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In this article, we propose a general method for testing inequality restrictions
on nonparametric functions. Our framework includes many nonparametric testing
problems in a unified framework, with a number of possible applications in auc-
tion models, game theoretic models, wage inequality, and revealed preferences.
Our test involves a one-sided version of L p functionals of kernel-type estimators
(1 ≤ p <∞) and is easy to implement in general, mainly due to its recourse to the
bootstrap method. The bootstrap procedure is based on the nonparametric bootstrap
applied to kernel-based test statistics, with an option of estimating “contact sets.”
We provide regularity conditions under which the bootstrap test is asymptotically
valid uniformly over a large class of distributions, including cases where the limiting
distribution of the test statistic is degenerate. Our bootstrap test is shown to exhibit
good power properties in Monte Carlo experiments, and we provide a general form
of the local power function. As an illustration, we consider testing implications from
auction theory, provide primitive conditions for our test, and demonstrate its useful-
ness by applying our test to real data. We supplement this example with the second
empirical illustration in the context of wage inequality.

1. INTRODUCTION

In this article, we propose a general method for testing inequality restrictions on
nonparametric functions. To describe our testing problem, let vτ,1, . . . ,vτ,J denote
nonparametric real-valued functions on Rd for each index τ ∈ T , where T is a
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subset of a finite dimensional space. We focus on testing

H0 : max{vτ,1(x), . . . ,vτ,J (x)} ≤ 0 for all (x,τ ) ∈ X ×T , against

H1 : max{vτ,1(x), . . . ,vτ,J (x)}> 0 for some (x,τ ) ∈ X ×T ,
(1.1)

where X ×T is a domain of interest. We propose a one-sided Lp integrated test
statistic based on nonparametric estimators of vτ,1, . . . ,vτ,J . We provide general
asymptotic theory for the test statistic and suggest a bootstrap procedure to com-
pute critical values. We establish that our test has correct uniform asymptotic size
and is not conservative. We also determine the asymptotic power of our test under
fixed alternatives and some local alternatives.

We allow for a general class of nonparametric functions, including, as spe-
cial cases, conditional mean, quantile, hazard, and distribution functions and their
derivatives. For example, vτ, j (x)= P(Yj ≤ τ |X = x) can be the conditional dis-
tribution function of Yj given X = x , or vτ, j (x) can be the τ -th quantile of Yj

conditional on X = x . We also allow for transformations of these functions satis-
fying some regularity conditions. The nonparametric estimators we consider are
mainly kernel-type estimators but can be allowed to be more general, provided
that they satisfy certain Bahadur-type linear expansions.

Inequality restrictions on nonparametric functions arise often as testable
implications from economic theory. For example, in first-price auctions, Guerre,
Perrigne, and Vuong (2009) show that the quantiles of the observed equilibrium
bid distributions with different numbers of bidders should satisfy a set of inequal-
ity restrictions (equation (5) of Guerre et al. (2009)). If the auctions are hetero-
geneous so that the private values are affected by observed characteristics, we
may consider conditionally exogenous participation with a conditional version of
the restrictions (see Sect. 3.2 of Guerre et al. (2009)). Such restrictions are in the
form of multiple inequalities for linear combinations of nonparametric conditional
quantile functions. Our test then can be used to test whether the restrictions hold
jointly uniformly over quantiles and observed characteristics in a certain range.
In this article, we use this auction example to illustrate the usefulness of our gen-
eral framework. To the best of our knowledge, there does not exist an alternative
test available in the literature for this kind of example.

In addition to (Guerre et al., 2009, GPV hereafter), a large number of auction
models are associated with some forms of functional inequalities. See, for exam-
ple, Haile and Tamer (2003), Haile, Hong, and Shum (2003), Aradillas-López,
Gandhi, and Quint (2013), and Krasnokutskaya, Song, and Tang (2016) among
others. Our method can be used to make inference in their setups, while allowing
for continuous covariates. See Online Appendix E for further discussions on
potential applications in economics, such as inference in models of games, tests
of revealed preferences, and inference in partial identification.

Our framework has several distinctive merits. First, our proposal is easy to
implement in general, mainly due to its recourse to the bootstrap method. The
bootstrap procedure is based on nonparametric bootstrap applied to kernel-based
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test statistics. We establish the general asymptotic (uniform) validity of the boot-
strap procedure.

Second, our proposed test is shown to exhibit good power properties both in
finite and large samples. Good power properties can be achieved by the use of
critical values that adapt to the binding restrictions of functional inequalities.
This could be done in various ways; in this article, we follow the “contact set”
approach of Linton, Song, and Whang (2010) and propose bootstrap critical
values. As is shown in this article, the bootstrap critical values yield significant
power improvements. Furthermore, we find through our local power analysis that
this class of tests exhibits dual convergence rates depending on Pitman directions,
and in many cases, the faster of the two rates achieves a parametric rate of

√
n,

despite the use of kernel-type test statistics.
Third, we establish the asymptotic validity of the proposed test uniformly over a

large class of distributions, without imposing restrictions on the covariance struc-
ture among nonparametric estimates of vτ, j (·), thereby allowing for degenerate
cases. Such a uniformity result is crucial for ensuring good finite sample prop-
erties for tests whose (pointwise) limiting distribution under the null hypothesis
exhibits various forms of discontinuity. The discontinuity in the context of this
article is highly complex, as the null hypothesis involves inequality restrictions
on a multiple number of (or even a continuum of) nonparametric functions.
We establish the uniform validity of the test in a way that covers these various
incidences of discontinuity. Our new uniform asymptotics may be of independent
interest in many other contexts.

Much of the recent literature on testing inequality restrictions focuses on condi-
tional moment inequalities. Research on conditional moment inequalities includes
Andrews and Shi (2013), Andrews and Shi (2014), Andrews and Shi (2017),
Aradillas-López, Gandhi, and Quint (2016), Armstrong (2015), Armstrong and
Chan (2016), Chernozhukov, Lee, and Rosen (2013), Chetverikov (2017), Fan
and Park (2014), Khan and Tamer (2009), Lee, Song, and Whang (2013), and
Menzel (2014) among others. In contrast, this article’s approach naturally cov-
ers a wide class of inequality restrictions among nonparametric functions that the
moment inequality framework does not (or at least is cumbersome to) apply. Such
examples include testing multiple inequalities that are defined by differences in
conditional quantile functions uniformly over covariates and quantiles. As this
article demonstrates through an empirical application, such a testing problem can
arise in empirical research (see Section 6).

One important class that is covered by our general approach is to test con-
ditional stochastic dominance, which is a generalization of stochastic domi-
nance to conditional distributions. See, for example, Chang, Lee, and Whang
(2015), Delgado and Escanciano (2013) and Hsu (2017) among others. Our test
can also be used as an alternative to testing monotonicity of mean regression
(e.g., Chetverikov (2012) and Ghosal, Sen, and van der Vaart (2000)) as well
as testing stochastic monotonicity (e.g., Lee, Linton, and Whang (2009) and
Delgado and Escanciano (2012)). Our article is also related to testing affiliation in
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Jun, Pinkse, and Wan (2010) and testing density ratio ordering in Beare and
Moon (2015).

More generally speaking, our framework is related to testing qualitative non-
parametric hypotheses such as positivity, monotonicity and convexity in non-
parametric models. See, for example, Dümbgen and Spokoiny (2001), Juditsky
and Nemirovski (2002) and Baraud, Huet, and Laurent (2005) among others.
However, there are some important differences. First, the existing statistics lit-
erature mainly focuses on the hypothesis on the mean regression function in
the ideal Gaussian white noise model, while we do not impose any parametric
assumption such as Gaussianity and allow for more general functional inequal-
ities among nonparametric functions other than the mean regression function.
Second, the technical details of the existing “positivity” tests are quite different
from ours.

Our current work is substantially different from our previous article, Lee et al.
(2013). The latter considered only conditional moment inequalities under point-
wise asymptotics. The test in Lee et al. (2013) is based on asymptotic normality
under the least favorable case. The current article goes much beyond conditional
moment inequalities and provides uniform validity of the bootstrap test with con-
tact set estimation.

The remainder of the article is as follows. Section 2 gives an informal descrip-
tion of our general framework by introducing test statistics and critical values and
by providing intuition behind our approach. In Section 3, we establish the uniform
asymptotic validity of our bootstrap test. We also provide a class of distributions
for which the asymptotic size is exact. In Section 4, we establish consistency of
our test and its local power properties. In Section 5, we report results of some
Monte Carlo experiments. In Sections 6 and 7, we give two empirical examples.
The first empirical example in Section 6 is on testing auction models follow-
ing GPV, and the second one in Section 7 is about testing functional inequalities
via differences-in-differences in conditional quantiles, inspired by Acemoglu and
Autor (2011). The empirical examples given in this section are not covered easily
by existing inference methods; however, they are all special cases of our gen-
eral framework. Section 8 concludes. Online Appendices provide all the proofs of
theorems with a roadmap of the proofs to help readers.

2. GENERAL OVERVIEW

2.1. Test Statistics

We present a general overview of this article’s framework by introducing test
statistics and critical values. To ease the exposition, we confine our attention to
the case of J = 2 here. The definitions and formal results for general J are given
later in Section 3.

Throughout this article, we assume that T is a compact subset of a Euclidean
space. a generality because when T is a finite set, we can redefine our test statistic
by taking T as part of the finite index j indexing the nonparametric functions.
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For j = 1,2, let v̂τ, j (x) be a kernel-based nonparametric estimator of vτ, j (x)
and let its appropriately scaled version be

ûτ, j (x)≡ rn, j v̂τ, j (x)

σ̂τ, j (x)
,

where rn, j is an appropriate normalizing sequence that diverges to infinity,1 and
σ̂τ, j (x) is an appropriate (possibly data-dependent) scale normalization.2 Then
inference is based on the following statistic:

θ̂ ≡
∫
T

∫
X

max
{
ûτ,1(x), ûτ,2(x),0

}p
dxdτ (2.1)

≡
∫
X×T

max
{
ûτ,1(x), ûτ,2(x),0

}p
d Q(x,τ ),

where Q is Lebesgue measure on X ×T . In this overview section, we focus on
the case of using the max function under the integral in (2.1). Our general theory
permits an alternative form

∑2
j=1 max

{
ûτ, j (x),0

}p in place of the max function
(see (3.1)).

2.2. Bootstrap Critical Values

As we shall see later, the asymptotic distribution of the test statistic exhibits com-
plex ways of discontinuities as one perturbs the data generating processes. This
suggests that the finite sample properties of the asymptotic critical values may not
be stable. Furthermore, the location-scale normalization requires nonparametric
estimation and thus a further choice of tuning parameters. This can worsen the
finite sample properties of the critical values further. To address these issues, this
article develops a bootstrap procedure.

In the following, we let v̂∗
τ, j (x) and σ̂ ∗

τ, j (x), j = 1,2, denote the bootstrap
counterparts of v̂τ, j (x) and σ̂τ, j (x), j = 1,2. Let the bootstrap counterparts
be constructed in the same way as the nonparametric estimators v̂τ, j (x) and
σ̂τ, j (x), j = 1,2, with the bootstrap sample independently drawn with replace-
ment from the empirical distribution of the original sample. We let

ŝ∗
τ, j (x)≡

rn, j {v̂∗
τ, j (x)− v̂τ, j (x)}
σ̂ ∗
τ, j (x)

, j = 1,2. (2.2)

Note that ŝ∗
τ, j (x) is a centered and scale normalized version of the bootstrap quan-

tity v̂∗
τ, j (x). Using these bootstrap quantities, we consider two versions of boot-

strap critical values: one based on the least favorable case and the other based on
estimating a contact set.

2.2.1. The Least Favorable Case. Under the least favorable configuration
(LFC), we construct a bootstrap version of the right hand side of (2.1) as

θ̂∗
LFC ≡

∫
max

{
ŝ∗
τ,1(x), ŝ

∗
τ,2(x),0

}p
d Q(x,τ ).
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Under regularity conditions, bootstrap critical values based on the LFC
can be shown to yield tests that are asymptotically valid uniformly in P .
However, they are often too conservative in practice. As an alternative to the
LFC-based bootstrap critical value, we propose a bootstrap critical value that
can be less conservative but at the expense of introducing an additional tuning
parameter.

2.2.2. Estimating a Contact Set. As we shall show formally in a more gen-
eral form in Lemma 1 in Section 3 below, it is satisfied that under H0, for each
sequence cn → ∞ such that

√
logn/cn → 0 as n → ∞,

θ̂ =
∫

Bn,{1}(cn)
max

{
ûτ,1(x),0

}p
d Q(x,τ )

+
∫

Bn,{2}(cn)
max

{
ûτ,2(x),0

}p
d Q(x,τ )

+
∫

Bn,{1,2}(cn)
max

{
ûτ,1(x), ûτ,2(x),0

}p
d Q(x,τ ), (2.3)

with probability approaching one, where, letting un,τ, j (x) ≡
rn, j vn,τ, j (x)/σn,τ, j (x), i.e., a population version of ûτ, j (x),3 we define

Bn,{1}(cn)≡
{
(x,τ ) ∈ X ×T : |un,τ,1(x)| ≤ cn and un,τ,2(x) <−cn

}
,

Bn,{2}(cn)≡
{
(x,τ ) ∈ X ×T : |un,τ,2(x)| ≤ cn and un,τ,1(x) <−cn

}
and

Bn,{1,2}(cn)≡
{
(x,τ ) ∈ X ×T : |un,τ,1(x)| ≤ cn and |un,τ,2(x)| ≤ cn

}
.

For example, the set Bn,{1}(cn) is a set of points (x,τ ) such that
|vn,τ,1(x)/σn,τ,1(x)| is close to zero, and vn,τ,2(x)/σn,τ,2(x) is negative and
away from zero. We call contact sets such sets as Bn,{1}(cn), Bn,{2}(cn), and
Bn,{1,2}(cn).

Now, comparing (2.3) with (2.1) reveals that the limiting distribution of θ̂ under
the null hypothesis will not depend on points outside the union of the contact
sets. Thus it is natural to base the bootstrap critical values on the quantity on the
right hand side of (2.3) instead of that on the last integral in (2.1). As we will
explain shortly in the next subsection, this leads to a test that is uniformly valid
and exhibits substantial improvement in power.

