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Abstract. The Chandler wobble, one of the main feature of the Earth's 
polar motion, is related to the properties of the mantle and liquid core as 
well as the mobility of the oceans. The equilibrium pole tide and man­
tle anelasticity both lengthen the Chandler period, moreover, the former 
imposes a slight ellipticity on the pole path, and the latter is responsible 
for the wobble energy dissipation. On the basis of the perturbation prin­
ciples, we derive the theoretical Qw of the Chandler wobble, assuming 
that the wobble energy is totally dissipated within the mantle. The the­
oretical ellipticity and orientation of the semimajor axis of the Chandler 
wobble path for an anelastic Earth are given. Compared with the results 
for the elastic Earth, the effect of mantle anelasticity does not change 
the wobble ellipticity significantly, but slightly changes the orientation of 
the semimajor axis in the opposite direction. This paper has also proved 
that the effect of the Earth's 3-axis feature on the wobble ellipticity is 
only about 19% of that of the equilibrium pole tide. Analysis of the polar 
motion data obtained by using modern geodetic techniques shows that 
the observed ellipticity and orientation of the semimajor axis agree with 
the theoretical results. We can deduce that the pole tide in the globe 
should be close to equilibrium. 

1. Introduction 

The main feature of changes in the position of the rotation axis relative to the 
body of the Earth is the Chandler wobble. The period Tw and quality factor Qw 

of the Chandler wobble are two of the fundamental parameters which describe 
the free polar motion, especially Qw. It not only represents the dissipative ra­
tio of the wobble energy, but also provides an important basis for studying the 
physical condition of the Earth's interior and establishing a united formula of Q 
values on different time scales. The combined effect of the elasticity and anelas­
ticity of the mantle, and the fluidity of the core and oceans leads to the observed 
Chandler wobble period of 435 sidereal days. Mantle anelasticity may play a 
major role in dissipating the wobble energy. The pole tide is the oceanic response 
to the change in centrifugal force accompanying the wobble. The equilibrium 
pole tide forces the pole path to be slightly elliptical. 

The Chandler wobble period is well-known from astrometric observations 
within an accuracy of 2 to 3 days. The observed Qw is probably between 35 
and 400, with the preferred values of about 50-100 (Jeffreys 1968, Wilson & 
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Haubrich 1976, Ooe 1978, Kuehne et al. 1996, Furuya k Chao 1996). Smith 
& Dahlen (1981) calculate the theoretical Chandler period by modelling the 
Earth as a fluid core, an elastic mantle and equilibrium pole tide, and find 
an 8.5-day discrepancy with the observed period which, they argue, should be 
attributed primarily to mantle anelasticity. Carton & Wahr (1986) construct 
both analytical and numerical models for the pole tide. The results indicate 
that the departure of the global pole tide from equilibrium is too small to affect 
the Chandler period and damping noticeably. It is well-known, however, that 
the pole tide in the North Sea is anomalously large. 

In this paper, we use a specific anelastic model to numerically estimate the 
effects of mantle anelasticity on the theoretical period, Qw and ellipticity of the 
Chandler wobble based on the perturbation theory. Using the polar motion data 
determined by modern geodetic techniques, the ellipticity and orientation of the 
semimajor axis on the wobble path are computed and compared with theoretical 
values. The results show that the theoretical Chandler period and Qw are in 
good agreement with most astrometric observations. Mantle anelasticity is likely 
to be the most important dissipative source of wobble energy. We find that the 
effect of anelasticity on the ellipticity of the wobble path is negligible. 

2. Effects of anelasticity on the Chandler period and damping 

2.1. Direct perturbation 

The effects of mantle anelasticity on the Chandler eigenfrequency UJQ can be 
described by the complex perturbations in the elastic moduli, in which the real 
parts change the Chandler period and the imaginary parts induce dissipation of 
the deformation energy. We assume that there is no bulk dissipation and the 
perturbation Sfj, in the shear modulus /io is only dependent on radius. Using a 
scalar function M of radius, the first order perturbation SLJ to the eigenfrequency 
of the elastic Earth is given by (Smith & Dahlen, 1981) 

^=mw ,̂ (i) 
w0 Jo V/W 

where a is the mean radius of the Earth. Smith & Dahlen (1981) have proven 
that the Chandler period To of an elastic Earth with an equilibrium pole tide is 
about 426.7 days. Using (1) and Sfi obtained by substituting the stratified model 
PREM (Dziewonsky & Anderson 1981) into Zschau's rheological model (Zschau 
& Wang 1985), We find the effects of anelasticity on the Chandler period and 
damping. Our results are ST = 9.0 days and Qw = 77 respectively. 

