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AN ILLUSTRATION OF THE DUALITY TECHNIQUE IN
SEMI-CONTINUOUS LINEAR PROGRAMMING*

F. D E VYLDER

We give a complete parametric solution of the following problem: Find a claim
size distribution F on the finite interval [o, <o], maximizing the stop-loss premium
corresponding to a given excess e, under the constraints that the first moment of F
be at most equal to y. and the second at most equal to v The method used is the
duality technique in semi-continuous linear programming described in D E VYLDER
(1978) This technique is summarized, without proofs, m the first part of the paper.

1. THE DUALITY TECHNIQUE IN SEMI-CONTINUOUS LINEAR PROGRAMMING

1.1. Generalized Matrices

Let Ax be defined for i e / = {1,2, . . ., m) and x e K c R. In most situations
K is a finite interval, but in many considerations it might be a rather general
set in R. We consider A as a generalized matrix, with the set / of row-indices
and the set K of column-indices. The augmented matrix A. = (A, 1) is formed
by the matrix A followed by the unit matrix l of dimension m. We suppose
that the columns of this unit matrix are indexed by any indices <TI, 02, . . . , <sm

(not necessarily numbers), of course none in K. These indices are called slack
indices. Let we denote by 5 the set of slack indices. If M = (xi, x%, . . . , xr)
is any finite sequence of elements in K + S, we denote by AM the usual matrix
with columns AXl, Ax\ . . ., Axj, to be defined in a moment. If Xj = xeK,
then Ax is the column (Af, Ax, . . ., A^)'. If Xj is a slack index, say x} = ak

(l < k ^ m), then the column A°k is the column with m elements (0, o, . . . ,
0, 1,0, . . ., 0, o), where the 1 is at the k-th place.

Similarly, if bx is defined for x e K, we consider 6 as a generalized row with
the set K as column-indices. The augmented row b. = (b, 0) is formed by b
followed by m zero's. The usual row b1^ is the row

bM = {bx\bx*, ...,bx'),

where bx> = o if xj is a slack index.

In the sequel, the sequence M will have exactly m elements. Thus AM will
be a square matrix. The order of the elements in M is irrelevant, but usually
we shall suppose that the indices in K are written first, in the natural order,
followed by the slack indices in the order induced by their subscripts.

* Presented at the 14th ASTIN Colloquium, Taormina, October 1978.
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l 8 F. DE VYLDER

] .2. Problems in Semi-Continuous Linear Programming

In the sequel K is always fixed. F is an unknown distribution function on R
(not necessarily a probability distribution function: the total mass induced
by F on R may be different from 1, but it must be finite, for simplicity). In
fact, the mass induced by F on R-K is completely irrelevant, since all integrals
considered in the sequel will be taken over K (then this set is generally not
indicated) or over a subset of K, relatively to the distribution function F.

Let A, b be defined as in 1.1. and let a be the column a= (ai, a%, .. ., am)'.
Then the problem noted {A, a, b, F, MAX) is to find a distribution function
F maximizing \bx dFx under the constraints J Af dFx < a% {iel). The dual
problem is to find a row y = (y1, y2, . , ., ym) minimizing y a = 2 yf a% under
the constraints y* > o ( « e / ) , S yl Af ^ bx (x e K).

i

1.3. A Fundamental Theorem

If F satisfies the constraints of the problem {A, a, b, F, MAX), if y satisfies
the constraints of the dual problem and if

(1) \bxdFx = 2 yia{,

then F, y are solutions of the problem and its dual respectively.

1.4. The Duality Technique

Various tests have proved that the following technique for solving the problem
(A, a, b, F, MAX) works in rather general circumstances, provided step 1 can
be executed. It would be highly interesting to know the most general condi-
tions on K, A, a, b for the technique to succeed.

STEP l. Find a solution y of the dual problem.
STEP 2. Find M = (xi, xz, ...,xm) satisfying y A™ = bf. The indices %j

(slack or not) can be searched for the one after the other. Each x
satisfying y Ax = bx may be an element of the sequence M. In view
of the following step try to find as many different indices as possible.
Ideal, but not always realizable (nor necessary) is that A*f be
inversible.

STEP 3. Find a column z= (zi, z2, ..., zm)' satisfying A™ z = a, z% > 0
(i e 7). Then define the discrete distribution F in the following way.
For each Xj in M, Xj e K (thus Xj not a slack index), place the mass
Zj at the point Xj. If e.g. xi = xz, then the mass zi + zz must be placed
at xi = X2 and similarly if more indices are equal.

