior, while

no additional information is provided in the real-world programs.

4.2 Results

4.2.1 Cost of the technique

While run-time overhead is not our primary focus, we have evaluated this aspect in

order to study whether the algorithm has an acceptable cost. This cost obviously has

two components: the analysis time and the testing time (the transformation time is

negligible). Regarding the testing time, note that the execution time of run-time tests

can be reduced significantly through caching techniques (Koukoutos and Kuncak, 2014;

Stulova et al. 2015). However, we decided not to use these optimizations for a number of

reasons: to simplify the implementation; to avoid dependence on the implementation of

other parts; and to avoid any bugs that optimizations could potentially hide, making it

harder to identify them. The results are presented in Tables 3, 4, 5 and 6 for the different

benchmarks and domains. The experiments were run on a MacBook Air with the Apple

M1 chip and 16 GB of RAM. Each column in these tables corresponds to an abstract

domain and in turn contains two sub-columns. The first sub-column is the absolute

execution time in seconds for each benchmark once checkification has been applied, for

the properties inferred by the corresponding abstract domain. This time includes both

the transformation process, in which the annotations of the analysis are modified by

replacing the status of true assertions by check status and inserting run-time checks , as

well as the testing time of the instrumented program. The numbers in parentheses in the

second sub-column provide the analysis times in seconds for the benchmarks, again for

the different abstract domains.

Regarding the testing times, when an error is found during a test run, the time to do

so is typically negligible. In these cases, we report instead the testing time after fixing

the analysis so that no bugs are detected and the testing runs to completion. This is

obviously also the case when no bug is detected to begin with. Thus, the testing times

reported are always for complete runs , which we feel are more useful for estimating the

testing cost.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.18

Table 3. Timings and errors detected (1)

Absolute run time, s (Analysis time, s)

Program gr def sharing sharefree shfr+nonvar

mmatrix 0.2 (0.25) 0.2 (0.25) 0.4 (0.25) 0.4 (0.25) 0.4 (0.25)
qsort 1.0 (0.21) 1.0 (0.21) 1.7 (0.21) 1.7 (0.22) 1.7 (0.22)
exp 0.4·10-1 (0.22) 0.4·10-1 (0.22) 0.2 (0.23) 0.2 (0.23) 0.2 (0.23)
aiakl 0.2·10-3 (0.25) 0.3·10-3 (0.24) 0.8·10-3 (0.25) 0.9·10-3 (0.26) 0.9·10-3 (0.25)

ham 0.1 (0.33) 0.1 (0.34) 0.3 (0.34) 0.3 (0.34) n/a†
(0.26)

fft 0.9 (0.36) 2.5† (0.35) 6.8 (0.36) 6.8 (0.36) 6.8 (0.37)
factorial 0.1 (0.20) 0.1 (0.20) 0.2 (0.20) 0.2 (0.21) 0.2 (0.20)

witt 11.4 (1.08) 23.2 (1.08) 57.7 (1.12) 60.9 (1.14) n/a∗
(1.14)

poly 0.8 (0.31) 8.7 (0.34) 32.3 (0.44) 30.9 (0.42) 31.7 (0.52)
deriv 0.2·10-3 (0.28) 0.5·10-3 (0.28) 2.4·10-3 (0.29) 0.2·10-2 (0.29) 0.3·10-2 (0.29)
grammar 0.2·10-4 (0.23) 0.5·10-4 (0.22) 1.5·10-4 (0.23) 0.2·10-3 (0.23) 0.2·10-3 (0.24)
fib 0.1 (0.21) 0.1 (0.21) 0.3 (0.20) 0.3 (0.20) 0.3 (0.29)
boyer 0.7 (0.50) 2.7 (0.52) 15.8 (0.56) 16.0 (0.56) 16.2 (0.57)
queens 6.0 (0.23) 6.0 (0.24) 12.4 (0.23) 13.2 (0.24) 13.2 (0.23)
jugs 0.2·10-3 (0.31) 0.9·10-3 (0.32) 0.3·10-2 (0.34) 0.3·10-2 (0.34) 0.3·10-2 (0.32)

bid 0.2·10-2 (0.38) 0.2·10-2 (0.37) 0.4·10-2 (0.38) 0.5·10-2 (0.38) n/a∗
(0.39)

nreverse 0.3·10-1 (0.20) 1.3 (0.21) 4.0 (0.22) 4.0 (0.22) 4.1 (0.21)

guardians 0.4 (0.28) 0.4 (0.28) 0.7 (0.29) 0.7 (0.29) n/a∗
(0.29)

crypt 0.1·10-1 (0.31) 0.1·10-1 (0.31) n/a (n/a) 0.1 (0.32) 0.1 (0.31)
exfilter 0.2 (6.10) 21.9 (6.84) 83.4 (14.58) 83.6 (13.55) n/a (n/a)
deepfind 0.4 (7.12) 0.3 (6.39) 1.9 (23.46) 2.1 (14.06) 1.0 (9.72)

chat-80 0.4·10-1 (5.41) n/a∗
(5.78) 5.4 (54.60) 5.5 (54.28) 5.7 (54.29)

LPdoc 0.3 (22.20) 1.0 (23.03) 52.3 (72.45) 53.6 (65.06) 53.0 (112.12)

Spectector 0.6 (4.27) n/a∗
(4.43) 29.1 (5.72) 24.0 (5.75) 24.5 (5.77)

s(CASP) 0.6 (10.35) 24.2 (10.69) 56.1 (237.75) 56.6 (197.62) n/a∗
(205.86)

Classes of bugs found are marked with: no = abstract domain implementation, . . . = fixpoint

algorithms, no = semantic inconsistencies, ∼ = run-time check instrumentation, == = third-
party libraries.

If the time is labeled as n/a, it indicates that there is no time recorded due to the

presence of a timeout or an unresolved bug, or that no analysis results were available.

The latter can be caused by a crash during analysis or by the analysis output being

malformed, for example missing assertions.

The results show that execution time of tests is quite reasonable, typically taking no

more than around 60 s. Performance can be improved if needed by activating only the

run-time semantics of the predicate assertions and/or disabling multi-variance.

4.2.2 Errors found

We now turn our attention to the most important point of whether the technique can

indeed find errors in the analyses. We have manually analyzed the root causes of the

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 19

Table 4. Timings and errors detected (2)

Absolute run time, s (Analysis time, s)

Program shareson shfrson sondergaard share amgu shfr amgu

mmatrix 0.6 (0.25) 0.7 (0.25) 0.4 (0.25) 0.4 (0.25) 0.4 (0.26)
qsort 2.8 (0.21) 2.8 (0.21) 1.7 (0.21) 1.7 (0.21) 1.7 (0.21)
exp 0.2 (0.23) 0.2 (0.23) 0.2 (0.23) 0.2 (0.23) 0.2 (0.23)
aiakl 0.1·10-2 (0.26) 0.1·10-2 (0.26) 0.1·10-2 (0.26) 0.8·10-3 (0.25) 0.9·10-3 (0.26)
ham 0.5 (0.36) 0.5 (0.37) 0.4 (0.34) 0.3 (0.35) 0.3 (0.34)
fft 9.5 (0.38) 9.6 (0.38) 7.5 (0.36) 6.8 (0.36) 6.8 (0.37)
factorial 0.3 (0.20) 0.3 (0.21) 0.2 (0.20) 0.2 (0.20) 0.2 (0.20)
witt 60.7 (3.93) n/a (n/a) n/a (n/a) 57.7 (1.10) 61.0 (1.14)
poly 31.8 (0.48) 32.0 (0.49) 31.7 (0.39) 32.4 (0.57) 31.2 (0.48)
deriv 0.3·10-2 (0.29) 0.4·10-2 (0.30) 0.2·10-2 (0.29) 0.2·10-2 (0.29) 0.2·10-2 (0.29)
grammar 0.2·10-3 (0.23) 0.2·10-2 (0.24) 0.2·10-3 (0.24) 0.1·10-3 (0.24) 0.2·10-3 (0.23)
fib 0.4 (0.21) 0.4 (0.21) 0.3 (0.20) 0.3 (0.22) 0.3 (0.21)

boyer 20.3 (0.57) 20.7†
(0.59) 19.7 (0.56) 15.7 (0.58) 16.2 (0.57)