2.2. Indirect perturbation 

The response of the anelastic Earth to the equilibrium pole tide will also affect 
the Chandler period and damping due to the perturbations in the associated 
loading Love numbers of the elastic Earth. We write the variation in centrifugal 
potential associated with the wobble as 

U = J— n2a2(m1y2
!i + m2Y2\) = U{Y& + U2Y2\, (2) 
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where ft is the Earth's mean angular velocity, mi and m2 are the equatorial com­
ponents of the position of the rotation axis, Y2

ci and Y2\ are the real harmonics 
of degree 2, order 1. The equilibrium pole tide has the form 

H = ^(UXY2\ + U2Y2\) + J2 ^—^l'n[Bn0Yn0 + 
9 „=o Ln "r i P 

E (HC Yc + Hs Ys )] + c>e \11nmJ-nm ~ 11nmlnm)\ T " ' ] ' ) 
m=l ' 

(3) 

where p and pw are the mean density of the Earth and ocean, 72 = 1 + k2 — h2 

and j ' n = l + k'n-h'n are the combinations of the Love numbers and loading Love 
numbers, respectively, c is an arbitrary constant, and £ is the ocean function. If 
cross-coupling of different degree n and order m in the tidal height expansion is 
ignored, from (3) we have 

g u2 

where the coefficient matrix W is 

W = 72[I - a^X]-1 • X 

(4) 

(5) 

in which a = 3pw/5p, I is the unit matrix, X is the matrix related to the ocean 
function. Using the ocean function coefficients (Balmino et al. 1973) gives 

XX1 = 0.76888, Xu = X21 = -0.01524, X22 = 0.60819. (6) 

Let P = Q(1 + fc2)W. For an elastic Earth with a fluid core, the effect of the 
equilibrium pole tide on the polar motion can be calculated from the Liouville 
equations 

mi + (we -

m2 - (we -

ftV „ ^ ftV „ n 

P22n)m2 - 0 ^ A P21Slm1 = 0, ZGAm 

ftV 
ZGAr, 

•Putymi + 

ZGAm 

n2«5 

3GAm 
Pi2ftra2 - 0, (7) 

where we = ft/396.9 is the eigenfrequency of an elastic and oceanless Earth, G 
is the gravitational constant, and Am is the equatorial moment of inertia of the 
mantle. The corresponding eigenfrequency of (7) is u>o = we + Aw, in which the 
effect of the equilibrium pole tide on the Chandler eigenfrequency of the elastic 
Earth is approximately 

1 „ ft2A5
 n 

(8) 

where t rP is the trace of the matrix P. The perturbation AT in the Chandler 
period corresponding to Aw is 29.8 days (Smith & Dahlen, 1981). 
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Let 8j2 and 6j2 be the perturbations in 72 and f'2 due t o anelasticity. 
Using models PREM and Zschau, we have 6~/2 = -0.0089 + t0.0026 and SY2 = 
—0.0163 — zO.0047. Noting that k2 = k2 — h2, the perturbation in P due to 8f2 

and 6Y2 is 

6P = 2 ^ P + [072XI + \(trP)P]6j'2, (9) 

where L — —a72|X|/|D| in which |X| and \D\ are the determinants of the matri­
ces X and (I — Q72X) respectively. Then the perturbation in the eigenfrequency 
can be approximately written as 

tf(Aw) = - I * r ( * P ) ^ £ n . (10) 

The indirect effect of anelasticity on the Chandler period and Qw are 
S(AT) = —0.9 day and SQW = 913 . We have also performed a simple esti­
mate in which the cross-coupling effect of different n and m is included. The 
result indicates that it is too small to affect our calculation. 

Carton & Wahr (1986) show that the effects of the non-equilibrium portion 
of the pole tide on the Chandler Tw and Qw are 0.04-0.38 day and 1300-11000 
respectively. We can conclude that the effects of the non-equilibrium pole tide on 
the Chandler wobble are much smaller than those of the anelastic perturbation 
of the equilibrium pole tide, and mantle anelasticity is likely to be the most 
important dissipative source of the wobble energy. 

The final estimate of the theoretical Chandler period, if we note that the 
indirect effect is to shorten the period, is Tw = 434.8 sidereal days. The quality 
factor corresponds to Qw = 71 because both anelastic effects induce the wobble 
energy dissipation. Comparing with the observed Tw and Qw in Table 1, we see 
that the theoretical Tw and Qw agree well with most astrometric observations. 

Table 1. Comparison between observed and theoretical Tw and Q 

Author 
Jeffeys (1968) 
Wilson k Haubrich (1976) 
Ooe (1978) 
Kuehne et al. (1996) 
Furuya & Chao (1996) 
Theoretical values of this paper 

Period(days) 
433.2±3.4 
434.0±2.5 
434.8±2.0 
439.5±1.2 
433.7±1.8 

434.8 

Qw (range) 
61(37,193) 
100(50,400) 
96(50,300) 

49(35,100) 
71 

3. Theoretical ellipticity of the Chandler wobble 

According to the gravity model GEM-T3 (Lerch et al. 1994), the normalized 
geopotential coefficients of degree 2 are 
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C(20) = -0.48416510 x 10- 3 , C(22) = 0.24390658 x lO"5 

5(22) = -0.14000946 x 10~5, C(21) = 5(21) = 0. (11) 