STEP 4. Verify (1). Then, by the fundamental theorem, it follows that F and
y are solutions (for y this is in fact a confirmation) since the relations
A^j z = a, zi ;> 0 {iel) imply that F satisfies the constraints of
the given problem.
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DUALITY TECHNIQUE 10.

2. THE MAIN PROBLEM CONSIDERED IN THIS PAPER

2.1. Original Problem

Find a claim size probability distribution F on K = [o, co] maximizing the
stop-loss premium

(2) J(x-e)dFx

corresponding to the excess e, under the constraints

(3) \xdFx < (x, \x2dFx < v.

2.2. Equivalent Problem

Find a distribution F on K maximizing (2) under the constraints

(4) \dFx < l, \xdFx < (i, \x2dFx ^ v.

That this problem is equivalent results from the fact that the first members
in the relations (3) do not depend on the probability mass at the origin of K.
If we have a distribution F, solution of the second problem, we can make a
probability distribution of it by placing, if necessary, the missing probability
at the origin. (It will turn out that this modification will not even be necessary.)

Thus, our main problem is the problem

(5) (A, a, b, F, MAX), where / = {l, 2, 3}, K = [o, co]

(6) \ A f ) = [x ) ( x e K ) , a =
/ (x— e for co

2.3. Dual Problem

The dual problem is to find y = (u, v, w) minimizing u + vy. + wv under
the constraints

(7) u > 0, v ^ o, w > 0, u + vx + wx2 > bx (o < x < co).

Of course, these constraints are equivalent to

(8) u ^ o, v > 0, w ^ o, u + vx + wx2 ^ x — e (e ^ x ^ oi).

2.4. The Parameters of the Problem

The problem is one with four parameters co, e, y., v and we shall give its solu-
tion whatever be the relations among these parameters. For the sake of com-
pleteness, unrealistic cases have been included. Evidently, we always assume

(9) ji, > 0, v > o, 0 < e < co
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20 F. DE VYLDER

and also, until section 5, the relations

(10) [i < j/v, v < (xco

implying

(11) v < to2, [i < co.

Suppose for a moment that we have not the first relation (10), i.e. that we
have j/v < (j,. Then it follows from the last relation (4) that

(12) $xdFx ^ [ JVdF*]* < tfi < \x

and the second constraint (4) becomes superfluous. Thus, the case ]/v ^ jx
leads to a simpler problem that shall be considered separately. Note that the
first relation (12), well-known when F is a probability distribution, is also
valid if F is defective.

Similarly, suppose for a moment that we have not the last relation (10),
i.e. that we have [Ato ^ v. Then it follows from the second relation (4) that

(13) l%2dFx ^ co \xdFx < topi < v

and then the last constraint (4) is superfluous. Again we are faced with a
simpler problem, in fact a problem equivalent to the GAGLIARDI-STRAUB

(1974) problem.

3. STEP 1. SOLUTION OF THE DUAL PROBLEM

For each x(e < x < to), considered as parameter, we imagine that we represent
the part of the plane u+vx+ wx2 — x—e situated in the positive octant of
the (u, v, w) space (fig. 1).

Let

(x—e \ I x - e

Px = (x-e,o,o),Qx = [°>—- °),Rx = [0>°>-^-
be the intersection with the u, v, w-axis respectively.

When x increases from e to to, Px and Qx remove monotonously from the
origin. For Rx, two cases must be considered:

co — e
Case Ci: 2e ̂  to. Then Rx goes up from the height 0 to the height 2 .

Case C2: 2e< co. Then Rx goes up from the height 0 to the height 1/46
to— e

(for x = 2e), then comes down to the height — — .
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U Fig. l

Fig. 2
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3.1. Study of Case Ci

I t is clear, in the case Ci, t ha t the minimum of u + v\i + im, subject to the given
constraints, is obtained for (u, v, w) in the triangle PaQa>Ro>- For reasons of
linearity it must be obtained at one of the corners. From (10), (11) it is im-
mediate tha t the minimum is obtained at Ra. Thus we have the solution and
corresponding min imum:

co — e v
u = 0, v = 0, w = , MIN = (co — e) — .