To construct bootstrap critical values, we introduce sample versions of the con-
tact sets:

B̂{1}(cn)≡
{
(x,τ ) ∈ X ×T : |ûτ,1(x)| ≤ cn and ûτ,2(x) <−cn

}
,

B̂{2}(cn)≡
{
(x,τ ) ∈ X ×T : |ûτ,2(x)| ≤ cn and ûτ,1(x) <−cn

}
and

B̂{1,2}(cn)≡
{
(x,τ ) ∈ X ×T : |ûτ,1(x)| ≤ cn and |ûτ,2(x)| ≤ cn

}
.

See Figure 1 for illustration of estimation of contact sets when J = 2.
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FIGURE 1. Contact set estimation.
Note: This figure illustrates estimated contact sets when J = 2. The thick line segments on the x-axis

represent estimated contact sets.

Given the contact sets, we construct a bootstrap version of the right hand side
of (2.3) as

θ̂∗ ≡
∫

B̂{1}(ĉn)
max

{
ŝ∗
τ,1(x),0

}p
d Q(x,τ )

+
∫

B̂{2}(ĉn)
max

{
ŝ∗
τ,2(x),0

}p
d Q(x,τ )

+
∫

B̂{1,2}(ĉn)
max

{
ŝ∗
τ,1(x), ŝ

∗
τ,2(x),0

}p
d Q(x,τ ), (2.4)

where ĉn is a data dependent version of cn . We will discuss a way to construct ĉn

shortly. We also define

â∗ ≡ E∗θ̂∗,

where E∗ denotes the expectation under the bootstrap distribution. Let c∗
α be the

(1 −α)-th quantile from the bootstrap distribution of θ̂∗. In practice, both quan-
tities â∗ and c∗

α are approximated by the sample mean and sample (1 − α)-th
quantile, respectively, from a large number of bootstrap repetitions. Then for a
small constant η≡ 10−3, we take c∗

α,η ≡ max{c∗
α,h

d/2η+ â∗} as the critical value
to form the following test:

Reject H0 if and only if θ̂ > c∗
α,η. (2.5)

Then it is shown later that the test has asymptotically correct size, i.e.,

limsup
n→∞

sup
P∈P0

P{θ̂ > c∗
α,η} ≤ α, (2.6)
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where P0 is the collection of potential distributions that satisfy the null hypo-
thesis. To implement the test, there are two important tuning parameters, namely
the bandwidth h used for nonparametric estimation and the constant ĉn for contact
set estimation.4 We discuss how to obtain the latter in the context of our Monte
Carlo experiments in Section 5.1.

2.3. Discontinuity, Uniformity, and Power

Many tests of inequality restrictions exhibit discontinuity in its limiting distri-
bution under the null hypothesis. When the inequality restrictions involve non-
parametric functions, this discontinuity takes a complex form, as emphasized in
Section 5 of Andrews and Shi (2013).

To see the discontinuity problem in our context, let {(Yi ,Xi )

}n

i=1 be i.i.d.
copies from an observable bivariate random vector, (Y,X)
 ∈ R × R, where Xi

is a continuous random variable with density f . We consider a simple testing
example:

H0 : E[Y |X = x] ≤ 0 for all x ∈ X vs. H1 : E[Y |X = x]> 0 for some x ∈ X .
(2.7)

Here, with the subscript τ suppressed, we set J = 1, rn,1 = √
nh, p = d = 1, and

define [v]+ ≡ max{v,0}. Let

v̂1(x)= 1

nh

n∑
i=1

Yi K

(
Xi − x

h

)
and σ̂ 2

1 (x)=
1

nh

n∑
i=1

Y 2
i K 2

(
Xi − x

h

)
, (2.8)

where K is a nonnegative, univariate kernel function with compact support and h
is a bandwidth.

Assume that the density of X is strictly positive on X . Then, in this example,
vn,1(x) ≡ Ev̂1(x) ≤ 0 for almost every x in X whenever the null hypothesis is
true. Define

Zn,1(x)=
√

nh

{
v̂1(x)− vn,1(x)

σ̂1(x)

}
and Bn,1(0)=

{
x ∈ X :

∣∣∣√nhvn,1(x)
∣∣∣= 0

}
.

We analyze the asymptotic properties of θ̂ as follows. We first write

h−1/2(θ̂ − an,1)= h−1/2

{∫
Bn,1(0)

[
Zn,1(x)

]
+ dx − an,1

}
(2.9)

+h−1/2
∫
X \Bn,1(0)

[
Zn,1(x)+

√
nhvn,1(x)

σ̂1(x)

]
+

dx,

where

an,1 = E

[∫
Bn,1(0)

[
Zn,1(x)

]
+ dx

]
.
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When liminfn→∞ Q
(
Bn,1(0)

)
> 0 with Q(Bn,1(0)) denoting Lebesgue measure

of Bn,1(0), we can show that the leading term on the right hand side in (2.9)
becomes asymptotically N(0,σ 2

0 ) for some σ 2
0 > 0. On the other hand, the second

term vanishes in probability as n → ∞ under H0 because for each x ∈X\Bn,1(0),

0>
√

nhvn,1(x)→ −∞
as n → ∞ under H0. Thus we conclude that when liminfn→∞Q

(
Bn,1(0)

)
> 0

under H0,

h−1/2(θ̂ − an,1)≈ h−1/2

{∫
Bn,1(0)

[
Zn,1(x)

]
+ dx − an,1

}
→d N(0,σ 2

0 ). (2.10)

This asymptotic theory is pointwise in P (with P fixed and letting n → ∞),
and may not be adequate for finite sample approximation. There are two sources
of discontinuity. First, the pointwise asymptotic theory essentially regards the
drift component

√
nhvn,1(x) as −∞, whereas in finite samples, the component

can be very negative, but not −∞. Second, even if the nonparametric function√
nhvn,1(x) changes continuously, the contact set Bn,1(0) may change discontin-

uously in response.5 While there is no discontinuity in the finite sample distribu-
tion of the test statistic, there may arise discontinuity in its pointwise asymptotic
distribution. Furthermore, the complexity of the discontinuity makes it harder to
trace its source, when we have J > 2. As a result, the asymptotic validity of
the test that is established pointwise in P is not a good justification of the test.
We need to establish the asymptotic validity that is uniform in P over a reason-
able class of probabilities.

Recall that bootstrap critical values based on the least favorable configuration
use a bootstrap quantity such as

θ̂∗
LFC ≡

∫
X

[
ŝ∗(x)

]
+ dx, where ŝ∗(x)= √

nh

{
v̂∗

1 (x)− v̂1(x)

σ̂ ∗
1 (x)

}
, (2.11)

which can yield tests that are asymptotically valid uniformly in P . However, using
a critical value based on

θ̂∗
1 ≡

∫
B̂{1}(cn)

[
ŝ∗(x)

]
+ dx

also yields an asymptotically valid test, and yet θ̂∗
LFC > θ̂

∗
1 in general. Thus the

bootstrap tests that use the contact set have better power properties than those that
do not. The power improvement is substantial in many simulation designs and can
be important in real-data applications.

Now, let us see how the choice of c∗
α,η ≡ max{c∗

α,h
1/2η+ â∗} (with d = 1

here) leads to bootstrap inference that is valid even when the test statistic becomes
degenerate under the null hypothesis. The degeneracy arises when the inequality
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restrictions hold with large slackness, so that the convergence in (2.10) holds with
σ 2

0 = 0, and hence

h−1/2(θ̂ − an,1)= oP(1).

For the bootstrap counterpart, note that

h−1/2(c∗
α,η− an,1)= h−1/2 max{c∗

α− an,1,h
1/2η+ â∗ − an,1}

≥ η+ h−1/2(â∗ − an,1),

where it can be shown that h−1/2(â∗ − an,1) = oP(1). Therefore, the bootstrap
inference is designed to be asymptotically valid even when the test statistic
becomes degenerate.

Note that for the sake of validity only, one may replace h1/2η by a fixed con-
stant, say η̄ > 0. However, this choice would render the test asymptotically too
conservative. The choice of h1/2η in this article makes the test asymptotically
exact for a wide class of probabilities, while preserving the uniform validity in
both the cases of degeneracy and nondegeneracy.6 The precise class of probabili-
ties under which the test becomes asymptotically exact is presented in Section 3.

There are two remarkable aspects of the local power behavior of our bootstrap
test. First, the test exhibits two different kinds of convergence rates along different
directions of Pitman local alternatives. Second, despite the fact that the test uses
the approach of local smoothing by kernel as in Härdle and Mammen (1993),
the faster of the two convergence rates achieves a parametric rate of

√
n. To see

this more closely, let us return to the simple example in (2.7), and consider the
following local alternatives:

vn(x)= v0(x)+ δ(x)

bn
, (2.12)

where v0(x) ≤ 0 for all x ∈ X and δ(x) > 0 for some x ∈ X , and bn → ∞
as n → ∞ such that vn(x) > 0 for some x ∈ X . The function δ(·) repre-
sents a Pitman direction of the local alternatives. As we show later, there exist
two types of convergence rates of our test, depending on the choice of δ(x).
Let B0(0) ≡ {x ∈ X : v0(x)= 0} and σ 2

1 (x) ≡ E[Y 2
i |Xi = x] f (x)

∫
K 2(u)du.

When δ(·) is such that∫
B0(0)

δ(x)

σ1(x)
dx > 0,

the test achieves a parametric rate bn = √
n. On the other hand, when δ(·) is such

that∫
B0(0)

δ(x)

σ1(x)
dx = 0 and

∫
B0(0)

δ2(x)

σ 2
1 (x)

dx > 0,

the test achieves a slower rate bn = √
nh1/4. See Section 4.2 for heuristics behind

the results. In Section 4.3, the general form of local power functions is derived.
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3. UNIFORM ASYMPTOTICS UNDER GENERAL CONDITIONS

In this section, we establish uniform asymptotic validity of our bootstrap test.7

We also provide a class of distributions for which the asymptotic size is exact. We
first define the set of distributions we consider.

DEFINITION 1. Let P denote the collection of the potential joint distributions
of the observed random vectors that satisfy Assumptions A1–A6, and B1–B4 given
below. Let P0 ⊂ P be the sub-collection of potential distributions that satisfy the
null hypothesis.

Let ‖ · ‖ denote the Euclidean norm throughout the article. For any given
sequence of subcollections Pn ⊂ P , any sequence of real numbers bn > 0, and
any sequence of random vectors Zn , we say that Zn/bn →P 0, Pn-uniformly, or
Zn = oP(bn), Pn-uniformly, if for any a > 0,

limsup
n→∞

sup
P∈Pn

P {‖Zn‖> abn} = 0.

Similarly, we say that Zn = OP (bn), Pn-uniformly, if for any a > 0, there exists
M > 0 such that

limsup
n→∞

sup
P∈Pn

P {‖Zn‖> Mbn}< a.

We also define their bootstrap counterparts. Let P∗ denote the probability under
the bootstrap distribution. For any given sequence of subcollections Pn ⊂ P , any
sequence of real numbers bn > 0, and any sequence of random vectors Z∗

n , we
say that Z∗

n/bn →P∗ 0, Pn-uniformly, or Z∗
n = oP∗(bn), Pn-uniformly, if for any

a > 0,

limsup
n→∞

sup
P∈Pn

P
{

P∗ {‖Z∗
n‖> abn

}
> a
}= 0.

Similarly, we say that Z∗
n = OP∗(bn), Pn-uniformly, if for any a > 0, there exists

M > 0 such that

limsup
n→∞

sup
P∈Pn

P
{

P∗ {‖Z∗
n‖> Mbn

}
> a
}
< a.

In particular, when we say Zn = oP(bn) or OP (bn), P-uniformly, it means that
the convergence holds uniformly over P ∈ P , and when we say Zn = oP(bn) or
OP (bn), P0-uniformly, it means that the convergence holds uniformly over all the
probabilities in P that satisfy the null hypothesis.

3.1. Test Statistics and Critical Values in General Form

First, let us extend the test statistics and the bootstrap procedure to the general case
of J ≥ 1. Let�p : RJ → [0,∞) be a nonnegative, increasing function indexed by
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p such that 1 ≤ p<∞. While the theory of this article can be extended to various
general forms of map �p , we focus on the following type:

�p(v1, . . . ,v J )= (max{[v1]+, . . . , [v J ]+})p or �p(v1, . . . ,v J )=
J∑

j=1

[v j ]
p
+, (3.1)

where for a ∈ R, [a]+ = max{a,0}. The test statistic is defined as

θ̂ =
∫
X×T

�p
(
ûτ,1(x), . . . , ûτ,J (x)

)
d Q(x,τ ).

To motivate our bootstrap procedure, it is convenient to begin with the follow-
ing lemma. Let us introduce some notation. Define NJ ≡ 2NJ \{∅}, i.e., the col-
lection of all the nonempty subsets of NJ ≡ {1,2, . . . , J }. For any A ∈ NJ and
v = (v1, . . . ,v J )


 ∈ RJ , we define vA to be v except that for each j ∈ NJ \A, the
j -th entry of vA is zero, and let

�A,p(v)≡�p(vA). (3.2)

That is, �A,p(v) is a “censoring” of �p(v) outside the index set A. Now, we
define a general version of contact sets: for A ∈ NJ and for cn,1,cn,2 > 0,

Bn,A(cn,1,cn,2)≡
{
(x,τ ) ∈ X ×T :

|rn, j vn,τ, j (x)/σn,τ, j (x)| ≤ cn,1, for all j ∈ A
rn, j vn,τ, j (x)/σn,τ, j (x) <−cn,2, for all j ∈ NJ /A

}
,

(3.3)

where σn,τ, j (x) is a “population” version of σ̂τ, j (x) (see e.g., Assumption A5
below). When cn,1 = cn,2 = cn for some cn > 0, we write Bn,A(cn) =
Bn,A(cn,1,cn,2).

LEMMA 1. Suppose that Assumptions A1–A3 and A4(i) in Section 3.2 hold.
Suppose further that cn,1 > 0 and cn,2 > 0 are sequences such that√

logn{c−1
n,1 + c−1

n,2} → 0,

as n → ∞. Then as n → ∞,

inf
P∈P0

P

⎧⎨⎩θ̂ =
∑

A∈NJ

∫
Bn,A(cn,1,cn,2)

�A,p(ûτ,1(x), . . . , ûτ,J (x))d Q(x,τ )

⎫⎬⎭→ 1,

where P0 is the set of potential distributions of the observed random vector under
the null hypothesis.