queens 21.6 (0.24) 23.1 (0.28) 13.6 (0.24) 12.3 (0.23) 13.4 (0.24)
jugs 0.3·10-2 (0.33) 0.3·10-2 (0.33) 0.3·10-2 (0.33) 0.3·10-2 (0.33) 0.3·10-2 (0.33)
bid 0.7·10-2 (0.39) 0.7·10-2 (0.40) 0.4·10-2 (0.39) 0.4·10-2 (0.38) 0.4·10-2 (0.39)
nreverse 4.0 (0.22) 4.0 (0.22) 3.9 (0.22) 4.0 (0.21) 3.9 (0.22)
guardians 54.1 (0.29) 1.1 (0.31) 0.7 (0.29) 0.6 (0.29) 0.7 (0.29)
crypt 0.1 (0.42) 0.1 (0.35) 0.1 (0.32) n/a (n/a) 0.1 (0.31)
exfilter n/a (n/a) n/a (n/a) n/a (54.82) 83.7 (14.91) 83.5 (13.45)
deepfind 1.9 (9.49) 2.0 (10.12) 1.6 (50.12) 0.5 (49.88) 0.4 (12.14)
chat-80 0.4 (56.53) 0.5 (55.72) 0.5 (59.15) 0.4 (43.86) 0.5 (39.94)
LPdoc 53.0 (160.86) 53.5 (119.31) 52.1 (22.89) 52.7 (200.87) 52.5 (262.71)
Spectector 24.1 (5.96) 24.5 (5.80) 24.6 (8.71) 36.9 (10.97) 24.2 (5.91)
s(CASP) 56.1 (207.61) 56.1 (198.59) 56.3 (33.28) 57.0 (291.39) 55.8 (170.38)

Classes of bugs found are marked with: no = abstract domain implementation, . . . = fixpoint

algorithms, no = semantic inconsistencies, ∼ = run-time check instrumentation, == = third-
party libraries.

errors found and classified them into different categories. The classification is indicated

in Tables 3 to 6 by surrounding the numbers with different patterns. These bug categories

include (I) defects in the implementation of the abstract domain, (II) defects in the imple-

mentation of the fixpoint algorithms, (III) semantic inconsistencies between components

of the framework, (IV) run-time check instrumentation issues, and (V) defects related to

third-party libraries. Table 7 provides a summary of identified bugs. The “Status” column

indicates whether the bug is new or it was already a known issue at the time of running

the experiments. The “Class” column lists the bug category, while the “Description” col-

umn provides a more detailed description of each bug. We will discuss stylized examples

from each bug category in Section 4.3. In each column, bugs are additionally marked

with symbols (e.g., †) to group those that correspond to the same issue.

The results of the experiments conducted so far are promising, allowing us to draw

several significant conclusions and observations.

First and foremost, a good number of bugs and inconsistencies were found using the

technique. These bugs were quite diverse, illustrating the power of the algorithm in

finding all sorts of issues of different nature.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.20

Table 5. Timings and errors detected (3)

Absolute run time, s (Analysis time, s)

Program shfrlin amgu share+clique shfr+clique share+clique+
def

shfr+clique+
def

mmatrix 0.5 (0.26) 0.4 (0.25) 0.4 (0.25) 0.4 (0.26) 0.4 (0.25)
qsort 1.8 (0.21) 1.7 (0.21) 1.7 (0.22) 1.7 (0.21) 1.7 (0.21)

exp 0.2 (0.23) 0.4·10-1 (0.23) 0.4·10-1 (0.23) 0.4·10-1 (0.22) 0.5·10-1† (0.23)
aiakl 0.1·10-2 (0.26) 0.8·10-3 (0.25) 0.9·10-3 (0.26) 0.8·10-3 (0.25) 0.9·10-3 (0.25)

ham 0.4 (0.35) 0.2 (0.34) 0.2 (0.35) 0.2 (0.36) 0.2†
(0.35)

fft 7.1 (0.37) 6.7 (0.36) 6.8 (0.37) 6.8 (0.37) 6.8 (0.37)

factorial 0.2 (0.20) 0.2 (0.20) 0.2 (0.20) 0.2 (0.20) 0.2†
(0.20)

witt 67.9 (1.18) 49.4†
(1.12) n/a†

(1.15) 49.2†
(1.13) n/a∗

(1.15)

poly 31.5 (0.53) 2.4 (0.36) ����
2.4∗

(0.35) 2.4 (0.38) 2.4 (0.38)

deriv 0.3·10-2 (0.30) 0.2·10-2 (0.29) 0.2·10-2 (0.29) 0.2·10-2 (0.29) 0.2·10-2† (0.29)
grammar 0.2·10-3 (0.23) 0.2·10-3 (0.23) 0.2·10-3 (0.23) 0.2·10-3 (0.24) 0.2·10-3 (0.23)
fib 0.3 (0.22) 0.3 (0.21) 0.3 (0.21) 0.3 (0.21) 0.3 (0.21)

boyer 17.1 (0.60) 15.1 (0.55) 15.2 (0.55) 15.0 (0.57) 15.5†
(0.59)

queens 14.6 (0.25) 12.7 (0.24) 13.2 (0.23) 12.4 (0.24) 13.2 (0.24)

jugs 0.4·10-2 (0.34) 0.6·10-3 (0.32) 0.6·10-3 (0.32) 0.6·10-3 (0.32) 0.6·10-3† (0.32)

bid 0.5·10-2 (0.42) 0.4·10-2 (0.39) n/a†
(0.39) 0.3·10-2 (0.39) n/a∗n/a∗

(0.39)
nreverse 4.1 (0.21) 0.1 (0.22) 0.1 (0.21) 0.1 (0.21) 0.2 (0.21)

guardians 0.7 (0.29) 0.7 (0.29) n/a†
(0.30) 0.7 (0.29) n/a∗

(0.23)

crypt 0.1 (0.33) 0.9·10-2 (71.83) 0.1 (0.32) 0.1·10-1 (71.32) 0.8·10-1† (0.32)

exfilter 87.1 (15.31) 85.4 (20.72) 86.3 (18.59) 84.5 (20.40) n/a∗
(15.25)

deepfind 1.5 (15.69) 1.8 (419.87) 2.1 (28.18) 1.0 (3.19) n/a∗
(3.20)

chat-80 0.6 (60.55) 0.2 (5.77) 0.2 (5.82) 0.1 (5.92) n/a∗
(5.39)

LPdoc 51.6 (300.92) 0.7 (73.90) 0.8 (179.85) 0.7 (74.94) n/a∗
(24.83)

Spectector 24.7 (6.02) 3.7 (4.35) 3.8 (4.69) 1.7 (4.32) n/a∗
(3.28)

s(CASP) 56.0 (328.94) 10.1 (25.94) n/a†
(24.37) 8.0 (68.63) n/a∗

(50.10)

Classes of bugs found are marked with: no = abstract domain implementation, . . . = fixpoint

algorithms, no = semantic inconsistencies, ∼ = run-time check instrumentation, == = third-
party libraries.

No bugs were found for the most mature domains. On the other hand, bugs were

indeed found in the more experimental and prototype domains, that is domains which

were only partially developed and/or they or their run-time tests supported only a subset

of the language at the time of the experiments (e.g., the polyhedra abstract domain).

This included for example no support being available for certain built-in operations, or

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

C
h
eckifi

ca
tio

n
:
A

P
ra
ctica

l
A
p
p
roa

ch
fo
r
T
estin

g
S
ta
tic

A
n
a
lysis

T
ru
th
s

21

Table 6. Timings and errors detected (4)

Absolute run time, s (Analysis time, s)

Program eterms polyhedra depth-k det nfg

mmatrix 0.6 (0.64) 0.2·10-1 (0.25) �������
0.1·10-1† (0.26) 0.3 (0.40) 0.3 (0.37)

qsort 4.0 (0.53) n/a (n/a) �������
0.2·10-1† (0.21) 4.4 (0.47) 4.4 (0.46)

exp 0.1 (0.27) 0.4·10-1 (0.25) 0.2·10-1 (0.22) 0.2 (0.20) 0.2 (0.23)

aiakl
0.8·10-3† (0.48) n/a†

(0.23) 0.3·10-4 (0.25) 0.1·10-3 (0.51) 0.1·10-2 (0.39)

ham 7.6 (0.48) n/a†
(0.35) �������

0.5·10-1† (0.33) 0.8·10-1 (0.35) 0.8·10-1 (0.27)

fft 9.8†
(3.00) 0.5·10-2 (0.25) ���

0.3†
(0.32) n/a (4.34) 13.2 (3.46)

factorial 0.2 (0.22) 0.7·10-1 (0.21) 0.2·10-1 (0.17) 0.2 (0.18) 0.3 (0.19)

witt n/a∗
(0.48) n/a (n/a) n/a (n/a) n/a†

(0.35) n/a (n/a)

poly 27.8†
(15.68) 0.2 (0.25) 0.5 (0.33) n/a†

(32.70) n/a (n/a)
deriv 0.2 (2,384.47) 0.2·10-3 (0.29) 0.1·10-3 (0.30) n/a n/a n/a (n/a)

grammar 0.1·10-3 (0.37) n/a (n/a) �������
0.4·10-4† (0.21) 0.1·10-3 (0.26) 0.2·10-3 (0.27)

fib 0.2 (0.27) 0.1 (0.23) 0.1·10-1 (0.20) 0.3 (0.19) 0.6 (0.20)

https://doi.org/10.1017/S1471068425100069 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068425100069

D
.
F
erreiro

et
a
l.