CO2 CO2

3.2. Study of Case C%

Since Rx goes up and down when x increases from e to co, the triangles PxQxRx
have a superior envelope. We can find its equation by eliminating x between
the relation u + vx + wx2 = x — e and its derivative in x. The equation of the
envelope is

l (l-v)z

(14) w = -

Of course, only the part in the positive octant must be used, and even not
completely, because we have the restriction x < co. It is calculated that the
triangle PaQaRa, corresponding to the maximum value of x, is tangent to the
envelope along the straight segment TU (fig. 2), where

/co l \ / 2e e\
T = [- - e, o, — , [/ = o, 1 .

\2 2co/ \ co co2/
Then the minimum of u + v\i + wv, under the given constraints, is obtained

for (u, v, w) in the part STU of the envelope, or for (u, v, w) in the plane
portion PaQaUT.

In order to study the variation of u + vp + wv on STU, let we take u and v
as independent variables and let we use (14). Then the quantity to be minimized
equals, on STU:

v (l-v)2

(15) f(u,v) = u+ Vf, +

It is easily calculated that there can be no u, v annulating the partial deri-
vatives /„', f'v. We conclude that there can be no minimum at the interior of
STU. Therefore, and also for reasons of linearity, the minimum of u + V\L + wv
is only possible for (u, v, w) on ST, on SU, at Pa, at Qa.

3.2.1. Study of the Variation of f(u, v) along ST

We have, for ST:

v 1
g(u) =

https://doi.org/10.1017/S0515036100006577 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006577


DUALITY TECHNIQUE 23

g'(u) = o for u = J |/v — e.

Therefore,

v
if A l/v — e < o, then: Minimum on ST = Value at S = —.

/ _ i
if o < A l/v — e, then: Minimum on ST = Value at A l/v — e, o, —.-2 v > \ 2 ^ 2(/v,

= |/v —- e, because \ |/v — e < — — e by ( n ) .

3.2.2. Study of the Variation off(u, v) along SU

We have, for SU:

v / 2e
h(v) = /(O, !/) = Wfl + — (l - W)2, I 0 < U ^ 1 - —

&'(v) = 0 for w = 1 — 2 — .

Therefore,

eii v
if 1 — 2 — < o, then: Minimum on SU = Value at S = —.

v 46

e\x I e\x
if 0 < 1 — 2 —, then: Minimum on SU = Value at I o, 1 — 2 —, ——

v \ v v2

l — —I .because 1 — 2 — < 1 — 2 — by (10).

3.2.3. We note that the value of u + vy. + wv at Pa = (w — e, o, 0) is (w — e)
I e \ y.

a n d a t Qa = 0, co — — , o i t is (w — e) — .
\ to / to

3.3. Subclassification of Case Cz

The subcases of C2 indicated in table 1, with, in the right column the possible
minimum, result from the discussion in 3.2.1 and 3.2.2. Note that, since
[x/w < 1, the value (co — e) at Pa can already be abandoned against the value
(to — e) fx/to at Qa.
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24 F. DE VYLDER

TABLE 1

Subcases of C2 (20 < co) Possible minimum

V Li
C21: v < 4«2, v < 26LI — , (co — 0) —

v / eu\ \x
C22: v< 4«2, v> 20LI — , LII 1 — —I, (co — e) —

C23: v> 40s, v< 2e\x. Irrelevant (see discussion)
/ 0Ll\ [A

C24: v > 40s, v > 2^Lt ]/v — 0, fxl 1 — — I , (co — 0) —

The first relation (10) and the relation v^26ji appearing twice in table l,
imply v = 26 |/v, v ^ 4s2. This means that case C23 is impossible and that in
case C21, the condition v ^ 4<?2 is superfluous. In case C21, we can abandon the

potential minimum (co — e) —, because, by adding the relations— ^ - , — < - ,
to 4^ 2 co 2

V [i. / £[x\ [i.
we have — < (co — e) —. The relation u. 1 — — < (co — e) — is seen to be

45 ' co r \ v / v ; to

equivalent to v < [xco. Therefore, by (10), (to— e) — can also be abandoned
co

V

in C22 and C24. From 0 < (2<?fA — v)2 results that — can be abandoned in C22.

e e\i
Finally, in case C24, let we add the relations —= < \, — < \. We obtain

e
- (/v + (x) < l. After multiplication by )/v — jo, > o, we have a relation equiva-

lent to [x( 1 — —I < |/v — e, showing that /v — e can be abandoned. Then

C22 and C24 can be amalgamated in one case, say C'22, defined by v > 2ey., 26 < co.