The lemma above shows that the test statistic θ̂ is uniformly approximated by
the integral with domain restricted to the contact sets Bn,A(cn,1,cn,2) in large
samples. Note that the result of Lemma 1 implies that the approximation error
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between θ̂ and the expression on the right-hand side is oP(εn) for any εn → 0,
thereby suggesting that one may consider a bootstrap procedure that mimics the
representation of θ̂ in Lemma 1.

We begin by introducing a sample version of the contact sets. For A ∈ NJ ,

B̂A(ĉn)≡
{
(x,τ ) ∈ X ×T :

|rn, j v̂τ, j (x)/σ̂τ, j (x)| ≤ ĉn, for all j ∈ A
rn, j v̂τ, j (x)/σ̂τ, j (x) <−ĉn, for all j ∈ NJ \A

}
.

The explicit condition for ĉn is found in Assumption A4 below. Given the boot-
strap counterparts, {[v̂∗

τ, j (x), σ̂
∗
τ, j (x)] : j ∈ NJ }, of {[v̂τ, j (x), σ̂τ, j (x)] : j ∈ NJ },

we define our bootstrap test statistic as follows:

θ̂∗ ≡
∑

A∈NJ

∫
B̂A(ĉn)

�A,p(ŝ
∗
τ,1(x), . . . , ŝ

∗
τ,J (x))d Q(x,τ ),

where for j ∈ NJ , ŝ∗
τ, j (x)≡ rn, j (v̂

∗
τ, j (x)− v̂τ, j (x))/σ̂ ∗

τ, j (x). We also define

â∗ ≡
∑

A∈NJ

∫
B̂A(ĉn)

E∗�A,p(ŝ
∗
τ,1(x), . . . , ŝ

∗
τ,J (x))d Q(x,τ ).

Let c∗
α be the (1 −α)-th quantile from the bootstrap distribution of θ̂∗ and take

c∗
α,η = max{c∗

α,h
d/2η+ â∗}

as our critical value, where η ≡ 10−3 is a small fixed number.
One of the main technical contributions of this article is to present precise con-

ditions under which this proposal of bootstrap test works. We present and discuss
them in subsequent sections.

To see the intuition for the bootstrap validity, first note that the uniform conver-
gence of rn, j{v̂τ, j (x)− vn,τ, j (x)}/σ̂τ, j (x) over (x,τ ) implies that

Bn,A(cn,L ,cn,U )⊂ B̂A(ĉn)⊂ Bn,A(cn,U ,cn,L ) (3.4)

with probability approaching one, whenever P
{
cn,L ≤ ĉn ≤ cn,U

}→ 1. There-
fore, if

√
logn/cn,L → 0, then, (letting ŝτ, j ≡ rn, j (v̂τ, j (x)− vn,τ, j (x))/σ̂τ, j (x)),

we have

θ̂ ≤
∑

A∈NJ

∫
Bn,A(cn,L ,cn,U )

�A,p
(
ŝτ,1(x), . . . , ŝτ,J (x)

)
d Q(x,τ ), (3.5)

with probability approaching one, by Lemma 1 and the null hypothesis. When
the last sum has a nondegenerate limit, we can approximate its distribution by the
bootstrap distribution∑
A∈NJ

∫
Bn,A(cn,L ,cn,U )

�A,p
(
ŝ∗
τ,1(x), . . . , ŝ

∗
τ,J (x)

)
d Q(x,τ )

≤
∑

A∈NJ

∫
B̂A(ĉn)

�A,p
(
ŝ∗
τ,1(x), . . . , ŝ

∗
τ,J (x)

)
d Q(x,τ )≡ θ̂∗,
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where the inequality follows from (3.4).8 Thus the critical value is read from the
bootstrap distribution of θ̂∗. On the other hand, if the last sum in (3.5) has limiting
distribution degenerate at zero, we simply take a small positive numberη to control
the size of the test. This results in our choice of c∗

α,η = max{c∗
α,h

d/2η+ â∗}.

3.2. Assumptions

In this section, we provide assumptions needed to develop general results. We
assume that S ≡ X ×T is a compact subset of a Euclidean space. We begin with
the following assumption.

Assumption A1 (Asymptotic linear representation). For each j ∈ NJ ≡
{1, . . . , J }, there exists a nonstochastic function vn,τ, j (·) : Rd → R such that (a)
vn,τ, j (x)≤ 0 for all (x,τ ) ∈ S under the null hypothesis, and (b) as n → ∞,

sup
(x,τ )∈S

∣∣∣∣rn, j

{
v̂τ, j(x)− vn,τ, j(x)

σ̂τ, j(x)

}
−
√

nhd{ĝτ, j(x)−Eĝτ, j(x)}
∣∣∣∣

= oP (
√

hd ), P-uniformly, (3.6)

where, with {(Y 

i ,X


i )}n
i=1 being a random sample such that Yi =

(Y 

i1 , . . . ,Y



i J )


 ∈ RJ L̄ , Yi j ∈ RL̄ , Xi ∈ Rd , and the distribution of Xi is abso-
lutely continuous with respect to Lebesgue measure,9 we define

ĝτ, j(x)≡ 1

nhd

n∑
i=1

βn,x,τ, j

(
Yi j ,

Xi − x

h

)
,

and βn,x,τ, j : RL̄ ×Rd → R is a function which may depend on n ≥ 1.

Assumption A1 requires that there exist a nonparametric function vn,τ, j (x)
around which the asymptotic linear representation holds uniformly in P ∈P , and
vn,τ, j (x)≤ 0 under the null hypothesis. The required rate of convergence in (3.6)
is oP(hd/2) instead of oP(1). We need this stronger convergence rate primarily
because θ̂ − an is OP (hd/2) for some nonstochastic sequence an .10

When v̂τ, j (x) is a sample mean of i.i.d. random quantities involving non-
negative kernels and σ̂n,τ (x) = 1, we may take vn,τ, j (x) = Ev̂τ, j (x), and then
oP(

√
hd) is in fact precisely equal to 0. If the original nonparametric function

vτ, j (·) satisfies some smoothness conditions, we may take vn,τ, j (x) = vτ, j (x),
and handle the bias part Ev̂τ, j (x)− vτ, j (x) using the standard arguments to
deduce the error rate oP(

√
hd ). Assumption A1 admits both set-ups. For instance,

consider the simple example in Section 2.3. The asymptotic linear representation
in Assumption A1 can be shown to hold with

βn,x,1 (Yi , (Xi − x)/h)= Yi K ((Xi − x)/h)/σn,1(x),

where σ 2
n,1(x)= E[Y 2

i K 2((Xi − x)/h)]/h, if σ̂n,1(x) is chosen as in (2.8).
The following assumption for βn,x,τ, j essentially defines the scope of this

paper’s framework.
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Assumption A2 (Kernel-type condition). For some compactK0 ⊂ Rd that does
not depend on P ∈ P or n, it is satisfied that βn,x,τ, j (y,u)= 0 for all u ∈ Rd\K0
and all (x,τ, y) ∈ X × T ×Yj and all j ∈ NJ , where Yj denotes the support
of Yi j .

Assumption A2 can be immediately verified when the asymptotic linear rep-
resentation in (3.6) is established. This condition is satisfied in particular when
the asymptotic linear representation involves a multivariate kernel function with
bounded support in a multiplicative form. In such a case, the set K0 depends only
on the choice of the kernel function, not on any model primitives.

Assumption A3 (Uniform convergence rate for nonparametric estimators). For
all j ∈ NJ ,

sup
(x,τ )∈S

rn, j

∣∣∣∣ v̂τ, j (x)− vn,τ, j (x)

σ̂τ, j (x)

∣∣∣∣= OP

(√
logn

)
, P-uniformly.

Assumption A3 (in combination with A5 below) requires that v̂τ, j (x) −
vn,τ, j (x) have the uniform convergence rate of OP (r

−1
n, j

√
logn) uniformly over

P ∈ P . Lemma 2 in Section 3.4 provides some sufficient conditions for this
convergence.

We now introduce conditions for the bandwidth h and the tuning parameter cn

for the contact sets.

Assumption A4 (Rate conditions for tuning parameters). (i) As n → ∞,
h → 0,

√
logn/rn → 0, and n−1/2h−d−ν1 → 0 for some arbitrarily small

ν1 > 0, where rn ≡ minj∈NJ rn, j .

(ii) For each n ≥ 1, there exist nonstochastic sequences cn,L > 0 and cn,U > 0
such that cn,L ≤ cn,U , and

inf
P∈P

P
{
cn,L ≤ ĉn ≤ cn,U

}→ 1, and
√

logn/cn,L + cn,U/rn → 0,

as n → ∞.

The requirement that
√

logn/rn → 0 is satisfied easily for most cases where rn

increases at a polynomial order in n. Assumption A4(ii) requires that ĉn increase
faster than

√
logn but slower than rn with probability approaching one.

Assumption A5 (Regularity conditions for σ̂τ, j (x)). For each
(τ, j) ∈ T × NJ , there exists σn,τ, j (·) : X → (0,∞) such that
liminfn→∞ inf(x,τ )∈S infP∈P σn,τ, j (x) > 0, and

sup
(x,τ )∈S

∣∣σ̂τ, j (x)−σn,τ, j (x)
∣∣= oP(1), P-uniformly.

Assumption A5 requires that the scale normalization σ̂τ, j (x) should be asymp-
totically well defined. The condition precludes the case where estimator σ̂τ, j (x)
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converges to a map that becomes zero at some point (x,τ ) in S. Assumption A5
is usually satisfied by an appropriate choice of σ̂τ, j (x). When one chooses
σ̂τ, j (x) = 1, which is permitted in our framework, Assumption A5 is immedi-
ately satisfied with σn,τ, j (x) = 1. Again, if we go back to the simple example
considered in Section 2.3, it is straightforward to see that under regularity con-
ditions, with the subscript τ suppressed, σ̂ 2

1 (x)= σ 2
n,1(x)+ oP(1) and σ 2

n,1(x)=
σ 2

1 (x)+o(1), where σ 2
1 (x)≡ E(Y 2|X = x) f (x)

∫
K 2(u)du, as n → ∞. The con-

vergence can be strengthened to a uniform convergence when σ 2
1 (x) is bounded

away from zero uniformly over x ∈ X and P ∈ P , so that Assumption A5 holds.
We introduce assumptions about the moment conditions for βn,x,τ, j (·, ·) and

other regularity conditions. For τ ∈ T and ε1 > 0, let Sτ (ε1) ≡ {x + a : x ∈ Sτ ,
a ∈ [−ε1,ε1]d}, where Sτ ≡ {x ∈X : (x,τ ) ∈S} for each τ ∈ T . Let U ≡K0 +K0
such that U contains {0} in its interior andK0 is the same as Assumption A2. Here,
+ denotes the Minkowski sum of sets.

Assumption A6. (i) There exist M ≥ 2(p+2), C > 0, and ε1> 0 such that

E[|βn,x,τ, j
(
Yi j ,u

) |M |Xi = x] f (x)≤ C,

for all (x,u) ∈ Sτ (ε1)×U , τ ∈ T , j ∈ NJ , n ≥ 1, and P ∈ P , where f (·)
is the density of Xi .11

(ii) For each a ∈ (0,1/2), there exists a compact set Ca ⊂ Rd such that

0< inf
P∈P

P{Xi ∈ Rd\Ca} ≤ sup
P∈P

P{Xi ∈ Rd\Ca}< a.

Assumption A6(i) requires that conditional moments of βn,x,τ, j
(
Yi j ,z

)
be

bounded. Assumption A6(ii) is a technical condition for the distribution of Xi .
The third inequality in Assumption A6(ii) is satisfied if the distribution of Xi is
uniformly tight in P , and follows, for example, if supP∈PE‖Xi‖ <∞. The first
inequality in Assumption A6(ii) requires that there be a common compact set out-
side which the distribution of Xi still has positive probability mass uniformly over
P ∈ P . The main thrust of Assumption A6(ii) lies in the requirement that such a
compact set be independent of P ∈P . While it is necessary to make this technical
condition explicit as stated here, the condition itself appears very weak.

This article asymptotic analysis adopts the approach of Poissonization (see,
e.g., Horváth (1991) and Giné, Mason, and Zaitsev (2003)). However, exist-
ing methods of Poissonization are not readily applicable to our testing prob-
lem, mainly due to the possibility of local or global redundancy among the
nonparametric functions. In particular, the conditional covariance matrix of
βn,x,τ, j (Yi j ,u)’s across different (x,τ, j)’s given Xi can be singular in the limit.
Since the empirical researcher rarely knows a priori the local relations among
nonparametric functions, it is important that the validity of the test is not sensitive
to the local relations among them, i.e., the validity should be uniform in P .

This article deals with this challenge in three steps. First, we introduce a
Poissonized version of the test statistic and apply a certain form of regularization
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to facilitate the derivation of its limiting distribution uniformly in P ∈ P , i.e.,
regardless of singularity or degeneracy in the original test statistic. Second,
we use a Berry-Esseen-type bound to compute the finite sample influence of
the regularization bias and let the regularization parameter go to zero care-
fully, so that the bias disappears in the limit. Third, we translate thus com-
puted limiting distribution into that of the original test statistic, using so-called
de-Poissonization lemma. This is how the uniformity issue in this complex sit-
uation is covered through the Poissonization method combined with the method
of regularization.

3.3. Asymptotic Validity of Bootstrap Procedure

Recall that E∗ and P∗ denote the expectation and the probability under the boot-
strap distribution. We make the following assumptions for v̂∗

τ, j (x).

Assumption B1 (Bootstrap asymptotic linear representation). For each j ∈NJ ,

sup
(x,τ )∈S

∣∣∣∣∣rn, j

{
v̂∗
τ, j (x)− v̂τ, j(x)

σ̂ ∗
τ, j(x)

}
−
√

nhd{ĝ∗
τ, j(x)−E∗ ĝ∗

τ, j(x)}
∣∣∣∣∣

= oP∗(
√

hd ), P-uniformly,

where

ĝ∗
τ, j(x)≡ 1

nhd

n∑
i=1

βn,x,τ, j

(
Y ∗

i j ,
X∗

i − x

h

)
,

and βn,x,τ, j is a real valued function introduced in Assumption A1.