22

Table 6. Continued

Absolute run time, s (Analysis time, s)

Program eterms polyhedra depth-k det nfg

boyer 9.0 (6.41) n/a†
(0.37) 0.4 (0.56) 55.0 (7.98) n/a (n/a)

queens 21.1 (0.36) 1.3 (0.25) ���
1.0†

(0.23) 26.7 (0.26) 27.3 (0.26)

jugs 1.6†
(0.82) n/a†

(0.28) �������
0.1·10-3† (0.33) n/a†

(0.77) n/a†
(0.50)

bid 0.1·10-1† (1.46) n/a (n/a) �������
0.3·10-3† (0.35) 0.1·10-4 (0.91) 0.1·10-4 (0.95)

nreverse 3.1 (0.30) 0.2·10-1 (0.22) �������
0.7·10-1† (0.21) 20.6 (0.27) 25.3 (0.30)

guardians
15.0†

(0.70) 0.1·10-1 (0.32) 0.8·10-2 (0.27) 48.6 (0.47) 59.5 (0.55)

crypt 0.2·10-2† (1.15) 0.1·10-1 (54.92) �������
0.4·10-2† (0.29) 0.1 (0.79) 0.2 (0.72)

exfilter 35.5 (9.25) n/a∗
(3.71) n/a (n/a) n/a (n/a) n/a (n/a)

deepfind
n/a†

(43.48) n/a (n/a) 0.2 (5.01)
n/a∗

(675.89)
n/a∗

(676.56)

chat-80 n/a∗
(334.72) 0.2·10-1 (1,202.55) n/a∗

(1,473.90) n/a††
(444.72) n/a††

(443.65)

LPdoc n/a n/a n/a†
(15.46) n/a∗

(19.56) n/a n/a n/a n/a

Spectector
n/a†

(4.91) n/a†
(3.97)

n/a††
(4.25)

n/a∗
(5.99)

n/a∗
(6.55)

s(CASP) n/a∗
(90.18) n/a∗

(17.13)
n/a∗∗

(20.43) n/a∗∗
(323.73) n/a∗∗

(271.79)

Classes of bugs found are marked with: no = abstract domain implementation, . . . = fixpoint algorithms, no
= semantic inconsistencies, ∼ = run-time check instrumentation, == = third-party libraries.

https://doi.org/10.1017/S1471068425100069 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 23

Table 7. Details of defects found. The root causes of bugs (Class) again include: (I) abstract
domain implementation; (II) fixpoint algorithms; (III) semantic inconsistencies; (IV)

run-time check instrumentation; (V) third-party libraries

Status Class Description

1 New I Analysis does not evaluate correctly the arg(X,Y,Z) predicate due to
absence of an abstract description in the def domain for the case when Z

is ground.
2 New III The name covered is used in two different properties with different

semantics.
3 New IV Incorrect run-time semantics for property mshare/1 due to being sensitive

to variable ordering.
4 New I Analysis with the shfr+nonvar domain of a program containing

length(X,Y), where X is not a variable marks length/2 as failing.
5 New I Abstract definition of the \=/2 built-in not implemented correctly in the

shfr+nonvar , shfr+clique, and shfr+clique+def domains.
6 New I Abstract definition of the \==/2 built-in not implemented correctly in

the shfr+nonvar , shfr+clique, and shfr+clique+def domains.
7 New III The analysis and run-time semantics of linear/1 are inconsistent.
8 New IV The mshare/1 implementation for run-time checking considers all

variables at a program point. This becomes problematic when both
clique/1 and mshare/1 are present at the same program point. When
variables are “transferred” from mshare/1 to clique/1, mshare/1 should
not consider these variables.

9 New IV Missing clique/1 property implementation for run-time checking.
10 New I When analyzing with shfr+clique+def , the output introduces spurious

variables when inferring ground/1.
11 Known I Problem in types domains with findall/3 calls.
12 Known I Problem in types domains with setof/3 calls.
13 New III Run-time checking instrumentation only understands parametric types

that use type symbols as arguments.
14 New V Error in type inference due to skipping testing whether predicates

declared as regular types are indeed regular types.
15 New V Error in polyhedra analysis due to not checking whether variables are

numeric.
16 New IV Run-time implementation of polyhedra properties (constraint/1) must

check if variables are instantiated: merely evaluating the (in)equality is
not sufficient.

17 New I The greatest lower bound (glb/3) operation is not defined correctly in
depth-k abstract domain.

18 New IV Missing run-time check implementation for instance/2.
19 Known I Type analysis failing to generate types for data/dynamic predicates.
20 Known I =/2 built-in not defined correctly in polyhedra abstract domain.
21 New II Bug introduced in the fixpoint algorithm during code refactoring to

incorporate a new transformation aimed at optimizing set-sharing-based
analyses.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.24

no run-time behavior being defined for some properties used by such domains. All this

has greatly helped complete and strengthen these less mature domains, since most of

the bugs found have now been fixed. One thing to take into account when reading the

results in the tables is that sometimes many reported errors are due to just one bug.

For example, almost all errors reported with the shfr+clique+def domain refer to the

same bug found that affected the analysis of several benchmarks (see the markings in

the tables mentioned before for other examples). Also, it is important to note that each

program detects a maximum of one bug at a time, since the process halts when it detects

a run-time error.

Another conclusion from the experiments is that benchmark selection is very important

when testing specific domains, since each example uses different built-ins and library

predicates, exhibits different properties, etc. Nevertheless, while complex examples such

as witt have resulted most capable at identifying a wide range of bugs across different

domains, a drawback is that for very complex benchmarks the analysis using the least

mature domains is more prone to fail, and then sometimes no bug is detected.

As mentioned before, in addition to standard benchmarks, we have also applied our tool

to real-life applications. In this case, rather than generating test cases, the experiment

consists in compiling the application using all the source files as transformed by the

algorithm and using the application as usual, for example for the LPdoc documenter,

generating with it full manuals.

An interesting observation is that the benchmark program suite showed similar effec-

tiveness to the real-world applications in exposing errors, that is most bugs identified in

real applications had already been detected by the set of smaller benchmarks.

Also, the presence of duplicate bugs is indicative that the algorithm can identify

problems consistently.

Finally, the fact that some bugs have already been fixed suggests that identifying the

source of the detected errors in the implementation is relatively straightforward.

4.3 Further discussion of the bugs detected

This section illustrates further some of the defects found by the proposed technique during

our experiments reported in Section 4.1. The programs presented are representative of

the actual code fragments that triggered the detection of the bugs; however, we generally

show simplified and distilled versions for brevity and clarity, since the actual code would

need significant context to be understood. We divide the discussion according to the

different classes of bugs (I to V) from Section 4.1. The bug numbers refer to Table 7.

4.3.1 Abstract domain implementation (Class I)

As mentioned before, our testing technique can be seen as a sanity or coherence check,

and thus it can be targeted to test different components of the system depending on

which ones are assumed to be trusted. In general, the Ciao abstract interpretation engine

(the fixpoint algorithms and all the surrounding infrastructure of the system, into which

the domains are “plugged-in”) includes the components of the analyzer we trust most

since they have been used and refined for a long time. Thus, it makes sense to start by

taking this as the trusted base and aiming the error-finding task at the different abstract

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 25

domains. This makes sense specially since CiaoPP is at the same time a production and

a research tool, and new domains are constantly being developed.

