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IRREDUCIBLE AUTOMORPHISMS OF 
CERTAIN ^-GROUPS 

D. Z. DJOKOVIC AND J. MALZAN 

I n t r o d u c t i o n . The chief purpose of this paper is to find all pairs (G, 6) 
where G is a finite special p-group, and 6 is an automorphism of G acting trivially 
on the Fra t t in i subgroup and irreducibly on the Fra t t in i quotient. This problem 
arises in the context of describing finite groups having an abelian maximal sub­
group. In fact, we solve a more general problem for a wider class of ^-groups, 
which we call special F-groups, where F is a finite field of characteristic p. We 
point out t ha t if p is odd, then an F-group has exponent p. On the other hand, 
every special 2-group is also a special G F (2) -group. 

As a byproduct of our theory of F-groups we obtain an interesting result 
about non-singular subspaces of al ternating matrices over finite fields (Theorems 
10 and 12). These results can be stated in terms of al ternat ing forms. Ana­
logous results are obtained for quadrat ic forms over GF(2n) (Theorem 13). 
Theorems of this type are known for matrices over reals, complexes or quater­
nions [1 ; 2] . 

We conclude with an open problem about non-degenerate .F-groups (Section 
5) . 

Notation. 

Z(G) = the centre of a group G, 
$(G) = the Fra t t in i subgroup of G, 
G' = the commuta tor subgroup of G, 
NG(H) = the normalizer of H in G, 
CH(&) = the centralizer of an element a G G in the subgroup H of G. 
If H is a subgroup of G then 

core(H) = O xHx~ . 

\S\ = the number of elements of a finite set S. 
G = N -< H is the semi-direct product of N and H with N < G. It will 

always be clear from the context how H acts on N. 
A group H of automorphisms of a group G is regular if for every a 6 H, 

a 9e 1, the centralizer 

CG(a) = {x Ç G\a(x) = x} 

of a in G is trivial. 
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p will always denote a prime number. We say that a finite group is a ^'-group 
if \G\ is not divisible by p. 

A finite ^-group is called special if either it is elementary abelian or nilpotent 
of class two writh Z(P) = P ' = <£>(P). If, moreover, | $ (P ) | = p then P is 
called extra-special. See [6, Chapter 5] or [7, Chapter III, § 13] for the basic 
properties of these groups. 

1. The structure of G. In this section G will denote a finite group having 
an abelian maximal subgroup A. In the case where A <\ G we have (G : A ) = p 
where p is a prime. The structure of such groups is known [8]. Hence we will 
only be interested in the case when A is not normal in G. 

First we show how one can construct finite groups G having an abelian sub­
group A which is not normal in G. 

Let P be a non-trivial special ^-group (of exponent p if p is odd) admitting 
a cyclic p'-group of automorphisms H which is trivial on <£(P) and acts ir-
reducibly and non-trivially on P = P/$(P). Let D be an abelian ^-group 
containing a copy of $ (P ) . Define K = (D X P)/R where R consists of all 
(x, x"1) for x £ $ (P). We extend the action oiHtoD X P and i£ by specifying 
that it acts trivially on D. Now let B be an abelian ^'-group admitting an 
epimorphism / : B —» H. Let G — K-< B where B acts on i£ via / . The sub­
group A = BD of G is abelian and proper. We claim that it is maximal in G. 
Indeed, if AT is a subgroup of G containing A properly then M C\ P contains 
$(P) properly and the irreducibility of P under the action of B implies that 
M C\P = P. Hence M D AP = G. 

We claim that A is not normal in G. Otherwise it follows from A = B X D 
that B is normal in G. Hence G = B X K, contradicting that B acts non-
trivially on K. 

We prove next that there are no other examples. 

THEOREM 1. Let G be a finite group having an abelian maximal subgroup A 
which is not normal in G. Then 

(i) NG(A) = A, Z(G) = core(A), and A H xAx~l = Z{G) for all x G 
G\A; 

(ii) (G : A) = pnfor some prime p. 
Let A = B X D where D is the p-Sylow subgroup of A and B its unique p'-
complement. Then 

(iii) Z(G) = Bo X D where Bo = B C\ Z(G), 
(iv) there exists a special p-subgroup P of G such that P <\ G, P Çt A, G = 

AP, A C\ P — D r\ P = <£(P), and P has exponent p when p is odd, 
2 or 4 when p = 2. 

(v) B acts irreducibly and non-trivially on P = P/$(P) and the kernel of 
this action is P 0 ; 

(vi) B = B/Bo is cyclic, 
(vii) DP is a p-group and G = (DP) -< B. 
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Proof. I t is clear from our hypotheses t ha t NG(A) = A. We have Z(G) C 

NG(A) = A. On the other hand if x G G\A then xAx~l ^ A. Hence A and 

xAx~l centralize A C\ xAx~l and generate G, implying tha t core (A) C A H 

x^4x_1 C Z(G). Thus (i) is proved. 