Assumption B2. For all j ∈ NJ ,

sup
(x,τ )∈S

rn, j

∣∣∣∣∣ v̂
∗
τ, j(x)− v̂τ, j(x)

σ̂ ∗
τ, j(x)

∣∣∣∣∣= OP∗ (
√

logn), P-uniformly.

Assumption B3. For all j ∈ NJ ,

sup
(x,τ )∈S

∣∣∣σ̂ ∗
τ, j(x)− σ̂τ, j(x)

∣∣∣= oP∗(1), P-uniformly.

Assumption B1 is the asymptotic linear representation of the bootstrap esti-
mator v̂∗

τ, j (x). The proof of the asymptotic linear representation can be typically
proceeded in a similar way that one obtains the original asymptotic linear rep-
resentation in Assumption A1. Assumptions B2 and B3 are the bootstrap ver-
sions of Assumptions A3 and A5. Proving Assumption B3 is very similar to the
way we prove Assumption A5. One can use similar arguments in the proof of
Lemma 2(ii) below. (See the supplemental note for its proof.) Sufficient condi-
tions for Assumption B2 are provided in Lemma 2(ii) below.

Assumption B4 (Bandwidth condition). n−1/2h
−
(

3M−4
2M−4

)
d−ν2 → 0 as n → ∞,

for some small ν2 > 0 and for M > 0 that appears in Assumption A6(i).
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When βn,x,τ, j
(
Yi j ,u

)
is bounded uniformly over (n,x,τ, j), the band-

width condition in Assumption B4 can be reduced to n−1/2h−3d/2−ν2 → 0.
If Assumption A6(i) holds with M = 6 and p = 1, the bandwidth condition in
Assumption B4 is reduced to n−1/2h−7d/4−ν2 → 0.

Note that Assumption B4 is stronger than the bandwidth condition in Assump-
tion A4(i). The main reason is that we need to prove that for some a∞ > 0, we
have an = a∞ + o(hd/2) and a∗

n = a∞ + oP(hd/2), P-uniformly, where an is an
appropriate location normalizer of the test statistic, and a∗

n is a bootstrap coun-
terpart of an .To show these, we utilize a Berry-Esseen-type bound for a nonlin-
ear transform of independent sum of random variables. Since the approximation
error depends on the moment bounds for the sum, the bandwidth condition in
Assumption B4 takes a form that involves M > 0 in Assumption A6.

We now present the result of the uniform validity of our bootstrap test.

THEOREM 1. Suppose that Assumptions A1–AA6 and B1–B4 hold. Then

limsup
n→∞

sup
P∈P0

P{θ̂ > c∗
α,η} ≤ α.

One might ask whether the bootstrap test 1{θ̂ > c∗
α,η} can be asymptotically

exact, i.e., whether the inequality in Theorem 1 can hold as an equality. As we
show below, the answer is affirmative. The remaining issue is a precise formu-
lation of a subset of P0 such that the rejection probability of the bootstrap test
achieves the level α asymptotically, uniformly over the subset.

To see when the test will have asymptotically exact size, we apply Lemma 1 to
find that with probability approaching one,

θ̂ =
∑

A∈NJ

∫
Bn,A(cn,U ,cn,L )

�A,p
(
ŝτ (x)+ un,τ (x ; σ̂ ))d Q(x,τ ),

where ŝτ (x) ≡ [
rn, j {v̂n,τ, j (x)− vn,τ, j (x)}/σ̂τ, j (x)

]J
j=1, and un,τ (x ; σ̂ ) ≡[

rn, j vn,τ, j (x)/σ̂τ, j (x)
]J

j=1 , and cn,U > 0 and cn,L > 0 are nonstochastic
sequences that satisfy Assumption A4(ii). We fix a positive sequence qn → 0,
and write the right hand side as∑
A∈NJ

∫
Bn,A(qn)

�A,p
(
ŝτ (x)+ un,τ (x ; σ̂ ))d Q(x,τ )

+
∑

A∈NJ

∫
Bn,A(cn,U ,cn,L )\Bn,A(qn)

�A,p
(
ŝτ (x)+ un,τ (x ; σ̂ ))d Q(x,τ ). (3.7)

Under the null hypothesis, we have vn,τ, j (x) ≤ 0, and hence the last sum is
bounded by∑
A∈NJ

∫
Bn,A(cn,U ,cn,L )\Bn,A(qn)

�A,p
(
ŝτ (x)

)
d Q(x,τ ),
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with probability approaching one. Using the uniform convergence rate in
Assumption A3, we find that as long as

Q(Bn,A(cn,U ,cn,L)\Bn,A(qn))→ 0,

fast enough, the second term in (3.7) vanishes in probability. As for the first
integral, since for all x ∈ Bn,A(qn), we have |rn, j vn,τ, j (x)/σn,τ, j (x)| ≤ qn for
all j ∈ A, we use the Lipschitz continuity of the map �A,p on a compact set, to
approximate the leading sum in (3.7) by

θ̄1,n(qn)≡
∑

A∈NJ

∫
Bn,A(qn)

�A,p
(
ŝτ (x)

)
d Q(x, τ ).

Thus we let

P̃n(λn,qn)≡
⎧⎨⎩P ∈ P : Q

⎛⎝ ⋃
A∈NJ

Bn,A(cn,U ,cn,L)\Bn,A(qn)

⎞⎠≤ λn

⎫⎬⎭ , (3.8)

and find that

θ̂ = θ̄1,n(qn)+oP (h
d/2), P̃n(λn,qn)∩P0-uniformly,

as long as λn and qn converge to zero fast enough. We will specify the conditions
in Theorem 2 below.

Let us deal with θ̄1,n(qn). First, it can be shown that there are sequences of
nonstochastic numbers an(qn) ∈ R and σn(qn) > 0 that depend on qn such that

h−d/2{θ̄1,n(qn)−an(qn)}/σn(qn)
d→ N (0,1), (3.9)

if liminfn→∞σn(qn) > 0. We provide the precise formulae for σn(qn) and an(qn)
in Section 4.3. Since the distribution of h−d/2{θ̄1,n(qn) − an(qn)}/σn(qn) is
approximated by the bootstrap distribution of h−d/2{θ̂∗ −an(qn)}/σn(qn) in large
samples, we find that

h−d/2{c∗
α −an(qn)}
σn(qn)

=
−1(1−α)+oP(1).

Hence the bootstrap critical value c∗
α will dominate h−d/2η+ â∗ > 0, if for all

n ≥ 1,


−1(1−α) ≥ h−d/2{hd/2η+ â∗ −an(qn)}
σn(qn)

= η+h−d/2{â∗ −an(qn)}
σn(qn)

.

We can show that â∗ − an(qn)= oP(hd/2), which follows if λn in (3.8) vanishes
to zero sufficiently fast. Hence if

σn(qn) ≥ η/
−1(1−α),
we have c∗

α becomes approximately equal to our bootstrap critical value c∗
α,η.

This leads to the following formulation of probabilities.
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DEFINITION 2. Define

Pn(λn,qn)≡
{

P ∈ P̃n(λn,qn) : σn(qn)≥ η/
−1(1−α)},
where P̃n(λn,qn) is as defined in (3.8).

The following theorem establishes the asymptotic exactness of the size of the
bootstrap test over P ∈ Pn(λn,qn)∩P0.

THEOREM 2. Suppose that Assumptions A1–A6 and B1–B4 hold. Let λn → 0
and qn → 0 be positive sequences such that

h−d/2 (logn)p/2λn → 0 and (3.10)

h−d/2qn{(logn)(p−1)/2 +q p−1
n } → 0.

Then

limsup
n→∞

sup
P∈Pn(λn ,qn)∩P0

∣∣∣P{θ̂ > c∗
α,η}−α

∣∣∣= 0.

Theorem 2 shows that the rejection probability of our bootstrap test achieves
exactly the level α uniformly over the set of probabilities in Pn(λn,qn) ∩ P0.
If vn,τ, j (x)≡ 0 for each (x,τ ) and for each j (the least favorable case, say PLFC),
then it is obvious that the distribution PLFC belongs to Pn(λn,qn) for any positive
sequencesλn → 0 and qn → 0. This would be the only case of asymptotically exact
coverage if bootstrap critical values were obtained as in (2.11), without contact set
estimation. By estimating the contact sets and obtaining a critical value based on
them, Theorem 2 establishes the asymptotically uniform exactness of the bootstrap
test for distributions such that they may not satisfy vn,τ, j (x)≡ 0 everywhere.

3.4. Sufficient Conditions for Uniform Convergences in
Assumptions A3 and B2

This subsection gives sufficient conditions that yield Assumptions A3 and B2.
The result is formalized in the following lemma.

LEMMA 2. (i) Suppose that Assumptions A1–A2 hold and that for each
j ∈ NJ , there exist finite constants C,γj > 0, and a positive sequence
δn, j > 0 such that for all n ≥ 1, and all (x1,τ1) ∈ S,

E

[
sup

(x2,τ2)∈S:‖x1−x2‖+‖τ1−τ2‖≤λ
(
bn,i j (x1,τ1)−bn,i j (x2,τ2)

)2]≤ Cδ2
n, jλ

γj ,

for all λ > 0, (3.11)

where bn,i j (x1,τ1) ≡ βn,x1,τ1, j
(
Yi j ,(Xi − x1)/h

)
and limsupn→∞

E[sup(x,τ )∈S b4
n,i j (x,τ )] ≤ C and δn, j = ns1, j and h = ns2 for some

s1, j ,s2 ∈ R. Furthermore, assume that

n−1/2h−d−ν → 0,

for some small ν > 0. Then, Assumption A3 holds.

(ii) Suppose further that Assumptions B1 and B3 hold. Then, Assumption B2
holds.
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The condition (3.11) is the local L2-continuity condition for
βn,x,τ, j

(
Yi j ,(Xi − x)/h

)
in (x,τ ). The condition corresponds to what

Andrews (1994) called “Type IV class”. The condition is satisfied by numerous
maps that are continuous or discontinuous, as long as regularity conditions for
the random vector (Yi ,Xi ) are satisfied.12 Typically, δn, j diverges to infinity at a
polynomial rate in h−1. The constant γj is 2 or can be smaller than 2, depending
on the smoothness of the underlying function bn,i j (x,τ ). The value of γj does
not affect the asymptotic theory of this article, as long as it is strictly positive. In
Section 6.4, we provide primitive sufficient conditions to establish the uniform
validity of our bootstrap test for the first empirical example.

4. POWER PROPERTIES

In this section, we consider the power properties of the bootstrap test.13

In Section 4.1, we establish the consistency of our test. Section 4.2 provides
heuristic arguments behind local power properties of our tests, and Section 4.3
presents the local power function in a general form.14

4.1. Consistency

First, to show consistency of our test, we make the following assumption.

Assumption C1. For each j ∈ NJ and (x,τ ) ∈ S, vn,τ, j (x)= vτ, j (x)+ o(1),
and

limsup
n→∞

sup
(x,τ )∈S

|vn,τ, j (x)|<∞. (4.1)

The pointwise convergence vn,τ, j (x) = vτ, j (x)+ o(1) holds typically by an
appropriate choice of vn,τ, j (x). In many examples, condition (4.1) is often
implied by Assumptions A1–A6. If we revisit the simple example considered in
Section 2.3, it is straightforward to see that under Assumptions A1–A6, with the
subscript τ suppressed, vn,1(x) = v1(x)+ o(1), where vn,1(x) ≡ Ev̂n,1(x) and
v1(x)≡ E(Y |X = x) f (x), and (4.1) holds easily.

We now establish the consistency of our proposed test as follows.

THEOREM 3. Suppose that Assumptions A1–A6, B1–B4, and C1 hold and that
we are under a fixed alternative hypothesis such that∫
�p
(
vτ,1(x), . . . ,vτ,J (x)

)
d Q(x,τ ) > 0.

Then as n → ∞,

P{θ̂ > c∗
α,η} → 1.

4.2. Local Power Analysis: Definitions and Heuristics

In this section, we investigate the local power properties of our test. For
local power analysis, we formally define the space of Pitman directions. Let D
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be the collection of RJ -valued bounded functions on X × T such that for each
δ = (δ1, . . . ,δJ ) ∈ D, Q{(x,τ ) ∈ S : δj (x,τ ) �= 0} > 0 for some j = 1, . . . , J .
That is, at least one of the components of any δ ∈D is a nonzero function a.e. For
each δ = (δ1, . . . ,δJ ) ∈ D, we write δτ, j (x)= δj (x,τ ), j = 1, . . . , J .

For a given vector of sequences bn = (bn,1, . . . ,bn,J ),such that bn, j → ∞, and
δ ∈ D, we consider the following type of local alternatives:

Hδ : vτ, j (x)= v0
τ, j (x)+

δτ, j (x)

bn, j
, for all j ∈ NJ , (4.2)

where v0
τ, j (x)≤ 0 for all (x,τ, j) ∈ X ×T ×NJ , δτ, j (x) > 0 for some (x,τ, j) ∈

X × T ×NJ such that vτ, j (x) > 0 for some (x,τ, j) ∈ X × T ×NJ . Note that
in (4.2), vτ, j (x) is a sequence of Pitman local alternatives that consist of three
components: v0

τ, j (x), bn , and δτ, j (x).

The first component v0
τ, j (x) determines where the sequence of local alterna-

tives converges to. For example, if v0
τ, j (x) ≡ 0 for all (x,τ, j), then we have a

sequence of local alternatives that converges to the least favorable case. We allow
for negative values for v0

τ, j (x), so that we include the local alternatives that do not
converge to the least favorable case as well.

From here on, we assume the local alternative hypotheses of the form in (4.2).
We fix v0

τ, j (x) and identify each local alternative with a pair (bn,δ) for each
Pitman direction δ ∈ D. The following definitions are useful to explain our
local power results.

DEFINITION 3. (i) Given a Pitman direction δ ∈D, we say that an α-level
test, 1{T > cα}, has nontrivial local power against (bn,δ), if under the
local alternatives (bn,δ),

liminfn→∞ P {T > cα}> α,
and say that the test has trivial local power against (bn,δ), if under the
local alternatives (bn,δ),

limsupn→∞ P {T > cα} ≤ α.

(ii) Given a collection D, we say that a test has convergence rate bn against D,
if the test has nontrivial local power against (bn,δ) for some δ ∈ D, and
has trivial local power against (b′

n,δ) for all δ ∈ D and all b′
n such that

b′
n, j/bn, j → ∞ as n → ∞, for all j = 1, . . . , J .