Example 4.1

(Bug #4: Missing assertion in library predicate description). Abstract descriptions of the

behavior of the built-ins and library predicates are provided for each abstract domain,

either in the file(s) defining the domain, in the libraries themselves, or in both. A first use

of our algorithm is in order to find errors in these specifications and in the implementa-

tions of these built-ins and library predicates for a given abstract domain. In particular,

if during testing a run-time error is found in a program-point assertion right after a call

to a built-in, this can be due to an error in either the abstract description of that builtin

or in its actual implementation. For instance, the code of the length/2 library predicate

includes the following (simplified) assertions:

�
1 :- pred length(+list,-int) + det.
2 :- pred length(-list,+int) + det.
3 :- pred length(+list,+int) + semidet.
4 :- pred length(?,?) + nondet.

� �

where int/1 is a primitive property (in this case a primitive type) and list/1 is defined in

a library by the standard list predicate, and also declared to be a property (in particular,

a regular type) in the usual way:

�
1 :- regtype list/1.
2 list([]).
3 list([_|T]) :- list(T).

� �

During the tests, in a call to length/2, illustrated by the following code:
�

1 :- entry p(+list(num),+num,-).
2
3 p(X,N,Y) :-
4 length([N|X],Y).

� �

that is a call with the second argument uninstantiated, the following analysis output was

obtained:
�

1 :- entry p(+list(num),+num,-int).
2
3 p(X,N,Y) :-
4 true(var(Y), ground([X,N])),
5 length([N|X],Y),
6 true(unreachable).

� �

that is the abstract interpreter (wrongly) inferred failure or error in the call to length/2

and thus that the point after that would be unreachable. The checkification algorithm

translated this output into:
�

1 :- entry p(+list(num),+num,-int).
2
3 p(X,N,Y) :-
4 check(var(Y), ground([X,N])),
5 length([N|X],Y),
6 check(unreachable).

� �

During run-time testing the check(unreachable) literal was actually reached and

executed, which threw the corresponding error.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.26

This led to detecting that the last declaration in the abstract description for length/2

(i.e., “:- pred length(?,?) + nondet.” in the set of assertions for length/2 above),

had been deleted by mistake while refactoring some analyzer code. That assertion is the

only one that allows calling length/2 with a variable in the second argument (in fact,

in both arguments).

Example 4.2

(Bug #10: Combined abstract domain outputs unknown variables). While experimenting

with the CLIQUE-Sharing+Freeness+Def combined domain an error was detected which

can be illustrated with the following code:
�

1 :- entry p(+num,-).
2
3 p(X,Y) :-
4 Y=X.

� �

for which CiaoPP inferred the following information:

�
1 :- entry p(+num,-).
2
3 p(X,Y) :-
4 true(ground([X,_A])),
5 Y=X,
6 true(ground([X,Y,_B])).

� �

where A and B were superfluous variables that have the first occurrence in the

true(ground(. . .)) literals, and thus cannot be ground. A run-time error was thus pro-

duced by the checkified program in the check(ground([X, A])) call, which made us

realize that the CLIQUE-Sharing+Freeness+Def abstract domain was not implementing

correctly the combination of analyses. In many combined domains, the combina-

tion typically reuses the component analyses. For example, all abstract functions for

CLIQUE-Sharing+Freeness+Def initially compute results for the sharefree clique and

def functions. Then, they compose the information from the different domains, eliminat-

ing redundancies over the information inferred by each analysis Codish et al. (1995). This

is performed by the reduce functions, which essentially compute the reduced product.

The problem detected stemmed from an accidental reversal of the sequence of operations

in the implementation. At first, the abstract function of def was executed. However, the

reduce function was applied before running the abstract function of sharefree clique. The

problem with this is that in some abstract functions a renaming of variables is performed.

This renaming substitution replaces each variable in the term it is applied to with dis-

tinct fresh variables. If the reduce function is applied before the renaming substitution,

it incorrectly treats some variables as distinct when, in fact, they are identical before

renaming.

4.3.2 Fixpoint algorithms (Class II)

Another possible application of the approach is for testing the abstract interpretation

engine (the fixpoint algorithms and all the surrounding infrastructure of the framework)

instead of the domains. This can be done by using domains that are simple or developed

enough to be used as a trusted base. While the classic fixpoint algorithms are quite stable,

new fixpoint algorithms or modifications of existing fixpoint algorithms are sometimes

added to the system. Some recent examples include a new modular and incremental

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 27

fixpoint (Garcia-Contreras et al. 2021) and new program transformations that speed-up

set sharing-based analyses by reducing the number of variables in abstractions (Jurjo

et al. 2024). Clearly, these new contributions may introduce new bugs into the system.

A first abstract domain that is useful for this type of checks is the concrete domain

itself. To this end, we give the analysis a singleton set of initial states as entry point,

that is a concrete value, and the analyzer then behaves as a (tabling) interpreter

for the program, starting from the entry point as initial concrete state. This test

will then detect if the analyzer incorrectly marks reachable parts of the program as

unreachable.

Example 4.3

(Bug #21: Code refactoring). A code refactoring in the implementation of Jurjo et al.

(2024) introduced a bug in the handling of built-ins and cuts. While no issues were

identified in the initial version of the code, the refactored version (where most changes

involved renaming operations and variables) revealed a problem when reapplying the

algorithm.9 Specifically, the analyzer incorrectly inferred that some predicates containing

built-ins and cuts were dead code, although they were indeed reachable in the concrete

domain.

4.3.3 Semantic inconsistencies between components of the framework (Class III)

Even if every part of the system is validated separately, our tool can still help find

inconsistencies among these parts. Most components in our system interact via assertions

and thus the semantics of the assertions and of the properties used in the assertions need

to be consistent across all parts. An interesting case that can occur is when there is a

mismatch between the way properties are understood by the analyzer and the actual

definition of the property that is used in the run-time checks. Checkification helps detect

such inconsistencies.

Example 4.4

(Bug #7: Wrong linear/1 run-time semantics). When the analyzer outputs linear(X),

the semantics is that X is the list of all program variables that analysis can guarantee

to be bound to linear terms at the program point, that is that the terms that each

variable in X is bound to do not contain any repeated variables. The property was inferred

correctly by CiaoPP. In particular, for a substitution such as {X/f(A,B), Y/g(A,C)},
CiaoPP was inferring correctly true(linear([X,Y])). However, after the checkification

conversion to check(linear([X,Y])), a run-time error was being thrown. This allowed

us to notice that in the implementation of the property as a run-time check the wrong

predicate had been used and what was checked instead of linearity was that the terms

in the list did not share any variable, which then failed in this case since they share

variable A.

Example 4.5

(Bug #13: Different representation of parametric types). This problem was found when

analyzing with type domains. Assume that the analyzer has inferred, using, for example

9 The technique has been included as a fuzz testing component of the Ciao system. While the overhead is
relatively acceptable for fuzzing tasks, it can be less suitable for continuous integration, which requires
building tests after each commit.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.28

the eterms domain, that after success of a call to p(X), the argument X is bound to a

list of a’s. This is expressed in the output as:
�

1 ...,
2 p(X)
3 true(list(rt1, Xs)).
4
5 :- regtype rt1/1.
6 rt1(a).

� �

This posed no problems with the run-time checking. However, since this style of output

can sometimes be verbose, for readability the user can optionally switch the output so

that simple cases are expressed using quoting (^/1) as follows:

�
1 ...,
2 p(X)
3 true(list(^(a), Xs)).

� �

At some point the output had been switched to this format by default and then

we discovered that when executing the check(list(^(a), Xs)) the run-time check

instrumentation did not implement this abridged syntax correctly. This was another

inconsistency between a possible representation(s) of the abstraction and what was

understood by the run-time checks.

4.3.4 Inconsistencies between properties and their specialized run-time checks
(Class IV)

This is a special case of the previous class, related to the fact that it is possible to write

an alternative version of a property to be used specifically in run-time checks, while also

keeping the general definition which may perhaps be easier to read or to be understood

by the static analyzer.

Example 4.6

(Bug #9 and #18: Undefined run-time behavior). In a few instances test case fail-

ures stemmed from the specialized run-time behavior of some properties simply being

declared but undefined. For example, testing flagged that the implementations for run-

time checking of the comparatively less-used clique/1 and instance/2 properties were

missing.