Let Â = A/Z(G), G = G/Z(G). I t follows from (i) t ha t I is a maximal 
subgroup of G, NG(Â) = Â and tha t Â has trivial intersection with each of its 
conjugates. Hence, by [6, Theorem 7.7, p. 39] G is a Frobenius group with 
complement Â. By [6, Theorem 3.1, p. 339] wre have G = N -< Â where TV is 
nilpotent and \Â\ divides \N\ — 1. Since TV is a direct product of its Sylow 
subgroups and TV is maximal in G it follows tha t TV is a non-trivial £-group for 
some prime p. Since (G : A) = (G : Â) = \N\ the assertion (ii) is proved. 

Since Â divides \N\ — 1 = pn — 1 (say) it follows tha t Â is a / / -group, i.e., 
Z(G) 3 D and (iii) is proved. Let TV be the pre-image of TV in G, and let SP 

be the Sylow ^-subgroup of TV. Then Sp D D, TV = Z(G)SP = P 0 X Sp, 
Sp <j G and G — ASP. By [6, Theorem 3.8, p. 183] there exists a special p-
subgroup P of Sp such tha t P is ^ - invar ian t and B acts irreducibly and non-
trivially on P = P/$(P). Thus P <Z A, P <} G, G = AP. 

We claim tha t $ ( P ) C 4̂ Otherwise we have G = A$(P), $ ( P ) < G and 
P = $(P)(^4 Pi P ) . By a well-known property of the Fra t t in i subgroup this 
implies tha t P = A (~\ P, which is a contradiction. Hence <£(P) C_ A (^\ P Ç_ P 
and since B acts irreducibly on P we must have $ ( P ) = -4 H P . 

Assume now tha t £ is odd. (If p = 2, it is immediate tha t P has exponent 2 
or 4, by définition.) By [6, Lemma 3.9, p. 183] the elements x G P satisfying 
xp = 1 form a subgroup P i of P . We have $ ( P ) C Pi C P and so by irreduci-
bility of P we must have either P i = $ ( P ) or P i = P . The first possibility is 
ruled out because P is a non-trivial special ^?-group and p is odd. Thus P i = P , 
i.e., P has exponent £. 

Hence we have proved (iv) and the first par t of (v). Assume tha t a G B acts 
trivially on P . Then (Z(G), a ) is normalized by 4̂ and P and hence it lies in 
core (A) = Z(G). Thus a G Z(G) C\ B = B0 and (v) is proved. 

Let a G B be such tha t C = Cp(a) is non-trivial. Let C be the pre-image of C 
in P . Since B is abelian it is clear tha t B normalizes C. Since P C\ A ^ C C P 
we must have C = P by the irreducibility of P . Thus a acts trivially in P and 
by (v) we have a (E B0. This proves that B is a regular ^ ' -group of automor­
phisms of P . By [6, Theorem 3.14, p. 187] B is cyclic and (vi) is proved. 

I t is clear tha t (vii) holds because D C Z(G), D is a p-group and conse­
quent ly DP is a ^-group normal in G. 

The theorem is proved. 

I t is clear tha t the problem of constructing finite groups G having an abelian 
maximal subgroup A is now reduced to the following problem: 

Construct all pairs (P, 6) where P is a non-trivial special ^-group (of exponent 
p if p is odd) and 6 is a ^/-automorphism of P fixing $ ( P ) elementwise and 
acting irreducibly on P = P/$(P). 
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We shall solve this problem completely in the remaining part of this paper. 
In fact, we solve this problem for a somewhat larger class of groups which we 
call F-groups (F being a field). 

2. jp-groups. Let F be any field, and let Vo and Vi be F-vector spaces. 
Let also <£: Vo X V0 —» V\ be an F-bilinear form. We construct a group V = 
Vo X Vi having the following multiplication: 

(x,y)(x',y') = (x + x',y + y' + <l>(x,x')). 

This is a group because 0 is a normalized 2-cocycle. The elements (0, y) in 
V form a subgroup of V, canonically isomorphic with V\. Further, Vi C Z(V) 
and Vo is canonically isomorphic with V/V\. The group V will be called in 
this paper an F-group. Whenever we refer to an F-group V we shall regard 
Vo, V\ and <j> = <j>v as part of the structure of V. 
' In V we have (x, y) = (x, 0) (0, y), (x, y)~l = ( — x, —y + cj)(x, x)) and 

hence the commutator 

[ ( * , ? ) , ( * ' , / ) ] = [(*,0), (*',())] 

= (—x, </>(x, #))( — x', <l>(x', x'))(x, 0)(V, 0) 

= ( — x — xf, 4>(x, x) + cf>(xf, x') 

+ 4>(x, x'))(x + x', 0(x, x')) 

= (0, </>(x, #') — 4>{x', x)). 