One of the remarkable aspects of the local power properties is that our test has
two types of convergence rates. More specifically, there exists a partition (D1,D2)
of D, where our test has a rate bn against D1 and another rate b′

n against D2.
Furthermore, in many nonparametric inequality testing environments, the faster
of the two rates bn and b′

n achieves the parametric rate of
√

n.
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To see this closely, let us assume the set-up of testing inequality restrictions
on a mean regression function in Section 2.4, and consider the following local
alternatives:

vn,1(x)= v0(x)+ δ(x)

bn
, (4.3)

where v0(x)≤ 0 for all x ∈ X , and δ ∈ D.
First, we set bn = √

n. Then under this local alternative hypothesis (bn,δ), we
can verify that with probability approaching one,

h−1/2(θ̂ −an,0)= h−1/2

{∫
B0

n (cn )

[
Zn,1(x)+

√
nhv0(x)

σ̂1(x)
+ h1/2δ(x)

σ̂1(x)

]
+

dx −an,0

}
, (4.4)

where Zn,1(x) = √
nh
{
v̂1(x)− vn,1(x)

}
/σ̂1(x), B0

n (cn) ={
x ∈ X :

∣∣∣√nhv0(x)
∣∣∣≤ cn

}
, cn → ∞,

√
logn/cn → 0, and

an,0 = E

[∫
B0

n (cn)

[
Zn,1(x)

]
+ dx

]
.

Under regularity conditions, the right-hand side of (4.4) is approximated by

h−1/2

{∫
B0(0)

[
Zn,1(x)+ h1/2δ(x)

σ1(x)

]
+

dx −an,δ

}
+h−1/2 {an,δ−an,0

}
, (4.5)

where B0(0)= {x ∈ X : v0(x)= 0} and

an,δ = E

[∫
B0(0)

[
Zn,1(x)+ h1/2δ(x)

σ1(x)

]
+

dx

]
.

The leading term in (4.5) converges in distribution to Z1 ∼ N(0,σ 2
0 ) precisely as

in (2.10). Furthermore, we can show that

an,δ =
∫

B0(0)
E
[
Z1 + h1/2δ(x)

σ1(x)

]
+

dx +o(h1/2) and

an,0 =
∫

B0(0)
E [Z1]+ dx +o(h1/2).

Therefore, as for the last term in (4.5), we find that

h−1/2 {an,δ −an,0
}=

∫
B0(0)

h−1/2
(

E
[
Z1 + h1/2δ(x)

σ1(x)

]
+

−E [Z1]+
)

dx +o(1)

= 2φ(0)
∫

B0(0)

δ(x)

σ1(x)
dx +o(1),
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where the last equality follows from expanding

h−1/2
{

E
[
Z1 + h1/2δ(x)/σ1(x)

]
+ − E [Z1]+

}
. We conclude that under the

local alternatives, we have

h−1/2(θ̂ −an,0) →d Z1 +2φ(0)
∫

B0(0)

δ(x)

σ1(x)
dx .

The magnitude of the last term in the limit determines the local power of the test.
Thus under Pitman local alternatives such that∫

B0(0)

δ(x)

σ1(x)
dx > 0, (4.6)

the test has nontrivial power against
√

n-converging Pitman local alternatives.
Note that the integral in (4.6) is defined on the population contact set B0(0). Thus,
the test has nontrivial power, unless the contact set has Lebesgue measure zero or
δ(·) is “too often negative” on the contact set.

When the integral in (4.6) is zero, we consider the local alternatives (bn,δ) with
a slower convergence rate bn = n1/2h1/4. Following similar arguments as before,
we now have

h−1/2(θ̂ −an,0)→d Z1 + limn→∞h−1/2 {ān,δ −an,0
}
,

where

ān,δ =
∫

B0(0)
E
[

Zn,1(x)+ h1/4δ(x)

σ1(x)

]
+

dx,

which can be shown again to be equal to∫
B0(0)

E
[
Z1 + h1/4δ(x)

σ1(x)

]
+

dx +o(h1/2).

However, observe that

h−1/2
∫

B0(0)

{
E
[
Z1 + h1/4δ(x)

σ1(x)

]
+

−E [Z1]+
}

dx

= h−1/42φ(0)
∫

B0(0)

δ(x)

σ1(x)
dx + 1

2

∫
B0(0)

δ2(x)

σ 2
1 (x)

dx +o(1)

= 1

2

∫
B0(0)

δ2(x)

σ 2
1 (x)

dx +o(1)

because
∫

B0(0){δ(x)/σ1(x)}dx = 0. We find that under the local alternative

hypothesis in (4.3) with bn = n1/2h1/4,

h−1/2(θ̂ − an,0) →d Z1 + 1

2

∫
B0(0)

δ2(x)

σ 2
1 (x)

dx .
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Therefore, even when
∫

B0(0){δ(x)/σ1(x)}dx = 0, the test still has nontrivial power

against n1/2h1/4-converging Pitman local alternatives, if the Pitman directions are
such that∫

B0(0)
{δ2(x)/σ 2

1 (x)}dx > 0.

Now let us consider the partition (D1,D2) of D, where,

D1 =
{
δ ∈ D :

∫
B0(0)

δ(x)/σ1(x)dx �= 0

}
and

D2 =
{
δ ∈ D :

∫
B0(0)

δ(x)/σ1(x)dx = 0 and
∫

B0(0)
{δ2(x)/σ 2

1 (x)}dx > 0

}
.

When infx∈Xσ 2
1 (x) > c > 0 for some c > 0 (recall Assumption A5) and

Q(B0(0))> 0, we have
∫

B0(0){δ2(x)/σ 2
1 (x)}dx > 0 and the set {D1,D2} becomes

a partition of D. Thus the bootstrap test has a convergence rate of
√

n against D1
and n1/2h1/4-rate against D2. In the next section, Corollary 1 provides a general
result of this phenomenon of dual convergence rates of our bootstrap test.

4.3. Local Power Analysis: Results

We now provide general local power functions explicitly. We first present
explicit forms of location and scale normalizers, an(qn) and σn(qn) in (3.9). Let
for j,k ∈ NJ , and τ1,τ2 ∈ T ,

ρn,τ1,τ2, j,k(x,u)≡ 1

hd
E
[
βn,x,τ1, j

(
Yi j ,

Xi − x

h

)
βn,x,τ2,k

(
Yik ,

Xi − x

h
+u

)]
. (4.7)

This function approximates the asymptotic covariance between
√

n(v̂τ, j (x)−
vn,τ, j (x))/σ̂τ, j (x) and

√
n(v̂τ, j (x + uh)− vn,τ, j (x + uh))/σ̂τ, j (x). We define

�n,τ1,τ2(x,u) to be the J -dimensional square matrix with ( j,k)-th entry given
by ρn,τ1,τ2, j,k(x,u).

Define for v ∈ RJ ,

�̄x,τ (v) ≡
∑

A∈NJ

�A,p(v)1
{
(x,τ) ∈ Bn,A(qn)

}
.

Then we define

an(qn)≡
∫
X

∫
T

E
[
�̄x,τ1(W

(1)
n,τ,τ (x,0))

]
dτdx,

and

σ 2
n (qn)≡

∫
U

∫
X

∫
T

∫
T

Cn,τ1,τ2(x,u)dτ1dτ2dxdu, (4.8)

where

Cn,τ1,τ2(x,u)≡ Cov
(
�̄x,τ1(W

(1)
n,τ1,τ2

(x,u)), �̄x,τ2 (W
(2)
n,τ1,τ2

(x,u))
)
,
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and [W(1)
n,τ1,τ2(x,u)


,W(2)
n,τ1,τ2(x,u)


]
 is a mean zero R2J -valued Gaussian
random vector whose covariance matrix is given by[
�n,τ1,τ1(x,0)
�n,τ1,τ2(x,u)



�n,τ1,τ2(x,u)

�n,τ2,τ2(x + uh,0)

]
. (4.9)

The multiple integral in (4.8) is nonnegative. The limit of the quantity σ 2
n (qn) as

n → ∞, if it is positive, is nothing but the asymptotic variance of the test statistic
θ̂ (after location-scale normalization).

We first make the following assumptions.

Assumption C2. (i) For each (τ, j) ∈ T ×NJ , there exists a map v0
n,τ, j :

Rd → R such that for each x ∈ Sτ (ε1), v
0
n,τ, j (x)≤ 0, and

vn,τ, j (x)= v0
n,τ, j (x)+

δτ, j (x)

bn, j
(1 + o(1)), (4.10)

where o(1) is uniform in x ∈ Sτ and in τ ∈ T , as n → ∞ and bn, j → ∞ is the
positive sequence in (4.2).
(ii) sup(x,τ )∈S |σn,τ, j (x)−στ, j (x)| = o(1), as n → ∞, for some function στ, j (x)
such that inf(x,τ )∈S στ, j (x) > 0.

Assumption C2 can also be shown to hold in many examples. When appropri-
ate smoothness conditions for vτ, j (x) hold and a suitable (possibly higher-order)
kernel function is used, we can take vn,τ, j (x) in Assumption A1 to be identi-
cal to vτ, j (x), and hence Assumption C2 is implied by (4.2). For the simple
example in Section 2.4, if we take vn, j (x) = Ev̂ j (x), it follows that vn, j (x) =
v0

n, j (x)+ b−1
n, j

∫
δj (x + zh)K (z)dz, with v0

n, j (x) = ∫ v0
j (x + zh)K (z)dz. Hence

when δj (x) is uniformly continuous in x , we obtain Assumption C2.
The local asymptotic power function is based on the asymptotic normal

approximation of the distribution of θ̂ (after scale and location normalization)
under the local alternatives. For this purpose, we define the sequence of prob-
ability sets that admit the normal approximation under local alternatives. For
c1,c2 > 0, let B0

n (c1,c2) and B0
n,A(c1,c2) denote Bn(c1,c2) and Bn,A(c1,c2)

except that vn,τ, j (x)’s are replaced by v0
n,τ, j (x)’s in Assumption C2. As before,

we write B0
n (c)≡ B0

n (c,c).

DEFINITION 4. For any positive sequence λn → 0, define

P0
n (λn)≡

{
P ∈ P̃0

n (λn) : σ 2
n (0)≥ η/
−1(1 −α)

}
,

where P̃0
n (λn) is equal to P̃n(λn,qn) except that Bn,A(cn,U ,cn,L) and Bn,A(qn)

are replaced by B0
n,A(cn,U ,cn,L ) and B0

n,A(qn) for all A ∈ NJ , and qn is set to be
zero.

To give a general form of the local power function, let us define ψn,A,τ (·; x) :
RJ → [0,∞), (x,τ ) ∈ X ×T and A ⊂ NJ , as
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ψn,A,τ (y; x)= 1

σn(0)
E
[
�A,p

(
W
(1)
n,τ,τ (x,0)+ y

)]
·1
{
(x,τ ) ∈ B0

n,A(0)
}
.

The local power properties of the bootstrap test are mainly determined by the
slope and the curvature of this function. So, we define

ψ
(1)
n,A,τ (y; x)≡ ∂

∂y
ψn,A,τ (y; x) and ψ(2)n,A,τ (y; x)≡ ∂2

∂y∂y
ψn,A,τ (y; x), (4.11)

if the first derivatives and the second derivatives in the definition exist, respec-
tively.

Assumption C3. (i) There exists ε1 > 0 such that for all (τ, A) ∈ T ×NJ

and all x in the interior of Sτ (ε1), ψ
(1)
n,A,τ (0; x) exists for all n ≥ 1 and

ψ
(1)
A,τ (0; x)≡ lim

n→∞ψ
(1)
n,A,τ (0; x)

exists, and limsupn→∞ sup(x,τ )∈S |ψ(1)n,A,τ (0; x)|< C for some C > 0.

(ii) There exists ε1 > 0 such that for all (τ, A) ∈ T ×NJ and all x in the
interior of Sτ (ε1), ψ

(2)
n,A,τ (0; x) exists for all n ≥ 1 and

ψ
(2)
A,τ (0; x)≡ lim

n→∞ψ
(2)
n,A,τ (0; x)

exists, and limsupn→∞ sup(x,τ )∈S |ψ(2)n,A,τ (0; x)|< C for some C > 0.

To appreciate Assumption C3, consider the case where J = 2, A = {1,2},
and W

(1)
n,τ,τ (x,0) has a distribution denoted by Gn . Choose y1 ≥ y2 without

loss of generality. We take �p(v1,v2) = max{v1,v2,0}p . Then we can write

E[�A,p(W
(1)
n,τ,τ (x,0)+ y)] as∫

R2
(w1 + y1)

p1{w1 ∈ [w2 + y2 − y1,∞) and w2 ∈ [−y2,∞)}dGn(w1,w2)

+
∫

R2
(w2 + y2)

p 1{w1 ∈ (−∞,w2 + y2 − y1) and w2 ∈ [−y2,∞)}dGn(w1,w2)

+
∫

R2
(w1 + y1)

p1{w1 ∈ [−y1,∞) and w2 ∈ (−∞,−y2)}dGn(w1,w2).

Certainly the three quantities are all differentiable in (y1, y2).
The following theorem offers the local power function of the bootstrap test in a

general form.

THEOREM 4. Suppose that Assumptions A1–A6, B1–B4, C1–C2, and C3(i)
hold and that

h−d/2 (logn)p/2λn → 0, (4.12)
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as n → ∞. Then for each sequence Pn ∈ P0
n (λn), n ≥ 1, which satisfies the local

alternative hypothesis (bn,δ) for some δ ∈ D with bn = (rn, j h−d/2)J
j=1,

lim
n→∞ Pn{θ̂ > c∗

α,η} = 1 −
(z1−α−μ1(δ)) ,

where 
 denotes the standard normal cdf,

μ1(δ)≡
∑

A∈NJ

∫
ψ
(1)
A,τ (0; x)
δτ,σ (x)d Q(x,τ ),

and

δτ,σ (x)≡
(
δτ,1(x)

στ,1(x)
, . . . ,

δτ,J (x)

στ,J (x)

)
. (4.13)

Theorem 4 shows that if we take bn such that bn, j = rn, j h−d/2 for each
j = 1, . . . , J , the local asymptotic power of the test against (bn,δ) is determined
by the shift μ1(δ). Thus, the bootstrap test has nontrivial local power against
(bn,δ) if and only if

μ1(δ) > 0.