Example 4.7

(Bug #8: Incompatibility between run-time behaviors). The approach also detected more

subtle issues that only arise when several properties appear together. While addressing

the issue of the previous example, another problem was detected when the clique/1

and mshare/2 properties appeared in the same assertion. Set sharing domains approxi-

mate all possible variable sharing (aliasing) that occurs at a given program point. The

property typically used to denote such sharing among variables is mshare/1, where the

argument contains a set of sets of variables. For instance, let V = {X, Y, Z, W} be the

set of variables of interest, normally the variables of the clause. Consider the abstraction

λ= {{X}, {X,Y}, {X,Y,Z}, {X,Z}, {Y}, {Y,Z}, {Z}, {W}}. Here a set {X,Y} repre-

sents that, in the terms that X and Y are bound to at run time, there may be variables

that appear in both X and Y; {W} that there may be a variable that appears only in

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 29

W; etc. This λ will be expressed in the analyzer output as: true(mshare([[X], [X,Y],

[X,Y,Z], [X,Z], [Y], [Y,Z], [Z], [W]])). We can see that for variables {X, Y, Z}
no information (i.e., top) has been inferred. Indeed for this set of variables any aliasing

may be possible since there may be run-time variables shared by any pair of the three

program variables, by the three of them, or not shared at all. The idea of the clique

property is to use a more compact representation for abstractions that contain a pow-

erset, including as a widening when abstractions are too large. This has been shown

to pay off in practice (Navas et al. 2006). In our example, the clique that will convey

the same information with respect to {X, Y, Z} as the sharing set S = ℘({X, Y, Z}) is

simply clique([X,Y,Z]). The elements of S are then eliminated from the full sharing

set λ, since the clique makes them redundant. However, when checkifying the output, it

was detected that the specialized mshare/1 run-time checking implementation was still

considering all the variables in the clause ({X, Y, Z, W} in our case). Therefore, X, Y,

and Z, were incorrectly being tested for groundness since they are in no sharing set, and

thus are interpreted as being ground. Clearly, this is not what the analysis inferred. The

mshare/1 run-time test was modified to stop considering such variables.

Example 4.8

(Bug #3: mshare/1 sensitivity to variable ordering). This case involved a subtle bug in

the specialized run-time check for the sharing abstract domain. As mentioned before,

mshare([X,Y]) means that X may share variables with Y at run time. Sharing is a

symmetric property which does not depend on variable ordering, that is mshare([X,Y])

has the same meaning as mshare([Y,X]). Some cases were detected in which a run-time

checking error was flagged even though the mshare/1 property inferred was correct. The

problem was found in an update of the specialized run-time definition of mshare/1, which

introduced an optimization which made the result sensitive to the ordering of variables.

Example 4.9

(Bug #16: Incorrect definition of constraint/1). The constraint/1 property is used

by some numerical (e.g., polyhedra-related) domains. Its argument is a list of linear

(in)equalities that relate variables and integer values. However, the specialized run-time

check of this property was incorrect: it checked that the constraints were valid but also

whether the arguments were variables; instead it should have been checking that they

were numerical values.

4.3.5 Integration testing of the analyzer with libraries and third-party tools (Class V)

We have also used the approach to conduct integration tests of the Regular Types Library

(an independent Ciao bundle) and check its correct use within the system. This library

implements fundamental operations and procedures for regular types, such as type inclu-

sion, equivalence, union, intersection, widening, simplification, etc., as well as storing and

manipulating regular types. These operations are used in CiaoPP domains, analyses, and

program transformations.

Example 4.10

(Bug #14: Regular types library type equivalence/simplification bug). The eterms

domain includes the inferred regular types in the analysis output. In this process, eterms

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.30

performs type equivalence and simplification operations in order to present the results

to users in the most readable form possible. The following (simplified) fragment is from

one of the test programs:

�
1 :- prop repeat_elem_list/1 + regtype.
2
3 repeat_elem_list([]).
4 repeat_elem_list([X,X|Xs]) :-
5 num(X),
6 repeat_elem_list(Xs).
7
8 :- pred diff_elem_list(X) : list(num,X) .
9

10 diff_elem_list([]).
11 diff_elem_list([X,Y|Xs]) :-
12 X =\= Y,
13 diff_elem_list(Xs).

� �

Here repeat elem list/1 is (incorrectly!) declared as a regular type. Checkification

detected that, in the analysis output, eterms erroneously inferred that diff elem list/1

produces a repeat elem list/1 upon success:

�
1 ...
2 diff_elem_list([]).
3 diff_elem_list([X,Y|Xs]) :-
4 check(num(X), num(Y), list(num,Xs)),
5 X=\=Y,
6 check(num(X), num(Y), list(num,Xs)),
7 diff_elem_list(Xs),
8 check(num(X), num(Y), repeat_elem_list(Xs)).

� �

This inference is obviously incorrect. This allowed us to notice that after some changes

the Regular Types Library was failing to check if properties declared to be regular types

were actually regular types, which consequently affected the inference of types.

In addition to detecting problems due to the integration with libraries, the checkifica-

tion approach also detected incorrectness due to the integration with different external

or third party solvers which can be used by the analyzer. For example, the polyhedra

domain uses the Parma Polyhedra Library (PPL) as back-end solver for the handling

of numeric approximations. Using this domain we can detect errors stemming from the

Ciao-PPL integration.

Example 4.11

(Bug #15: Parma Polyhedra Library). We found that polyhedra did not properly handle

some non-numerical parts of programs. A term like X = Y is translated into the constraint

1× X− 1× Y= 0 when analyzing with the abstract domain. If X and Y are numerical

variables, they satisfy the equality dynamically. However, we discovered that the analysis

did not take into account the types of X and Y, that is regardless of whether X and Y

were numerical or non-numerical, the analysis treated them as numerical values, not

considering their actual types.

4.3.6 Debugging trust assertions and custom transfer functions

Finally, the approach has also been useful in finding errors in other aspects of the frame-

work. As an example, a feature of CiaoPP is that its analyses can be guided by the user by

providing the analyzer with information that can be assumed to be true at points where

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 31

otherwise the analysis would lose precision. We have already mentioned one of these

mechanisms, entry assertions, which allow providing information on the entry points to

the module being analyzed (i.e., on the calls to the predicates exported by the mod-

ule). Entry assertions are a special case of trust assertions. In addition to guiding the

analyzer, trust assertions are used to define custom abstract transfer functions, similar

to those that need to be implemented for abstracting each built-in within each domain.

trust assertions allow the user to do this for any predicate. Checkification can be used to

detect errors in these assertions.

Example 4.12

(Defining language semantics). Let us consider this (again, distilled) part of the specifi-

cation of the exponentiation predicate, where we use the trust assertion in line 1 to state

that an integer to the power of an integer yields an integer:
�

1 :- trust pred exp_op(+int,+int,-int).
2
3 exp_op(X,Y,Z) :- Z is ‘**’(X,Y).
4
5 exp_list([],_Y,[]).
6 exp_list([X|Xs],Y,[Z|Zs]) :- exp_op(X,Y,Z), exp_list(Xs,Y,Zs).

� �

However, in the ISO-Prolog standard, the outcome of this operation is always a floating-

point number. When analyzing this code, CiaoPP trusts the assertion previously defined

and infers that the result of the operation in the exp list/3 predicate is an integer. In

the checkified version:
�

1 ...
2 exp_list([],_Y,[]).
3 exp_list([X|Xs],Y,[Z|Zs]) :-
4 exp_op(X,Y,Z),
5 check(int(X), int(Y), int(Z)),
6 exp_list(Xs,Y,Zs).

� �

when we execute a test case with two integers an error is flagged due to this discrepancy,

since the implementation correctly produces a float. This is a practical application of the

proposed algorithm since even a completely sound analyzer can produce unsound results

if it assumes some assertion to be true when it is not, and thus there will always be the

need to test such properties.

In addition to being able to detect errors in trust assertions, the approach can also

be used to find errors in the mechanisms used internally by the analyzer to apply trust

assertions, if we assume instead the information provided in the trust assertion to be

correct.

5 Other related work

In this section we mention other related work in addition to the references interspersed

throughout the previous sections. The fact that the reliability of program analyzers has

become crucial as they have become increasingly practical and widely adopted in recent

years, is now widely recognized (Cadar and Donaldson, 2016). This has led to significant

research interest recently.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.32

On the formal verification side, there have been some pen-and-paper proofs, such

as that of the Astrée analyzer (Cousot et al. 2005), some automatic and interactive

proofs, such as Dubois (2000); Shao et al. (2002). As mentioned in the introduction, a

recent relevant effort has been aimed at verifying the partial correctness of the CiaoPP

analysis algorithm (also referred to as the “top-down solver”), using the Isabelle prover

(Paulson, 1990; Stade et al. 2024), but mechanical verification of the actual implemen-

tations remains a challenge. An approximation to this problem is Blazy et al. (2013)

and Jourdan et al. (2015) who have developed and proved the soundness of a static ana-

lyzer, extracting several abstract domains and a fixed-point verifier directly from Coq

formalizations.