3.4. Final Table

The preceding discussion is resumed in table 2.

TABLE 2

Cases

C i : 20 > co

C21'. 20 <C CO,

C'22: 2 0 < CO,

V < 2<?Ll

V > 20[A

Point (w, v, w)
giving the
minimum

1 co — e\

V" °' «2 1

I 0, 0, — ]

MIN

(co-e)

V

4«

V

CO3
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4. FURTHER STEPS

4.1. Case Ci

STEP 2.

We look for x e K satisfying

to — e\ / l \ (0 ii x < e
\ I

The solutions are x = o and % = to. Since

co — e\ / 0
CO2

o

the slack index <72 can also be used. Then M = (o, co, ar2).

STEP 3.

We look for z\, Zz, \ (the last is a slack variable corresponding to 02) satisfying

V

V V V

The solution is 21 = 1 — —-, zi = —- £ = [i — - .
CO CO CO

Thus, F has two atoms, one at 0, the other at co, with respective masses

v v
mo = l - — , ww = —.

CO2 CO2

STEP 4.
CO

f v

(x — e)dFx = (co — e) — = Value MIN in table 2.
J to2

e

4.2. Case C21

STEP 2.

We look for x e K satisfying

, 0 if x < e

x — e if x ^ e

https://doi.org/10.1017/S0515036100006577 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006577


26 F. DE VYLDER

Solutions: x = o and x = 2e. The slack index 02 can also be used. Thus
M = (o, 26, GZ).

STEP 3.

We look for zi, z%, \ satisfying

1 1 O\ I Zy

o 2e 1

,o 4*2 0 / \ \

V V V

Solution: zi = 1 — —-, z2 = —-, \ = \i — —.

Here F has the atoms o and 20 with masses

v v
mo = 1 — —- , m2e = —^ •

STEP 4.

Value MIN in table 2.
f v v

(x-e)dFai = e— = — =

4.3. Case C'22

STEP 2.

We look for x e K satisfying

2e\x ey.2\ / l \ Co ft x < e

= I
I x — eft x ^ e.

v
Solutions: x = o, x = —. Only the slack index <TI can also be used, but

then we obtain the column (l, 0, 0)' already obtained for x — o. Since the
use of the first slack index gives a defective distribution, we prefer to try

M = (0, - , - ) .

STEP 3.

We search for zi, z*, 23 satisfying

l l l

v v
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IX2 [X2

The system is equivalent to: 22 + za = •—, z% = 1 — —. There is an
v v

indetermination in the choice of £2, Zs, but the resulting distribution F has
anyway the two atoms o and v/;x with corresponding masses

mo = 1 _ — , OTv/ix = — .

STEP 4.
CO

- / \ 2 / \
(x — e)dFx = ( - — e) — = [ M i 1 = Value MIN in table 2.

J W / v \ v/

5 . THE CASES V > [XtO AND (X2 Js V

These cases in which one constraint disappears are left as exercices for the
reader. The answers can be found in table 3.

TABLE 3

Conditions on
the parameters

IX 2 < V < (J.CO

V > (XCO )

( (x>

•ze> co

( 26U.<V
\

26<C0 /

( 2ejx> v

2 « > CO

2^<C CO

^ V < CO2

V > CO2

V ^ 4-£2

4«2 < v < co2

CO2 < V

Maximal stop-loss
distribution

«to = 1 -

»o = 1 -

ww = 1

Ii:',

«u = 1

V

(X2

V

V

- - m
co' m

V
- — , W2

V

1 1 " v

V

_ ii
CO

~ CO2

c = 4 ^

Maximum
stop-loss
premium

/ & \

\ 1
V

4«

(co-e)

V

(co-e)
V

fv-e

(co-e)
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6. SUMMARY

A complete solution of the original problem in 2.1 is given in table 3. It might
seem surprising that we solved the modified problem in 2.2 and nevertheless
always found a probability distribution. This is due to the fact, already ob-
served in step 2 of the case C'22, that we never used the first slack index.

It is clear that several cases could be regrouped in table 3. For clearness,
we leave it as it is. Indeed, given numerical values of the parameters, the
table permits immediatly to situate the case to be used. Moreover, remind
that the condition v ^ [xco amounts to the absence of the constraint on the
second moment of F and that the condition [x2 ^ v amounts to the absence
of the constraint on the first moment of F. See the discussion in 2.4.
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