The test is asymptotically biased against (bn,δ) such that μ1(δ) < 0.
Suppose that

μ1(δ)= 0, (4.14)

for all A ∈ NJ , i.e., when δτ,σ has positive and negative parts which precisely
cancels out in the integration. Then, we show that the bootstrap test has nontrivial
asymptotic power against local alternatives that converges at a rate slower than
n−1/2 to the null hypothesis.

THEOREM 5. Suppose that the conditions of Theorem 4 and Assumption
C3(ii) hold. Then for each sequence Pn ∈ P0

n (λn), n ≥ 1, which satisfies the
local alternative hypothesis (bn,δ) for some δ ∈ D such that μ1(δ) = 0 and
bn = (rn, j h−d/4)J

j=1,

lim
n→∞ Pn{θ̂ > c∗

α,η} = 1 −
(z1−α−μ2(δ)) ,

where

μ2(δ)≡ 1

2

∑
A∈NJ

∫
δ
τ,σ (x)ψ

(2)
A,τ (0; x)δτ,σ (x)d Q(x,τ ).

The local power function depends on the limit of the curvature of the func-
tion ψn,A,τ (y; x) at y = 0, for all A ∈ NJ . When the function is strictly concave
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at 0 in the limit, ψ(2)A,τ (0; x) is positive definite on X × T , and in this case, the
bootstrap test has nontrivial power whenever δτ,σ (x) is nonzero on a set whose
intersection with B0

n (0) has Lebesgue measure greater than c> 0 for all n ≥ 1, for
some c > 0.

From Theorems 4 and 5, it is seen that the phenomenon of dual convergence
rates generally holds for our tests. To formally state the result, define

D1 ≡ {δ ∈ D : μ1(δ) �= 0} and

D2 ≡ {δ ∈ D : μ1(δ)= 0 and μ2(δ) > 0} .
When liminfn→∞ Q(B0

n (0)) > 0, the set {D1,D2} becomes a partition of the
space of Pitman directions D.

COROLLARY 1. Suppose that the conditions of Theorem 5 hold. Then the
bootstrap test has convergence rate bn = (rn, j h−d/2)J

j=1 against D1, and conver-

gence rate bn = (rn, j h−d/4)J
j=1 against D2.

When rn, j ’s diverge to infinity at the usual nonparametric rate rn, j = n1/2hd/2

as in many kernel-based estimators, the test has a parametric rate of convergence
bn = √

n and nontrivial local power against D1. However, the test has a conver-
gence rate slower than the parametric rate against D2.

5. MONTE CARLO EXPERIMENTS

In this section, we report the finite-sample performance of our proposed test for
the Monte Carlo design considered in (Andrews and Shi, 2013, Sect. 10.3, here-
after AS). The null hypothesis has the form

H0 : E(Y − θ |X = x)≤ 0 for each x ∈ X

with a fixed θ . AS generated a random sample of (Y,X) from the following model:

Y = f (X)+U,

where X ∼ Unif[−2,2], U follows truncated normal such that Ui =
min{max{−3,σ Ũi },3} with Ũi ∼ N(0,1) and σ = 1, and f (·) is a function with
an alternative shape. AS considered two functions:

fAS1(x) := Lφ(x10),

fAS2(x) := L ·max{φ((x − 1.5)10),φ((x + 1.5)10)}.
These two functions have steep slopes, fAS1 being a roughly plateau-shaped func-
tion and fAS2 a roughly double-plateau-shaped function, respectively. AS consid-
ered the following Monte Carlo designs:

DGP1: f (x)= fAS1(x) and L = 1; DGP2: f (x)= fAS1(x) and L = 5;

DGP3: f (x)= fAS2(x) and L = 1; DGP4: f (x)= fAS2(x) and L = 5.
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AS compared their tests with (Chernozhukov et al., 2013, hereafter CLR) and
Lee et al. (2013). The latter test uses conservative standard normal critical values
based on the least favorable configuration.

In this article, we used the same statistic for Lee et al. (2013) as
reported in AS. Specifically, we used the L1 version of the test with the
inverse standard error weight function. In implementing the test, we used
K (u) = (3/2)(1 − (2u)2)I (|u| ≤ 1/2) and h = 2 × ŝX × n−1/5, where I (A) is
the usual indicator function that has value one if A is true and zero otherwise and
ŝX is the sample standard deviation of X . Thus, the only difference between the
new test (which we call LSW2) and Lee et al. (2013) (which we call LSW1) is
the use of critical values: LSW1 uses the standard normal critical values based
on the least favorable configuration, whereas LSW2 uses bootstrap critical values
based on the estimated contact set. See the next subsection for details regarding
contact set estimation.

The experiments considered sample sizes of n = 100,250,500,1,000, and the
nominal level of α = 0.05. We performed 1,000 Monte Carlo replications in each
experiment. The number of bootstrap replications was 200.

The null hypothesis is tested on X = [−1.8,1.8]. To compare simulation
results from AS, the coverage probability (CP) is computed at nominal level 95%
when θ = maxx∈X f (x) and the false coverage probability (FCP) is computed at
nominal level 95% when θ = maxx∈X f (x)− 0.02.

5.1. Obtaining ĉn

To construct ĉn , we suggest the following procedure. First, define

S∗
n ≡ max

{
sup
( j,τ,x)

ŝ∗
τ, j (x),

√
logn

}
.

Then, set

ĉn = Ccs(log logn)qn(S
∗
n ), (5.1)

where qn(S∗
n ) is the (1 − 0.1/ logn) quantile of the bootstrap distribution of S∗

n ,
and Ccs ∈ {0.4,0.5,0.6}.

Although the rule-of-thumb for ĉn in (5.1) is not completely data-driven, it
has the advantage that even when ûτ, j (x) is not scale-invariant (say, by choosing
σ̂τ, j (x) ≡ 1), the tuning parameter ĉn automatically adjusts to any change in the
scale of ûτ, j (x), due to the term qn(S∗

n ); see Chernozhukov et al. (2013) for a
similar idea.15 This data-dependent choice of ĉn is encompassed by the theoretical
framework of this article, while many other choices are also admitted.16 Lastly,
recall that η ≡ 10−3 is a small fixed number.

5.2. Simulation Results

Tables 1 and 2 report the results of Monte Carlo experiments. In each table, figures
in columns (1)–(5) are from Table V of Andrews and Shi (2013), whereas those
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TABLE 1. Results for Monte Carlo experiments: coverage probability

(1) (2) (3) (4) (5) (6) (7) (8)
AS CLR LSW1 LSW2

n CvM KS series local Ccs = 0.4 Ccs = 0.5 Ccs = 0.6
linear

DGP1 100 0.986 0.986 0.707 0.804 1.00 0.982 0.994 0.998
250 0.975 0.973 0.805 0.893 1.00 0.971 0.976 0.979
500 0.975 0.970 0.872 0.925 1.00 0.953 0.963 0.974

1,000 0.971 0.966 0.909 0.935 1.00 0.964 0.971 0.975

DGP2 100 1.00 1.00 0.394 0.713 0.994 1.00 1.00
250 1.00 1.00 0.683 0.856 1.00 0.969 0.976 0.986
500 1.00 1.00 0.833 0.908 1.00 0.953 0.959 0.966

1,000 1.00 1.00 0.900 0.927 1.00 0.965 0.970 0.973

DGP3 100 0.970 0.969 0.620 0.721 0.973 0.987 0.995
250 0.969 0.964 0.762 0.854 1.00 0.963 0.972 0.976
500 0.963 0.957 0.854 0.900 1.00 0.955 0.962 0.966

1,000 0.969 0.963 0.901 0.927 1.00 0.948 0.954 0.957

DGP4 100 0.998 0.999 0.321 0.655 1.00 0.992 1.00 1.00
250 0.997 0.998 0.612 0.826 1.00 0.966 0.973 0.983
500 0.994 0.994 0.808 0.890 1.00 0.955 0.957 0.962

1,000 0.994 0.991 0.893 0.918 1.00 0.950 0.956 0.958

Notes: Figures in columns (1)–(5) are from Table V of Andrews and Shi (2013), whereas those in columns (6)–(8)
are based 1,000 Monte Carlo replications in each experiment, with the number of bootstrap replications being 200.
LSW1 refers to the test of Lee et al. (2013), which uses conservative standard normal critical values based on the least
favorable configuration. LSW2 refers to this paper that uses bootstrap critical values based on the estimated contact
set. The tuning parameter is chosen by the rule ĉn = Ccs log log(n)q1−0.1/ log(n)(S

∗
n ), where Ccs ∈ {0.4,0.5,0.6}.

in columns (6)–(8) are from our Monte Carlo experiments. Table 1 shows that
coverage probabilities of LSW2 are much closer to the nominal level than those
of LSW1. When Ccs = 0.4 and n = 100 or 250, we see some under-coverage for
LSW2, but it disappears as n gets larger. Table 2 reports the false coverage prob-
abilities (FCPs). Figures in columns (1)–(5) are “CP-corrected” by AS, where
those in columns (6)–(8) are not “CP-corrected”. However, CP-correction would
not change the results for either n ≥ 500 or c ≥ 0.5 since in each of these cases,
we have over-coverage. We can see that in terms of FCPs, LSW2 performs much
better than LSW1 in all DGPs. Furthermore, the performance of LSW2 is equiv-
alent to that of AS for DGP1, DGP3, and DGP4, and is superior to AS for DGP2.
Overall, our simulation results show that our new test is a substantially improved
version of LSW1 and is now very much comparable to AS. The relatively poor
performance of CLR in Tables 1 and 2 are mainly due to the experimental design.
If the underlying function is sharply peaked, as those in the reported simulations
of Chernozhukov et al. (2013), CLR performs better than AS. In unreported sim-
ulations, we confirmed that CLR performs better than LSW2 as well. This is very
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TABLE 2. Results for Monte Carlo experiments: false coverage probability

(1) (2) (3) (4) (5) (6) (7) (8)
AS CLR LSW1 LSW2

n CvM KS series local Ccs = 0.4 Ccs = 0.5 Ccs = 0.6
linear

DGP1 100 0.84 0.89 0.88 0.83 0.98 0.85 0.92 0.97
250 0.57 0.67 0.82 0.69 0.92 0.43 0.48 0.53
500 0.25 0.37 0.72 0.50 0.70 0.18 0.19 0.20

1,000 0.03 0.07 0.57 0.26 0.25 0.02 0.02 0.02

DGP2 100 1.0 1.0 0.91 0.89 0.99 0.97 0.99 1.0
250 1.0 1.0 0.85 0.73 0.96 0.47 0.53 0.62
500 0.97 0.99 0.77 0.56 0.82 0.20 0.23 0.25

1,000 0.70 0.89 0.61 0.33 0.40 0.03 0.03 0.03

DGP3 100 0.70 0.79 0.89 0.84 0.90 0.69 0.78 0.87
250 0.30 0.46 0.83 0.66 0.65 0.28 0.32 0.35
500 0.06 0.15 0.70 0.47 0.26 0.05 0.06 0.06

1,000 0.00 0.01 0.55 0.23 0.02 0.00 0.00 0.00

DGP4 100 0.95 0.99 0.91 0.88 0.95 0.90 0.96 0.98
250 0.66 0.83 0.86 0.70 0.75 0.31 0.36 0.42
500 0.23 0.42 0.74 0.51 0.36 0.06 0.06 0.07

1,000 0.01 0.04 0.59 0.29 0.04 0.00 0.00 0.00

Notes: See notes in Table 1. Figures in columns (1)–(5) are “CP-corrected”, where those in columns (6)–(8) are not
“CP-corrected”.

reasonable since CLR is based on the sup-norm statistic, whereas ours is based on
the one-sided Lp norm. Therefore, we may conclude that AS, CLR, and LSW2
complement each other.

6. EMPIRICAL EXAMPLE 1: TESTING FUNCTIONAL INEQUALITIES
IN AUCTION MODELS

In this example, we go back to the auction environment of GPV mentioned earlier.
We first state the testing problem formally, give the form of test statistic, and
present empirical results.

6.1. Testing Problem

Suppose that the number I of bidders can take two values, 2 and 3 (that is,
I ∈ {2,3}). For each τ such that 0 < τ < 1, let qk(τ |x) denote the τ -th condi-
tional quantile (given X = x) of the observed equilibrium bid distribution when
the number of bidders is I = k, where k = 2,3. A conditional version of equa-
tion (5) of GPV (with I1 = 2 and I2 = 3 in their notation) provides the following
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testing restrictions:

q2(τ |x)− q3(τ |x) < 0, and

b − 2q2(τ |x)+ q3(τ |x) < 0,
(6.1)

for any τ ∈ (0,1] and for any x ∈ supp(X), where supp(X) is the (common)
support of X , and b is the left endpoint of the support of the observed bids.17

The restrictions in (6.1) are based on conditionally exogenous participation for
which the latent private value distribution is independent of the number of bid-
ders conditional on observed characteristics (X), e.g., appraisal values. A slightly
weaker version of (6.1) can be put into our general problem of testing the null
hypothesis:18

vτ,1(x)≡ q2(τ |x)− q3(τ |x)≤ 0, and

vτ,2(x)≡ b − 2q2(τ |x)+ q3(τ |x)≤ 0,
(6.2)

for any (τ,x) ∈ T ×X ⊂ (0,1] × supp(X).
The example in (6.2) illustrates that in order to test the implications of auc-

tion theory, it is essential to test the null hypothesis uniformly in τ and x .
More specifically, testing for a wide range of τ is important because testable
implications are expressed in terms of conditional stochastic dominance relations.
Furthermore, testing the relations uniformly over x is natural since theoretical
predictions given by conditionally exogenous participation should hold for any
realization of observed auction heterogeneity. It also shows that it is important to
go beyond the J = 1 case and to include a general J > 1. In fact, if the number
of bidders can take more than two values, there could be many more functional
inequalities (see Corollary 1 of GPV). Finally, we note that vτ,1(x) and vτ,2(x)
are not forms of conditional moment inequalities and each involves two different
conditional quantile functions indexed by τ . Therefore, tests developed for con-
ditional moment inequalities are not directly applicable to this empirical exam-
ple. There exist related but distinct article regarding this empirical example. See,
e.g., Marmer, Shneyerov, and Xu (2013) who developed a nonparametric test for
selective entry, and Gimenes and Guerre (2013) who proposed augmented quan-
tile regression for first-price auction models.