In the context of testing static analyzers significant work has been done. Midtgaard and

Møller (2017) and Bugariu et al. (2018) use mathematical properties of abstract domains

as test oracles. Specifically, Bugariu et al. (2018) employ such properties to validate

the soundness and precision of numerical abstract domains, while Midtgaard and Møller

(2017) apply that approach to checking type analysis using QuickCheck (Claessen and

Hughes 2000).

The closest works to ours are those that cross-check dynamically observed and stati-

cally inferred properties (Cuoq et al. 2012; Wu et al. 2013; Andreasen et al. 2017; Zhang

et al. 2019). In Wu et al. (2013) the actual pointer aliasing in concrete executions is cross-

checked with the pointer aliasing inferred by an aliasing analyzer. They are also able to

deal with multi-variance and path-sensitivity. Compared to us, they require significant

tailored instrumentation which cannot be reused for testing other analyses. However,

their approach is agnostic to the (C) aliasing analyzer. Another cross-check is done in

Zhang et al . (2019) for C model checkers and the reachability property, but they obtain

the assertions dynamically, and check them statically, complementarily to our approach.

Unlike us, they again need tailored instrumentation that cannot be reused to test other

analyses, and their benchmarks must be deterministic and with no input, the latter lim-

iting the power of the approach as a testing tool. However, their approach is agnostic

to the (C) model checker. In Cuoq et al. (2012) a wide range of static analysis tests

are performed over randomly generated programs as input. Among others, they check

dynamically, at the end of the program, one assertion inferred statically, and they per-

form the sanity check to ensure that the analyzer behaves as an interpreter when run

from a singleton set of initial states. Our approach differs from these previous works by

identifying issues throughout the entire static analyzer framework, rather than focus-

ing on specific components. In this setting, Klinger et al. (2019) propose an automatic

technique to evaluate soundness of program analyzers based on differential testing. From

seed programs, they generate program analysis benchmarks and compare the overall

frameworks of software model checkers. Differential analysis presents a significant chal-

lenge, requiring multiple analyzers with identical input/output behavior to be applied.

A potential problem arises if one or more analyzers behave differently, making it diffi-

cult to determine which is correct. He et al. (2024) apply two oracles to compare static

analyzers. The first oracle is constructed using dynamic program executions. A random

program generated by Csmith Lidbury et al. (2015), a generation-based C fuzzer, serves

as test input, and its dynamic execution result (e.g., a run-time error on some program

path) is used as a test oracle to validate the static analyzer. The second oracle is a static

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 33

oracle based on metamorphic relations. The approach involves selecting a conditional

expression of some statement in the program as a target and generating an equivalent

boolean expression. The static analyzer should produce identical truth values for these

equivalent expressions, any discrepancy indicates a potential defect in the analyzer.

There is work on testing program analyzers in other domains. For instance, Brummayer

and Biere (2009) introduce a grammar-based fuzzer to identify crashes in SMT solvers,

using delta debugging to minimize generated instances. Additionally, Kapus and Cadar

(2017) combine random program generation with differential testing to evaluate sym-

bolic execution engines. Daniel et al. (2007) implement Java programs as test oracles for

abstract syntax trees for testing refactoring engines. There is also considerable work in

testing compilers. Le et al. (2014); Le et al. (2015); Sun et al. (2016) apply Equivalence

Modulo Inputs testing, which involves mutating unexecuted statements of an existing

program under certain inputs to produce new equivalent test programs. Regehr et al .

(2012) propose a test-case reduction technique to construct minimal inputs that trigger

compiler bugs. Finally, Building on Csmith Yang et al. (2011), Lidbury et al. (2015)

introduce CLsmith, which designs six modes to generate test programs.

We argue that, in comparison with these related proposals, our approach provides a

solution that is simpler, elegant, more general, and easier to implement, specially when

the different system components are integrated as in the Ciao assertion model.

6 Conclusions

We have proposed and studied checkification, an automatic method for testing static

analysis tools by checking that the properties inferred statically are satisfied dynamically.

A fundamental strength of our approach lies in its simplicity, which stems from framing

it within the Ciao assertion model and using its assertion language. We have shown

how checkification can be implemented with comparatively little effort by combining

the static analyzer, the run-time checking framework, the random test case generator,

and the unit-test framework, together with a reduced amount of glue code. This code

implements the proposed algorithm, and pilots the combination and interplay of the

intervening components to effectively implement the overall approach.

Following this approach, we have constructed a quite complete implementation of

the checkification method and applied it to testing a large number of the abstract

interpretation-based analyses in CiaoPP, representing different levels of code maturity, as

well as to the framework itself, the interaction with libraries, the interaction with third-

party code, etc. In the study we analyzed both standard benchmarks and real-world tools.

We applied our technique not only to state properties such as variable sharing/aliasing,

modes, linearity, numerical properties, types, and term structure, but also to computa-

tional properties such as determinacy and (non)failure. As we discussed, the technique

should also be applicable to other, more complex, computational properties such as cost

and even termination, although they obviously bring in specific challenges and theoretical

limits for run-time checking.

The experimental results show that our tool can effectively discover and locate inter-

esting, non-trivial and previously undetected bugs, with reasonable overhead, not only

in the less-developed parts of the system but also in corner cases of the more mature

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.34

components, such as the handling of built-ins, run-time checking instrumentation, etc.

The approach has also proven useful for detecting issues in auxiliary stages of analy-

sis and verification, including assertion simplification, pretty printing, abstract program

optimizations and transformations, etc. We have also observed that it is generally not too

hard to locate the source of the errors from the information produced by the tests, and

as a result the vast majority of the detected issues were in fact fixed during the experi-

mental study. While testing approaches are obviously ultimately insufficient for proving

the correctness of analyzers, and thus it is clearly worthwhile to also pursue the avenue

of code verification, we believe that our results show that the checkification approach can

be a practical and effective technique for detecting errors in large and complex analysis

tools.

Acknowledgements

Partially funded by MICINN projects PID2019-108528RB-C21 ProCode, TED2021-

132464B-I00 PRODIGY , and FJC2021-047102-I, and by the Tezos foundation. We would

also like to thank the anonymous reviewers for their very useful feedback. This paper is

an extended version of our previous work published in LOPSTR’20.

References

Andreasen, E. S., Møller, A. and Nielsen, B. B. 2017. Systematic approaches for increas-
ing soundness and precision of static analyzers. In Proceedings of the 6th ACM SIGPLAN
International Workshop on State Of the Art in Program Analysis, 2017, SOAP, 2017.
Association for Computing Machinery, New York, NY, USA, 31–36.

Arias, J., Carro, M., Salazar, E., Marple, K. and Gupta, G. 2018. Constraint answer
set programming without grounding. Theory and Practice of Logic Programming 18, 3–4,
337–354.

Bagnara, R., Ricci, E., Zaffanella, E. and Hill, P. M. 2002. Possibly not closed convex
polyhedra and the Parma Polyhedra Library. In Static Analysis: Proceedings of the 9th
International Symposium, 2002. M. V. Hermenegildo and G. Puebla, Eds. volume 2477 of
Lecture Notes in Computer Science, Springer-Verlag, Madrid, Spain, Berlin, 213–229.

Blazy, S., Laporte, V., Maroneze, A. and Pichardie, D. (2013) Formal verification of
a C value analysis based on abstract interpretation. In Static Analysis, F. Logozzo and
M. Fähndrich, Eds. Berlin, Heidelberg, Berlin Heidelberg, Springer, 324–344.

Brummayer, R. and Biere, A. 2009. Fuzzing and delta-debugging SMT solvers.
In Proceedings of the 7th International Workshop on Satisfiability Modulo Theories 2009,
SMT ’09. Association for Computing Machinery, New York, NY, USA, 1–5.

Bueno, F., Lopez-Garcia, P. and Hermenegildo, M. V. 2004. Multivariant non-failure anal-
ysis via standard abstract interpretation. In 7th Int’l. Symposium on Functional and Logic
Programming 2004, volume 2998 of LNCS, Springer-Verlag, 100–116.