Further, it is easy to check that 

V C *(V) C 7 i C Z ( 7 ) . 

Given two F-groups V and W, we shall say that a homomorphism 6: V —> W 
is an F-homomorphism if 0(Fi) C Wi and the induced map 0O: Vo —» 1F0 and 
the restriction 02: Fi —->• IFi are F-linear. 

We shall denote by Aut (F ; F) the group of /^-automorphisms of V. 
If F has characteristic p, an odd prime, then every non-trivial .F-group has 

exponent p. This follows directly by computation. If p — 2, then every non-
trivial F-group has exponent 4 or 2. 

For each bilinear function </> we define 

4>'{x, y) = 4>(x, y) - ct>(y, x). 

We shall say that an F-group V is special if V\ is generated (as a vector space 
or, equivalently, as a group) by the image of <£/, where <j>v is the bilinear func­
tion associated with V. 

Definition 1. Let </>: Fo X F0 —> V\ be an F-bilinear map. Then we shall say 
that 4> is non-degenerate if for every non-zero linear function x//: V\ —•> F the 
composite bilinear form \j/ o <j> is non-degenerate. Similarly, if Q: Vo —» Fi 
is a quadratic map of F-vector spaces F0 and Vi then we shall say that Q is 
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non-degenerate if the bilinear map Q(x + y) — Q(x) — Q(y) is non-degenerate. 
We shall say tha t an P-group V is non-degenerate if the bilinear map <j>v' is 
non-degenerate. 

Our definition of non-degenerate quadrat ic maps is analogous to the defini­
tion of non-degenerate quadrat ic forms given in Bourbaki [3, Definition 2, p. 
54]. Some other authors call such quadrat ic forms non-dejeciive if char F= 2. 
See, for instance [5, p. 33]. 

LEMMA 2. Every non-degenerate F-group V is a special F-group. 

Proof. Assume tha t V is not special. Then there exists a non-zero linear form 
\p: Vi —> P s u c h tha t V C K e r ( ^ ) . Hence \p o 4> = 0, contradicting t ha t V is 
non-degenerate. 

LEMMA 3. / / V is a non-degenerate F-group, then V = $ ( F ) = Vi C Z(V). 
If also Vi 7* 0, then Vi = Z(V). 

Proof. From the previous lemma F is a special P-group, and so V = V\. 
I t follows t ha t V = ${V) = Vi. 

If vx j * 0, and (x, y) G Z(V), then also (x, 0) G Z(V), and therefore 
<t>f(x, z) = <f>(x, z) — ${z, x) = 0 for all s G VQ. Since Vi T^ 0 we can choose a 
non-zero linear form \p: Vi —> F, and since \j/ o <// is non-degenerate, we must 
have x = 0, completing the proof. 

L E M M A 4. Let p be an odd prime. If P is a p-group of exponent p with a central 
subgroup P\ such that P /P\ is abelian then P is a G F (p)-group. 

Proof. We may consider P 0 = P / P i and Pi as GF(p) = P-vector spaces. 
First , we choose a family of elements at G P (i G I, I totally ordered) such 
tha t the âj Ç P 0 form a basis of P 0 . Then the elements 

atl
al . . . aik

ak
} ix < i2 < . . . < ik, at G F 

are coset representatives for P i C P . The 2-cocycle 0 associated with this 
extension can be computed as follows: 

C\\ n a i n akn &1 n ^ — a ai+01 n ak+^k Tl \n n T ^ 8 

(I) aix ...aik atl . . . aik — au ...aik n [air, ais\ 
r>s 

Using now additive notat ion we have 

^(aiôi! + . . . + akâîk} foâu + . . . + faâik) = ]T 0Lr$s[air, au]. 
r>s 

Hence <j> is P-bilinear, and it is now clear tha t P is isomorphic to the GF(p)-
group built using P 0 , Pi and 0. 

LEMMA 5. Let P be a 2-group with a central subgroup P i of exponent 2 such 
that P / P i is of exponent 2. Then P is a GF(2)-group. 

Proof. Again, we may consider P 0 = P / P i and P i as G F (2) = P-vector 
spaces, and choose a family of elements at G P (i' G /,• / totally ordered) such 
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t h a t the ât £ P 0 form a basis of P 0 . The elements 

a / 1 . . . aik
ak, i!<i2< . . . <ik,<Xi = 0,1 

are coset representatives for P i C P . In order to compute the 2-cocycle </> we 

can use formula (1) of the previous lemma noting t ha t if for some index i, 

<*i — Pi — 1> t h e n 

ah
al+fil . . . aik

ak+fik 

is not in general a coset representat ive. In this case, however, if we let at
2 = bu 

then bt 6 P\ and 

a iTa r+^r = air^
rbir

ar^ 

where yr = 0, 1 and yr = ar + /3r mod 2. Hence in this case 

0(aiafl + . . . + akâik, p1âi] + . . . + (3kâik) 

k 

r=l r>s 

T h u s again 0 is P-bilinear, and we are done. 