6.2. Test Statistic

To implement the test, it is necessary to estimate conditional quantile functions. In
estimation of qj (τ |x), j = 2,3, we may use a local polynomial quantile regression
estimator, say q̂j (τ |x). Now write

v̂τ,1(x)= q̂2(τ |x)− q̂3(τ |x),
v̂τ,2(x)= b̂ − 2q̂2(τ |x)+ q̂3(τ |x),
where b̂ is a consistent estimator of b.19 Then testing (6.2) can be carried out
using {v̂τ, j (x) : j = 1,2} based on our general framework. In this application, our
test statistics take the following forms:
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θ̂sum =
∫
X×T

[
rn v̂τ,1(x)

]p
+ d Q(x, τ )+

∫
T ×X

[
rn v̂τ,2(x)

]p
+ d Q(x, τ ), or

θ̂max =
∫
X×T

(
max

{[
rn v̂τ,1(x)

]
+ ,
[
rn v̂τ,2(x)

]
+
})p

d Q(x, τ ),
(6.3)

where rn = n1/2hd/2. Note that in (6.3), we set σ̂τ, j (x)≡ 1.

6.3. Details on Estimating Conditional Quantile Functions

Assume that qk(τ |x) is (r +1)-times continuously differentiable with respect to x ,
where r ≥ 1. We use a local polynomial estimator q̂k(τ |x). For u ≡ (u1, . . . ,ud ),
a d-dimensional vector of nonnegative integers, let [u] = u1 +·· ·+ud . Let Ar be
the set of all d-dimensional vectors u such that [u] ≤ r , and let |Ar | denote the
number of elements in Ar . For z = (z1, . . . ,zd )


 ∈ Rd with u = (u1, . . . ,ud )

 ∈

Ar , let zu =∏d
m=1 zum

m . Now define c(z)= (zu)u∈Ar , for z ∈ Rd . Note that c(z) is
a vector of dimension |Ar |.

Let {(B�i ,Xi ,Li ) : �= 1, . . . ,Li , i = 1, . . . ,n} denote the observed data, where
{B�i : �= 1, . . . ,Li } denotes the Li number of observed bids in the i -th auction,
Xi a vector of observed characteristics for the i -th auction, and Li the number of
bids for the i -th auction, taking values from NL ≡ {2, . . . , L̄}. In our application,
L̄ = 3.

Assume that the data {(B�i ,Xi ,Li ) : � = 1, . . . ,Li , i = 1, . . . ,n} are i.i.d. over
i and that B�i ’s are also i.i.d. over � conditional on Xi and Li . To implement the
test, it is necessary to estimate b. In our application, we use b̂ = min{B�i : � =
1, . . . ,Li , i = 1, . . . ,n}, that is the overall sample minimum.

For each x = (x1, . . . ,xd ), the r -th order local polynomial quantile regression
estimator of qk(τ |x) can be obtained by minimizing

Sn,x,τ,k(γ )≡
n∑

i=1

1{Li = k}
Li∑
�=1

lτ

[
B�i −γ
c

(
Xi − x

h

)]
K

(
x − Xi

h

)
with respect to γ ∈ R|Ar |, where lτ (u) ≡ {|u|+ (2τ − 1)u}/2 for any u ∈ R, and
K (·) is a d-dimensional kernel function and h a bandwidth. More specifically, let
q̂k(τ |x)= e


1 γ̂k(x), where γ̂k(x)≡ argminγ∈R|Ar | Sn,x,τ,k(γ ) and e1 is a column
vector whose first entry is one, and the rest zero. Note that all bids are combined
in each auction since we consider symmetric bidders.

6.4. Primitive Conditions

Let us present primitive conditions for the auction example of GPV. Let P
denote the collection of the potential joint distributions of (B
,X
,L)
 and
define V = T ×P as before.

For u = (u1, . . . ,ud )

 ∈ Ar , and r + 1 times differentiable map f on Rd , we

define the following derivative:

(Du f )(x)≡ ∂ [u]

∂xu1
1 · · · ∂xud

d

f (x),
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where [u] = u1 +·· ·+ ud . Then we define γτ,k(x)≡
(
γτ,k,u(x)

)
u∈Ar

, where

γτ,k,u(x)≡ 1

u1! · · ·ud!
Duqk(τ |x).

In order to reduce the redundancy of the statements, let us introduce the fol-
lowing definitions.

DEFINITION 5. Let G be a set of functions gv : Rm → Rs indexed by a set V ,
and let S ⊂ Rm be a given set and for ε > 0, let Sv (ε) be an ε-enlargement of
Sv = {x ∈ S : (x,v) ∈ S ×V }, i.e., Sv (ε)= {x +a : x ∈ S and a ∈ [−ε,ε]m}. Then
we define the following conditions for G:

(a) B(S,ε): gv is bounded on Sv (ε) uniformly over v ∈ V .
(b) BZ(S,ε): gv is bounded away from zero on Sv (ε) uniformly over v ∈ V .
(c) BD(S,ε,r ): G satisfies B(S,ε) and gv is r times continuously differentiable

on Sv (ε) with derivatives bounded on Sv (ε) uniformly over v ∈ V .
(d) BZD(S,ε,r ): G satisfies BZ(S,ε) and gv is r times continuously differen-

tiable on Sv (ε) with derivatives bounded on Sv (ε) uniformly over v ∈ V .

(e) LC: gv is Lipschitz continuous with Lipschitz coefficient bounded uniformly
over v ∈ V .

Let P denote the collection of the potential joint distributions of (B
,X
,L)

and define V = T ×P , and for each k ∈ NL,

Gq(k)= {qk(τ |·) : (τ, P) ∈ V} ,
G f (k)=

{
fτ,k(·|·) : (τ, P) ∈ V

}
,

GL(k)= {P {Li = k|Xi = ·} : P ∈ P} , and

G f = { f (·) : P ∈ P} , (6.4)

where fτ,k(0|x) being the conditional density of Bli −qk(τ |Xi ) given Xi = x and
Li = k. Also, define

G f,2(k)= { f·,k(·|·) : P ∈ P
}

and Gγ (k)=
{
γ·,k(·) : P ∈ P

}
. (6.5)

We make the following assumptions.

Assumption AUC1. (i) G f satisfies BD(S,ε,1).
(ii) For each k ∈ NL , G f (k) and GL(k) satisfy BD(S,ε,1) and BZD(S,ε,1).

(iii) For each k ∈ NL , Gq(k) satisfies BD(S,ε,r + 1) for some r > 3d/2 − 1.

(iv) For each k ∈ NL , G f,2(k) and Gγ (k) satisfy LC.

Assumption AUC1(i) and (iii) are standard assumptions used in the local poly-
nomial approach where one approximates qk(·|x) by a linear combination of its
derivatives through Taylor expansion, except only that the approximation here is
required to behave well uniformly over P ∈ P . Assumption AUC1(ii) is made to
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prevent the degeneracy of the asymptotic linear representation of γ̂τ,k(x)−γτ,k(x)
that is uniform over x ∈ Sτ (ε), τ ∈ T and over P ∈ P . Assumption AUC(iv)
requires that the conditional density function of Bli −qk(τ |Xi ) given Xi = x and
Li = k and γτ,k(·) behave smoothly as we perturb τ locally. This requirement
is used to control the size of the function spaces indexed by τ , so that when the
stochastic convergence of random sequences holds, it is ensured to hold uniformly
in τ .

Assumption AUR2 lists conditions for the kernel function and the bandwidth.

Assumption AUC2. (i) K is compact-supported, nonnegative, bounded,
and Lipschitz continuous on the interior of its support,

∫
K (u)du = 1, and∫

K (u)‖u‖2du > 0.

(ii) n−1/2h−3(d+ν)/2 + √
nhr+d+1/

√
logn → 0, as n → ∞, for some small

ν > 0, with r in Assumption AUC1(iii).

As for Assumption AUC2(ii), the choice of h = n−s with the condition
1/(2(r +d +1)) < s < 1/(3(d +ν)) satisfies the bandwidth condition. The small
ν > 0 there is introduced to satisfy Assumption B4.

Assumption AUC3. b̂ = b + oP
(
n−1/2

)
, P-uniformly.

Assumption AUC4. (i) There exist nonstochastic sequences cn,L > 0 and
cn,U > 0 such that cn,L < cn,U , and as n → ∞,

inf
P∈P

P
{
ĉn ∈ [cn,L,cn,U ]

}→ 1, and
√

logn/cn,L + n−1/2h−d/2cn,U → 0.

(ii) For each a ∈ (0,1/2), there exists a compact set Ca ⊂ Rd such that

0< inf
P∈P

P{Xi ∈ Rd\Ca} ≤ sup
P∈P

P{Xi ∈ Rd\Ca}< a.

Assumption AUC3 holds in general because the extreme order statistic is super-
consistent with the n−1 rate of convergence. Assumption AUC4(i) requires that ĉn

increase faster than
√

logn but slower than rn with probability approaching one.
Assumption AUC4(ii) imposes some regularity on the behavior of the support of
Xi as P moves around P .

The following result establishes the uniform validity of the bootstrap test.

THEOREM AUC1. Suppose that Assumptions AUC1–AUC4 hold. Then

limsup
n→∞

sup
P∈P0

P
{
θ̂sum > c∗

α,η

}
≤ α and limsup

n→∞
sup

P∈P0

P
{
θ̂max > c∗

α,η

}
≤ α.

Theorem AUC1 gives the uniform asymptotic validity of the bootstrap test. It is
straightforward to characterize the class of distributions under the null hypothesis
which renders the test asymptotically exact, using Theorem 2. We omit the details
for brevity.
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Our asymptotic approximation is based on plugging the asymptotic linear
expansion directly. There is a recent proposal by Mammen, Van Keilegom, and
Yu (2013), who developed nonparametric tests for parametric specifications of
regression quantiles and showed that calculating moments of linear expansions
of nonparametric quantile regression estimators might work better in a sense that
their approach requires less stringent conditions for the dimension of covariates
and the choice of the bandwidth. It is an interesting future research topic whether
their ideas can be applied to our setup.

6.5. Empirical Results

We now present empirical results using the timber auction data used in Lu and
Perrigne (2008).20 They used the timber auction data to estimate bidders’ risk
aversion, taking advantage of bidding data from ascending auctions as well as
those from first-price sealed-bid auctions. In our empirical example, we use only
the latter auctions with 2 and 3 bidders, and we use the appraisal value as the
only covariate Xi (d = 1). Summary statistics and visual presentation of data are
given in Table 3 and Figure 2. It can be seen from Table 3 that average bids
become higher as the number of bidders increases from 2 to 3. The top panel of
Figure 2 suggests that this more aggressive bidding seems to be true, conditional
on appraisal values.

Before estimation, the covariate was transformed to lie between 0 and 1 by
studentizing it and then applying the standard normal CDF transformation. The
bottom panel of Figure 2 shows local linear estimates of conditional quantile func-
tions at τ = 0.1,0.5,0.9.21 In this figure, estimates are only shown between the
10% and 90% sample quantiles of the covariate.

On one hand, the 10% conditional quantiles are almost identical between auc-
tions with two bidders (I = 2) and those with three bidders (I = 3). On the other
hand, the 50% and 90% conditional quantiles are higher with three bidders for
most values of appraisal values. There is a crossing of two conditional median
curves at the lower end of appraisal values.

TABLE 3. Summary statistics for empirical example 1

2 Bidders 3 Bidders
(sample size = 107) (sample size = 108)

Standard Standard
Mean deviation Mean deviation

Appraisal value 66.0 47.7 53.3 41.4
Highest bid 96.1 55.6 100.8 56.7
Second highest bid 80.9 49.2 83.1 51.5
Third highest bid 69.4 44.6

Notes: Bids and appraisal values are given in dollars per thousand board-feet (MBF).
Source: Timber auction data are from the Journal of Applied Econometrics website.
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FIGURE 2. Data for empirical illustration for empirical example 1.
Note: The top panel of the figure shows observations and the bottom panel depicts local linear quantile
regression estimates.

To check whether inequalities in (6.2) hold in this empirical example, we plot
estimates of vτ,1(x) and vτ,2(x) in Figure 3. The top panel of the figure shows
that 20 estimated curves of vτ,1(x), each representing a particular conditional
quantile, ranging from the 10th percentile to the 90th percentile. There are strictly
positive values of vτ,1(x) at the lower end of appraisal values. The bottom panel of
Figure 3 depicts 20 estimated curves of vτ,2(x), showing that they are all strictly
negative. The test based on (6.3) can tell formally whether positive values of
vτ,1(x) at the lower end of appraisal values can be viewed as evidence against
economic restrictions imposed by (6.2).
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FIGURE 3. Estimates of vτ,1(x) and vτ,2(x) for empirical example 1.
Note: The top and bottom panels of the figure show estimates of vτ,1(x) and vτ,2(x), respectively,
where v̂τ,1(x)= q̂1(τ |x)− q̂2(τ |x) and v̂τ,2(x)= b −2q̂1(τ |x)+ q̂2(τ |x).

We considered both the L1 and L2 test statistics described in (6.3).
We set T to be the interval between the 10th and 90th percentiles of the
covariate, and also set X = [0.1,0.9]. The contact set was estimated with ĉn =
Ccs loglog(n)q1−0.1/ log(n)(S∗

n ) with rn = √
nh. We checked the sensitivity to

the tuning parameters with Ccs ∈ {0.5,1,1.5} and h ∈ {0.3,0.6,0.9}. All cases
resulted in bootstrap p-values of 1, thereby suggesting that positive values of
vτ,1(x) at the lower end of appraisal values cannot be interpreted as evidence
against the null hypothesis beyond random sampling errors. Therefore, we have
not found any evidence against economic implications imposed by (6.2).
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7. EMPIRICAL EXAMPLE 2: TESTING FUNCTIONAL INEQUALITIES
IN THE CONTEXT OF WAGE INEQUALITY

In this section, we give an empirical example regarding testing functional inequal-
ities via differences-in-differences in conditional quantiles, inspired by Acemoglu
and Autor (2011).

7.1. Testing Problem

Figures 9a–9c in Acemoglu and Autor (2011) depict changes in log hourly wages
by percentile relative to the median. Specifically, they consider the following
differences-in-differences in quantiles:

�t,s(τ,x)≡ [qt (τ |x)− qs(τ |x)] − [qt(0.5|x)− qs(0.5|x)]
for time periods t and s and for quantiles τ , where qt (τ |x) denotes the τ -quantile
of log hourly wages conditional on X = x in year t . Acemoglu and Autor (2011)
consider males and females together in Figure 9a, males only in Figure 9b, and
females only in Figure 9c. Thus, in their setup, the only covariate X is gender.