Bueno, F., Lopez-Garcia, P., Puebla, G. and Hermenegildo, M. V. (2006).
A Tutorial on Program Development and Optimization using the Ciao Preprocessor. Technical
Report CLIP2/06, Technical University of Madrid (UPM), Facultad de Informática, 28660
Boadilla del Monte, Madrid, Spain.

Bugariu, A., Wüstholz, V., Christakis, M. and Müller, P. 2018. Automatically testing
implementations of numerical abstract domains. In Proceedings of the 33rd ACM/IEEE

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 35

International Conference on Automated Software Engineering 2018, ASE 2018. Association
for Computing Machinery, New York, NY, USA, 768–778.

Cadar, C. and Donaldson, A. 2016. Analysing the program analyser. In International
Conference on Software Engineering, Visions of 2025 and Beyond Track (ICSE V2025),
Association for Computing Machinery. 2016, 765–768.

Casso, I., Morales, J. F., Lopez-Garcia, P. and Hermenegildo, M. V. 2020. An inte-
grated approach to assertion-based random testing in prolog. In Post-Proceedings of the
29th International Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR’19), M. Gabbrielli, Ed. volume 12042 of LNCS, Springer-Verlag, 159–176.

Claessen, K. and Hughes, J. 2000. QuickCheck: A lightweight tool for random testing of
Haskell programs. In Proceedings of the Fifth ACM SIGPLAN International Conference on
Functional Programming 2000, ICFP’00, ACM, New York, NY, USA, 268–279.

Codish, M., Mulkers, A., Bruynooghe, M., Garćıa de la Banda, M. and Hermenegildo,
M. 1993. Improving abstract interpretations by combining domains. In Proc. ACM SIGPLAN
Symposium on Partial Evaluation and Semantics Based Program Manipulation 1993, ACM,
194–206.

Codish, M., Mulkers, A., Bruynooghe, M., Garćıa de la Banda, M. and Hermenegildo,
M. 1995. Improving abstract interpretations by combining domains. ACM Transactions on
Programming Languages and Systems 17, 1, 28–44.

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D. and Rival, X.
2005. The ASTRéE analyzer. In 14th European Symposium on Programming, ESOP 2005,
held as part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2005, Vol. 3444, 21–30, 2005; Springer-Verlag. Conference date: 04-04-2005 Through 08-04-
2005.

Cuoq, P., Monate, B., Pacalet, A., Prevosto, V., Regehr, J., Yakobowski, B. and
Yang, X. 2012. Testing static analyzers with randomly generated programs. In NASA
Formal Methods, A. E. Goodloe and S. Person, Eds. Berlin, Heidelberg, Berlin Heidelberg,
Springer-Verlag, 120–125.

Daniel, B., DIG, D., Garcia, K. And Marinov, D. 2007. Automated testing of refactoring
engines. In Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering
2007, ESEC-FSE ’07, New York, NY, USA, Association for Computing Machinery,
185–194.

Debray, S., Lopez-Garcia, P. and Hermenegildo, M. V. 1997. Non-failure analysis for
logic programs. In 1997 International Conference on Logic Programming 1997, MIT Press,
Cambridge, MA, Cambridge, MA, 48–62.

Dubois, C. 2000. Proving ML type soundness within coq. In Theorem Proving in Higher Order
Logics, M. Aagaard and J. Harrison, Eds. Berlin, Heidelberg, Springer, Berlin Heidelberg,
126–144.

Ferreiro, D., Morales, J., Abreu, S. and Hermenegildo, M. 2023. Demonstrating (Hybrid)
active logic documents and the Ciao Prolog playground, and an application to verifica-
tion tutorials. In Technical Communications of the 39th International Conference on Logic
Programming (ICLP 2023) 2023, volume 385 of Electronic Proceedings in Theoretical
Computer Science (EPTCS), Open Publishing Association (OPA), 324–330, See also asso-
ciated poster at https://cliplab.org/papers/hald-poster-iclp.pdf

Fortz, S., Mesnard, F., Payet, é., Perrouin, G., Vanhoof, W. and Vidal, G. 2020. An
SMT-based concolic testing tool for logic programs. In Functional and Logic Programming
- 15th International Symposium, FLOPS 2020, K. Nakano and K. Sagonas, Eds. volume
12073 of Lecture Notes in Computer Science, Akita, Japan, Springer, 215–219, September
14-16, 2020, Proceedings 2020

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.36

Garćıa de la Banda, M., Hermenegildo, M., Bruynooghe, M., Dumortier, V., Janssens,
G. and Simoens, W. 1996. Global analysis of constraint logic programs. ACM Transactions
on Programming Languages and Systems 18, 5, 564–615.

Garcia-Contreras, I., Morales, J. F. and Hermenegildo, M. V. 2016. Semantic code
browsing. In Theory and practice of logic programming, 32nd Int’l. Conference on Logic
Programming (ICLP’16), Cambridge University Press, Vol. 16, Special Issue, 5-6, 721–737.

Garcia-Contreras, I., Morales, J. F. and Hermenegildo, M. V. 2021. Incremental
and modular context-sensitive analysis. Theory and Practice of Logic Programming 21, 2,
196–243.

Garcia-Contreras, I., Morales, J. and Hermenegildo, M. V. 2019. Multivariant assertion-
based guidance in abstract interpretation. In Post-Proceedings of the 28th International
Symposium on Logic-based Program Synthesis and Transformation (LOPSTR’18) number
11408 in LNCS, Springer-Verlag, 184–201.

Garcia-Contreras, I., Morales, J. and Hermenegildo, M. V. 2020. Incremental analysis of
logic programs with assertions and open predicates. In Proceedings of the 29th International
Symposium on Logic-based Program Synthesis and Transformation (LOPSTR’19) 202, volume
12042 of LNCS, Springer, 36–56,

Guarnieri, M., Köpf, B., Morales, J. F., Reineke, J. and Sánchez, A. 2020. Spectector:
Principled detection of speculative information flows. In 2020 IEEE Symposium on Security
and Privacy (SP) 2020, 1–19.

He, W., Di, P., Ming, M., Zhang, C., Su, T., Li, S. and Sui, Y. 2024. Finding and under-
standing defects in static analyzers by constructing automated oracles. In ACM International
Conference on the Foundations of Software Engineering, 2024.

Hermenegildo, M. V. (2000) A system for automatically generating documentation for (C)LP
programs. In Special Issue on Parallelism and Implementation of (C)LP Systems 2000, vol-
ume 30 of Electronic Notes in Theoretical Computer Science, Association for Computing
Machinery.

Hermenegildo, M. V., Bueno, F., Carro, M., Lopez-Garcia, P., Mera, E., Morales, J.
and Puebla, G. 2012. An overview of ciao and its design philosophy. Theory and Practice of
Logic Programming 12, 1–2, 219–252.

Hermenegildo, M. V., Puebla, G. and Bueno, F. 1999. Using global analysis, partial
specifications, and an extensible assertion language for program validation and debugging,
The Logic Programming Paradigm: A 25–Year Perspective 1999, K. R. Apt, V. Marek,
M. Truszczynski and D. S. Warren, Eds. Springer-Verlag, 161–192.

Hermenegildo, M. V., Puebla, G., Bueno, F. and Lopez-Garcia, P. 2003. Program develop-
ment using abstract interpretation (and The Ciao System Preprocessor). In 10th International
Static Analysis Symposium (SAS’03) 2003, number 2694 in LNCS, Springer-Verlag,
127–152.

Hermenegildo, M. V., Puebla, G., Bueno, F. and Lopez-Garcia, P. 2005. Integrated pro-
gram debugging, verification, and optimization using abstract interpretation (and the Ciao
system preprocessor). Science of Computer Programming 58, 1–2, 115–140.

Hermenegildo, M. V., Puebla, G.,Marriott, K. and Stuckey, P. 2000. Incremental analysis
of constraint logic programs. ACM Transactions on Programming Languages and Systems 22,
2, 187–223.

Hermenegildo, M. V. and CLIP Group, T 1997. An Automatic Documentation Generator
for (C)LP – Reference Manual, The Ciao System Documentation Series–TR CLIP5/97.3,
Facultad de Informática, UPM. Online at https://ciao-lang.org

Jourdan, J.-H., Laporte, V., Blazy, S., Leroy, X. and Pichardie, D. 2015. A formally-
verified C Static analyzer. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

Checkification: A Practical Approach for Testing Static Analysis Truths 37

Symposium on Principles of Programming Languages, 2015, POPL ’15, Association for
Computing Machinery, New York, NY, USA, 247–259.