Let the dynamic ellipticity of the Earth be H' = 0.0032739935. Using 
these six values gives the six values of the second-degree inertia tensor. We now 
rotate the reference frame relative to the Z axis, so that the directions of the 
axes coincide with those of the Earth's principal moments of inertia. Then the 
principal moments of inertia are 

A' = 0.32959368Mea
2, B' = 0.32959002Mea

2, C = 0.33067447Mea
2, (12) 

where Me is the mass of the Earth. The Chandler wobble ellipticity for a rigid 
Earth with the 3-axis dynamic ellipsoid is 

B'(C — B') 
e ° = l - i ^ c ~ ^ - °-0017- (l3> 

The world's oceans are asymmetrically distributed upon the Earth's surface 
so the pole tide makes the Chandler wobble path an ellipse with a small flatten­
ing. For an elastic Earth, the theoretical ellipticity e can be easily determined 
(Munk & MacDonald 1960): 

e=\$-(Z1-Z2). (14) 

The semimajor axis is directed to east longitude A. That is 

o D 
t a n 2 A = - —, (15) 

6\ — ZJ2 

where 

^ = ^ - P n = L 8 8 4 5 x 1 0~4 ' 

Z2 = ^ T T I - ^ 2 2 = 1-4395 x 10~4, and (16) 
o(jAm 

ft2o5 „ fi2o5 , 
^ = 3 ^ P i 2 = 3 ^ P 2 i = - 4 - 2 0 6 0 x 1 0 

Substituting (16) into equations (14) and (15) yields 

e = 0.0088, A = -5?4. (17) 

Comparing (17) with (13), we can find that the effect of the Earth's 3-axis 
feature on the wobble ellipticity is about 19 per cent of that of the equilibrium 
pole tide. 

The effects of mantle anelasticity on the Chander wobble ellipticity can be 
modelled by introducing the quality factor Qw. Then the complex components 
rh\ and rri2 of the wobble are approximately 
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rhi = mi + Qw
1m2 fh2 = -Q^m-i + m2 (18) 

Putting (18) into (7), the Liouville equations become 

n^i + k - (Z2 - RQ-1)^ -[R+^- Z2)Q-1]nm1 = 0, 

m2 - [we - (Z1 - RQ~l)Q]rhx + [R - ^ - Z1)Q-1]ftm2 = 0. (19) 

The theoretical pole path ellipticity e and semimajor axis orientation A of 
the anelastic Earth can be approximated as 

Z = \§-e[(Zi-Z2)-2RQ-1}, 

tan2A = - ^ - + Q- 1 . (20) 
6\ — L2 

Using the theoretical Qw — 71, we have 

e = 0.0089, A = -5?0. (21) 

The effects of anelasticity increase the Chandler wobble ellipticity by about 
2.4 X 10- 5 and change the orientation of semimajor axis by 0?4 in the opposite 
direction. Both of them are too small to be detected by astrometric observations. 

4. Detection of ellipticity 

To detect the theoretical ellipticity and orientation of semimajor axis, we ana­
lyze the SPACE92 polar motion series for the period 1976-1992 (Gross 1993). 
The parameters of the Chandler wobble, annual and secular polar motion are 
estimated respectively based on the deconvolution method in Fourier analysis 
(Gao 1994). Then, the parameters of the Chandler wobble are reduced to the 
same epoch. After taking the average, the components of the Chandler wobble 
can be derived 

x = 0"11858 cos(ojwt - 12?52) y = 0?11761 sin(uwt - 12?56). (22) 

From (22) the observed wobble ellipticity and orientation of the semimajor 
axis are 

e = 0.0083, A = - 1 2 ? 5 . (23) 

The observed ellipticity and orientation of semimajor axis agree with the theo­
retical values. We can deduce that the pole tide in the globe should be close to 
equilibrium. 
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5. Discussion and conclusions 

We have estimated the effects of mantle anelasticity on the Chandler wobble 
period, damping, ellipticity and orientation of the semimajor axis based on per­
turbation principles. We find that the Chandler period of the elastic Earth is 
lengthened 9.0 days due to anelasticity. The additional response of the anelastic 
Earth to the equilibrium pole tide makes the Chandler period decrease by 0.9 
days and the quality factor Qw decrease by about 8 per cent. The theoretical 
Chandler period and Qw are 434.8 sidereal days and 71 respectively for an ellip­
tical and rotating Earth with an anelastic mantle, a fluid core and an equilibrium 
pole tide. These are in good agreement with the observed period and Qw. We 
can conclude that mantle anelasticity is likely to be the most important dissipa-
tive source of wobble energy. The effects of anelasticity on the Chandler wobble 
ellipticity and orientation of the semimajor axis are too small to be detected by 
astrometric observations. Analysis of the SPACE92 polar motion series shows 
that the observed ellipticity and orientation of the semimajor axis agree with 
the theoretical values. We can deduce that the global pole tide should be close 
to equilibrium. 
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