Figures 9a–9c in Acemoglu and Autor (2011) suggest that (1)
�1988,1974(τ,x) ≥ 0 for quantiles above the median, but �1988,1974(τ,x) ≤ 0 for
quantiles below the median (hence, widening the wage inequality, while the lower
quantiles are losing most), and that (2) �2008,1988(τ,x) ≥ 0 for most quantiles
(hence, ‘polarization’ of wage growth, while the middle quantiles lose most).
In this subsection, we consider testing

H0 :�t,s(τ,x) ≥ 0 ∀(x,τ ) ∈ X ×T , (7.1)

with a continuous covariate (age in our empirical example), where (t,s) =
(1988,1974) or (t,s) = (2008,1988).22 Note that degeneracy of the test statis-
tic could occur if the contact set consists of values of (x,τ ) only around
τ = 0.5. Therefore, the uniformity of our test could be potentially important in
this example.

7.2. Test Statistic

To implement the test, we again use a local polynomial quantile regression esti-
mator, say q̂t (τ |x). Then �t,s(τ,x) can be estimated by

�̂t,s(τ,x)≡ [q̂t (τ |x)− q̂s(τ |x)] − [q̂t(0.5|x)− q̂s(0.5|x)].
Then testing (7.1) can be carried out using

θ̂t,s ≡
∫
X×T

[
rn v̂τ,t,s(x)

]p
+ d Q(x,τ ), (7.2)

where v̂τ,t,s(x) = −�̂t,s(τ,x).23 Here, to reflect different sample sizes between
two time periods, we set
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rn =
√
(nt ht )× (nshs)

(nt ht )+ (nshs)
,

where nj and hj are the sample size and the bandwidth used for nonparametric
estimation for year j = t,s.

7.3. Empirical Results

We used the CPS data extract of Acemoglu and Autor (2011).24 In our empirical
example, we use age in years as the only covariate. Summary statistics and visual
presentation of data are given in Table 4 and Figure 4. Note that Figure 4 replicates
the basic patterns of Figures 9 of Acemoglu and Autor (2011).

TABLE 4. Summary statistics for empirical example 2

Year 1974 1988 2008

Log real hourly wages 2.780 2.769 2.907
Age in years 35.918 35.501 39.051
Sample size 19,575 64,682 48,341

Notes: The sample is restricted to white males aged between 16 and 64. Entries for log real hourly wages and age
show CPS sample weighted means. Source: May/ORG CPS data extract from David Autor’s web site.

FIGURE 4. Changes in log hourly wages by percentile relative to the median.
Notes: The figure shows differences-in-differences in quantiles of log hourly wages, measured by
[qt (τ )− qs(τ )] − [qt (0.5)− qs(0.5)]. Triangles correspond to changes from 1974 to 1988, whereas
circles signify those from 1988 to 2008. All quantiles are computed using CPS sample weight.
Source: May/ORG CPS data extract from David Autor’s web site.
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We now turn to the conditional version of Figure 4, using age as a conditioning
variable. As an illustration, let X be an interval of ages between 25 and 60 and
let T = [0.1,0.9]. To check whether inequalities in �̂t,s(τ,x) ≥ 0 hold for each
value of (x,τ ) ∈ X ×T , we plot estimates of v̂τ,t,s(x)= −�̂t,s(τ,x) in Figure 5.
The top panel of the figure shows that 5 estimated curves of v̂τ,1988,1974(x), each
representing a particular conditional quantile, and the bottom panel shows the cor-
responding graph for period 1988–2008.25 By construction, the estimated curve
is a flat line at zero when τ = 0.5. As consistent with Figure 4, the lower quantiles

FIGURE 5. Estimates of v̂τ,t,s(x).
Note: The top and bottom panels of the figure show local linear estimates of −�1988,1974(τ, x) and
−�2008,1988(τ, x), respectively, where x is age in years.
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seem to violate the null hypothesis, especially for the period 1974–1988. As
before, our test can tell formally whether positive values of v̂τ,t,s(x) lead to rejec-
tion of the null hypothesis of polarization of wage growth.

We considered both the L1 and L2 test statistics described in (7.2). As
before, the contact set was estimated with ĉn = Ccs loglog(n)q1−0.1/ log(n)(S∗

n )

with rn = √
nh.26 We checked the sensitivity to the tuning parameters with

Ccs ∈ {0.5,1,1.5}.
For period 1974–1988, we rejected the null hypothesis at the 1% level across

all three values of Ccs. However, for period 1988–2008, we fail to reject the null
hypothesis at the 5% level for any value of Ccs. Therefore, the changing patterns
of the US wage distribution around 1988, reported in Acemoglu and Autor (2011),
seem to hold up conditionally on age as well.

8. CONCLUSIONS

In this paper, we have proposed a general method for testing inequality restrictions
on nonparametric functions and have illustrated its usefulness by looking at two
particular empirical applications. We regard our examples as just some illustrative
applications and believe that our framework can be useful in a number of other
settings.

Our bootstrap test is based on a one-sided version of Lp functionals of kernel-
type estimators (1 ≤ p<∞). We have provided regularity conditions under which
the bootstrap test is asymptotically valid uniformly over a large class of distribu-
tions and have also provided a class of distributions for which the asymptotic size
is exact. We have shown the consistency of our test and have obtained a general
form of the local power function.

There are different notions of efficiency for nonparametric tests and hence there
is no compelling sense of an asymptotically optimal test for the hypothesis con-
sidered in this paper. See Nikitin (1995) and Bickel, Ritov, and Stoker (2006) for
general discussion. However, if we restrict our attention to inference on a finite
dimensional parameter in a model defined by conditional moment inequalities,
it follows from the recent results Armstrong (2014a,b) in the literature that the
multiscale tests of Armstrong and Chan (2016) and Chetverikov (2017) achieve
adaptive rate-optimality against a sequence of smooth alternatives and the test
in Chernozhukov et al. (2013) is also rate-optimal under appropriate bandwidth
choices for the bandwidth.

We have used the fixed constant η to establish the uniformity, while allowing for
degenerate cases. It is a topic for future research to investigate whether one can
get rid of this tuning parameter by using a different scaling or some alternative
methods.

NOTES

1. Permitting the convergence rate rn, j to differ across j ∈ NJ can be convenient, when the non-
parametric estimators have different convergence rates. For example, this accommodates a situation
where one jointly tests the nonnegativity and monotonicity of a nonparametric function.
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2. While our framework permits the case where σ̂τ, j (x) is simply chosen to be 1, we allow for a
more general case where σ̂τ, j (x) is a consistent estimator for some nonparametric quantity.

3. It is convenient for general development to let the population quantities vn,τ, j (x) and σn,τ, j (x)
depend on n.

4. We fix the value of η for the precise definition of the test statistic; however, its value does not
matter in terms of the first-order asymptotic theory.

5. For example, take
√

nhvn,1(x) = −x2/n on X = [−1,1]. Let v0(x) ≡ 0. Then
√

nhvn,1(x)

goes to v0(x) uniformly in x ∈X as n → ∞. However, for each n, Bn,1(0)= {x ∈ X :
√

nhvn,1(x)=
0} = {0}, which does not converge in Hausdorff distance to B1(0)≡ {x ∈ X : v0(x)= 0} = X .

6. Our fixed positive constant η plays a role similar to a fixed constant in Andrews and Shi (2013)’s
modification of the sample variance-covariance matrix of unconditional moment conditions, trans-
formed by instruments (ε in their notation in equation (3.5) of Andrews and Shi (2013)).

7. The uniformity result in this paper is nonstandard since our test is based on asymptotically non-
tight processes, in contrast to Andrews and Shi (2013) who convert conditional moment inequalities
into an infinite number of unconditional moment inequalities. This paper’s development of asymp-
totic theory draws on the method of Poissonization (see, e.g., Rosenblatt (1975), Horváth (1991) and
Giné, Mason, and Zaitsev (2003)). For applications of this method, see Anderson, Linton, and Whang
(2012) for inference on a polarization measure, Chang et al. (2015) for testing for conditional treatment
effects, and Lee et al. (2013) for testing inequalities for nonparametric regression functions using the
numerator of the Nadaraya-Watson estimator (based on pointwise asymptotics). Also, see Mason and
Polonik (2009) and Biau, Cadre, Mason, and Pelletier (2009) for support estimation.

8. In fact, the main challenge here is to prove the bootstrap approximation using the method of
Poissonization that is uniform in P ∈ P0.

9. Throughout the paper, we assume that Xi ∈ Rd is a continuous random vector. It is straightfor-
ward to extend the analysis to the case where Xi has a subvector of discrete random variables.

10. To see this more clearly, we assume that T = {τ }, p = 1, and J = 1, and suppress the subscripts
τ and j from the notation, and take σ̂ (x)= 1 for simplicity. We write (in the case where vn (x)= 0)

h−d/2 θ̂ = h−d/2
∫
X

max
{
rn{v̂(x)− vn(x)},0

}
dx

= h−d/2
∫
X

max
{√

nhd{ĝ(x)−Eĝ(x)},0
}

dx +h−d/2 Rn ,

where Rn is an error term that has at least the same convergence rate as the convergence rate of the
remainder term in the asymptotic linear representation for v̂(x). Now we let

an = E
[∫

X
max

{√
nhd{ĝ(x)−Eĝ(x)},0

}
dx

]
and write h−d/2θ̂ −h−d/2an as

h−d/2
(∫

X
max

{√
nhd{ĝ(x)−Eĝ(x)},0

}
dx −an

)
+h−d/2 Rn .

It can be shown that the leading term is asymptotically normal using the method of Poissonization.
Hence h−d/2θ̂−h−d/2an becomes asymptotically normal, if Rn = oP (h

d/2). This is where the faster
error rate in the asymptotic linear representation in Assumption A1(i) plays a role.

11. The conditional expectation EP

[
|βn,x,τ, j

(
Yi j ,u

) |M |Xi = x
]

is of type E [ f (Y, x)|X = x],

which is not well defined according to Kolmogorov’s definition of conditional expectations. See,
e.g., Proschan and Presnell (1998) for this problem. Here we define the conditional expectation in an
elementary way by using conditional densities or conditional probability mass functions of (Yi j ,Yik )

given Xi = x , depending on whether (Yi j ,Yik ) is continuous or discrete.
12. (Chen, Linton, and Van Keilegom, 2003, Theorem 3) introduced its extension to functions

indexed partly by infinite dimensional parameters, and called it local uniform L2-continuity. For
further discussions, see Andrews (1994) and Chen et al. (2003).
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13. As general discussions, our test involves a one-sided version of L p-type functionals of nonpara-
metric estimators (1 ≤ p <∞). We regard the sup-norm and L p norm approaches as complementary,
each with its own strength and weakness. For example, our test and also the test of Andrews and
Shi (2013) have higher power against relatively flat alternatives, whereas the test of Chernozhukov
et al. (2013) has higher power against sharply-peaked alternatives. See the results of Monte Carlo
experiments reported in Appendix 5. See also Andrews and Shi (2013), Andrews and Shi (2014),
and Chernozhukov et al. (2013) for related discussions and further Monte Carlo evidence. Rosenblatt
(1975) provides the comparison between alternative local sequences in the context of a nonparametric
test of goodness of fit for the density function.

14. The local power results in this section are more general than those of Lee et al. (2013). In
particular, the results accommodate a wider class of local alternatives that may not converge to the
least favorable case.

15. Note that qn (S∗
n ) is the (1 − 0.1/ log n) quantile of the supremum of ŝ∗

τ, j (x) over ( j,τ, x) and

that (1 − 0.1/ log n) converges to 1 as n gets large. Thus, this observation leads to the choice of ĉn in
(5.1) that is proportional to qn(S∗

n ) times a very slowing growing term such as log log n, to insure that
ĉn diverges to infinity but as slowly as possible, while having the property of scale invariance.

16. See Assumption A4(ii) below for sufficient conditions for a data dependent choice of ĉn . It is
not hard to see that the conditions are satisfied, once the uniform convergence rates of v̂τ, j (x) and
σ̂τ, j (x) and their bootstrap versions hold as required in Assumptions A3, A5, and B2 and B3.

17. In GPV, it is assumed that for I = k, the support of the observed equilibrium bid distribution is
[b,bk ] ⊂ [0,∞) with b < bk , where k = 2,3. Note that b is common across k’s, while bk ’s are not.

18. If necessary, we may test the strict inequalities (3.1), instead of the weak inequalities (3.2).
However, such a test would require a test statistic that is different from ours and needs a separate
treatment.

19. In our application, we set b̂ to be the observed minimum value.
20. The data are available on the Journal of Applied Econometrics website.
21. Specifically, the conditional quantile functions q2(τ |x) and q3(τ |x) are estimated via the local

linear quantile regression estimator with the kernel function K (u)= 1.5[1− (2u)2]×1{|u| ≤ 0.5} and
the bandwidth h = 0.6. See Section 6.3 for more details on estimating conditional quantile functions.

22. Note that H0 in (7.1) includes the case�t,s(τ, x)≡ 0, which does not correspond to the notion of
polarization. In view of this, our null hypothesis in (7.1) can be regarded as a weak form of polarization
hypothesis, whereas a more strict version can be written as the inequality in (7.1) holds strictly for
some high and low quantiles.

23. Note that the null hypothesis is written as positivity in (7.1). Hence v̂τ,t,s(x) is defined
accordingly.

24. The data are available on David Autor’s web site. We would like to thank him for posting the
data set on a public domain. They used three-year averages around the year of interest to produce
Figures 9a–9c in Acemoglu and Autor (2011); however, we used just annual data.

25. As before, underlying conditional quantile functions are estimated via the local linear quantile
regression estimator with the kernel function K (u) = 1.5[1 − (2u)2] × 1{|u| ≤ 0.5}. One important
difference from the first empirical example is that we used the CPS sample weight, which were incor-
porated by multiplying it to the kernel weight for each observation. Finally, the bandwidth was h = 2.5
for all years.

26. To accommodate different sample sizes across years, we set n = (n1974 + n1988 + n2008)/3 in
computing ĉn . The bandwidth was h = 2.5.
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