Jurjo, D., Morales, J. F., Lopez-Garcia, P. and Hermenegildo, M. V. 2024. Abstract
environment trimming. Theory and Practice of Logic Programming,. Special Issue on
ICLP’24

Kapus, T. and Cadar, C. 2017. Automatic testing of symbolic execution engines via program
generation and differential testing. In IEEE/ACM International Conference on Automated
Software Engineering (ASE 2017), IEEE Press. 2017, 590–600.

Klinger, C., Christakis, M. and Wüstholz, V. 2019. Differentially testing soundness and
precision of program analyzers. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019, ISSTA 2019, Association for Computing
Machinery, New York, NY, USA, 239–250.

Koukoutos, E. and Kuncak, V. 2014. Checking data structure properties orders of magnitude
faster. In Runtime Verification, B. Bonakdarpour and S. A. Smolka, Eds. volume 8734 of
Lecture Notes in Computer Science, Springer International Publishing, 263–268.

Le, V., Afshari, M. and Su, Z. 2014. Compiler validation via equivalence modulo inputs. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation 2014, PLDI ’14, Association for Computing Machinery, New York, NY, USA,
216–226.

Le, V., Sun, C. and Su, Z. 2015. Finding deep compiler bugs via guided stochastic programmuta-
tion. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications 2015, OOPSLA 2015, Association for
Computing Machinery, New York, NY, USA, 386–399.

Lidbury, C., Lascu, A., Chong, N. and Donaldson, A. F. 2015. Many-core compiler fuzzing.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation 2015, PLDI ’15,, Association for Computing Machinery, New York, NY,
USA, 65–76.

Lopez-Garcia, P., Bueno, F. and Hermenegildo, M. V. 2005. Determinacy analysis for
logic programs using mode and type information. In Proceedings of the 14th International
Symposium on Logic-based Program Synthesis and Transformation (LOPSTR’04) 2005,
number 3573 in LNCS, Springer-Verlag, 19–35,

Lopez-Garcia, P., Bueno, F. and Hermenegildo, M. V. 2010. Automatic inference of
Determinacy and mutual exclusion for logic programs using mode and type analyses. New
Generation Computing 28, 2, 117–206.

Mera, E., Lopez-Garcia, P. and Hermenegildo, M. V. 2009. Integrating software testing and
run-time checking in an assertion verification framework. In 25th Int’l. Conference on Logic
Programming (ICLP’09) 2009, volume 5649 of LNCS, Springer-Verlag, 281–295,

Midtgaard, J. and MØller, A. 2017. QuickChecking static analysis properties. Software
Testing, Verification and Reliability 27, 6, 6.

Muthukumar, K. and Hermenegildo, M. (1989). Determination of variable dependence
information at compile-time through abstract interpretation. Technical Report ACA-
ST-232-89.Austin, TX 78759, Microelectronics and Computer Technology Corporation
(MCC),

Muthukumar, K. and Hermenegildo, M. (1990). Deriving a fixpoint computation algo-
rithm for top-down abstract interpretation of logic programs. Technical Report ACT-
DC-153-90.Austin, TX 78759, Microelectronics and Computer Technology Corporation
(MCC),

Muthukumar, K. and Hermenegildo, M. 1991. Combined determination of sharing and free-
ness of program variables through abstract interpretation. In International Conference on
Logic Programming (ICLP 1991) 1991, MIT Press, 49–63.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

D. Ferreiro et al.38

Muthukumar, K. and Hermenegildo, M. 1992. Compile-time derivation of variable depen-
dency using abstract interpretation. Journal of Logic Programming 13, 2-3, 315–347.

Navas, J., Bueno, F. and Hermenegildo, M. V. 2006. Efficient top-down set-sharing analysis
using cliques. In 8th International Symposium on Practical Aspects of Declarative Languages
(PADL’06) 2006, number 2819 in LNCS, Springer-Verlag, 183–198,

Paulson, L. (1990) Isabelle: The next 700 theorem provers. In P. Odifreddi, Ed. Logic and
Computer Science, Academic Press, 361–386.

Puebla, G., Bueno, F. and Hermenegildo, M. V. 2000. An assertion language for con-
straint logic programs. In Analysis and Visualization Tools for Constraint Programming 2000,
P. Deransart, M. V. Hermenegildo and J. Maluszynski, Eds. Springer-Verlag, 23–61.

Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C. and Yang, X. 2012. Test-case reduction
for C compiler bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation 2012, PLDI ’12, Association for Computing Machinery,
New York, NY, USA, 335–346.

Sato, T. and Tamaki, H. 1984. Enumeration of success patterns in logic programs. Theoretical
Computer Science 34, 1-2, 227–240.

Shao, Z., Saha, B., Trifonov, V. and Papaspyrou, N. 2002. A type system for certified
binaries. ACM SIGPLAN Notices 37, 1, 217–232.

Søndergaard, H. 1986. An application of abstract interpretation of logic programs: occur
check reduction. In European Symposium on Programming, LNCS 123 1986, Springer,
327–338.

Stade, Y., Tilscher, S. and Seidl, H. 2024. Partial correctness of the top-down solver.
Archive of Formal Proofs, Formal proof development, https://isa-afp.org/entries/

Top_Down_Solver.html

Stulova, N., Morales, J. F. and Hermenegildo, M. V. 2015. Practical run-time check-
ing via unobtrusive property caching. In Theory and Practice of Logic Programming, 31st
Int’l. Conference on Logic Programming (ICLP’15), Vol. 15, 726–741, Special Issue 04-05,
https://arxiv.org/abs/1507.05986

Stulova, N., Morales, J. F. and Hermenegildo, M. V. 2016. Reducing the overhead of
assertion run-time checks via static analysis. In 18th Int’l. ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming (PPDP’16) 2016, ACM Press, 90–103.

Sun, C., Le, V. and Su, Z. 2016. Finding compiler bugs via live code mutation. In Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications 2016, OOPSLA 2016, Association for Computing
Machinery, New York, NY, USA, 849–863.

Vaucheret, C. and Bueno, F. 2002. More precise yet efficient type inference for logic programs.
In 9th International Static Analysis Symposium (SAS’02) 2002 volume 2477 of Lecture Notes
in Computer Science, Springer-Verlag, 102–116,

Warren, D. and Pereira, F. C. N. 1982. An efficient, easily adaptable system for interpreting
natural language queries. American Journal of Computational Linguistics 8, 3-4, 110–122.

Wu, J., Hu, G., Tang, Y. and Yang, J. 2013. Effective dynamic detection of alias analysis
errors. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering
2013, ESEC/FSE 2013, Association for Computing Machinery, New York, NY, USA, 279–289.

Yang, X., Chen, Y., Eide, E. and Regehr, J. 2011. Finding and understanding bugs in C
compilers. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation 2011, PLDI ’11, Association for Computing Machinery, New York,
NY, USA, 283–294.

Zhang, C., Su, T.,Yan, Y., Zhang, F., Pu, G. and Su, Z. 2019. Finding and understanding bugs
in software model checkers. In Proceedings of the 13th Joint Meeting of the 18th European
Software Engineering Conference and the 27th Symposium on the Foundations of Software
Engineering 2019, Association for Computing Machinery, 763–773.

https://doi.org/10.1017/S1471068425100069 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100069

	Introduction
	Basic components
	Assertion Language
	Static Program Analysis
	Run-Time Checking
	Unit Tests, Test Case Generation, and Assertion-based Testing

	The checkification algorithm
	Basic reasoning behind the approach
	Operation of the algorithm
	Some considerations on properties
	Multivariance and path-sensitivity

	Evaluation
	Evaluation setup
	The experiments
	Analyzer configuration
	Properties and domains
	Programs analyzed

	Results
	Cost of the technique
	Errors found

	Further discussion of the bugs detected
	Abstract domain implementation (Class I)
	Fixpoint algorithms (Class II)
	Semantic inconsistencies between components of the framework (Class III)
	Inconsistencies between properties and their specialized run-time checks (Class"00A0`IV)
	Integration testing of the analyzer with libraries and third-party tools (Class V)
	Debugging trust assertions and custom transfer functions

	Other related work
	Conclusions
	References