LEMMA 6. / / V and W are F-groups, and 6: V —> W is an F-homomorphism 

then 

0(x,y) = (0o(*),0i(3O + M * 0 ) 

where dt: Vt —> "PFZ-, z = 0, 1, are F-linear maps, and 0Oi: Vo —> W\ is a quadratic 
map such that we have 

(2) <t>w' o (d0 X 0O) = 0i o </>F' 

a n d 

(3) 0oi(* + * ') - M * 0 - 0Oi(x') = <M#o(x), 0 O ( X ' ) ) - 0 i (0 F (x , * ' ) ) • 

/w particular, </>^(0o(x), 0o(#')) ~~ #i(</>y(x, x ' ) ) ^ & symmetric bilinear map. 
If cha r (P ) = 2, /&ew / /m ma£> w alternating. Conversely, if 0O, 0i and 0Oi satisfy 
these conditions, then 0 G A u t ( F ; P ) . 

Proof. From 0(x, y) = 0(x, 0) • 0(0, y) = 0(x, 0) • (0, Bi(y)) and the defini­
tion of 0o it follows tha t 6(x, y) has the form given in the Lemma. Equat ion (2) 
follows from 

</V(0o(x) ,0 o (x ' ) ) = [ (0 o (x ) ,0 O i ( x ) ) , ( 0 o ( * ' ) , M * ' ) ) ] 

= 0 ( [ (x ,O) , ( x ' , 0 ) ] ) = 0 1 (< /> / (x ,x ' ) ) . 

Equat ion (3) follows from 

0((x, 0 ) ( x ' , 0 ) ) = 0((x + x', <t>v(x,x')) 

= (0o (tf + Xf), 0i(0y(x, X')) + 0Oi(x + * ' ) ) , 
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and 

6(x,0) -0(* ' ,O) = (Oo(x),Ooi(x))(Oo(x'),0Ql(x')) 

= (Oo(x) + 6o(x'), BQI(X) + Ooi(x') + 6w(0o(x), 60(x
f))) 

The converse is straightforward. 

3. Irreducible a u t o m o r p h i s m s of finite F-groups . For the rest of this 
paper the field F and all the groups will be assumed to be finite. 

Definition 2. If V is an F-gvoup we denote by A u t 0 ( F ; F) the subgroup of 
A u t ( F ; F) consisting of those F-automorphisms which fix all the elements of 
V1C V. 

PROPOSITION 7. If V is a special F-group admitting an automorphism 6 6 
Auto ( F ; F) such that the induced automorphism do £ Aut (Fo) is irreducible as 
an F-linear transformation, then V is non-degenerate. 

Proof. By equation (2) of Lemma 6, it follows tha t <j>' is preserved by 0O-
Let \p be a non-zero linear form on V\. By the irreducibility of 60 if follows 

tha t K e r ( ^ o #') = 0 or F 0 because 0O preserves the form \f/ o #' . We have 
K e r ( ^ oij)') ^ F 0 because otherwise Im (<£') C Ker (^ ) contradicting the 
hypothesis t ha t F is a special F-group. Hence K e r ( ^ o <£') = 0 and \p o $' 
is non-degenerate. 

This completes the proof of the proposition. 

Definition 3. L e t / ( X ) be a monic irreducible polynomial over a finite field 
F = GF{q), q = pn. An F-representation of f(X) is a pair ( F , 6) where F is a 
special F-group, 6 £ Auto ( F ; F), 6 hasp' order, and the induced automorphism 
do has f(X) as its characteristic polynomial. (This last implies t ha t do is ir­
reducible on Fo). 

Definition 4. If ( F , 6) and (IF, co) are /^-representations of f(X) then a 
morphism ( F , 6) —> (IF, co) is an F-homomorphism cr: V —> W such tha t 
co o cr = (j o 6. 

Let ( F , 0) be an ^-representation of f(X) and let N be a subgroup of V\. 
Then F = V/N is also a non-degenerate F-group, the induced automorphism 
6 of F is in A u t 0 ( F ; F) and ( F , 0) is also an F-representation of f(X). We say 
tha t ( F , 0) is a quotient of ( F , 0). 

PROPOSITION 8. / / V is a non-degenerate F-group, and if Vi 9e O, //zen £fee 
dimension of Vo is even. 

Proof. Let ^ be any non-zero linear form from V\ to F. By Definition 1, 
</>/ is non-degenerate. Therefore \p o <j>v

r is a non-degenerate al ternat ing form 
from Fo to F, and this implies tha t the dimension of Fo is even. 

I t follows from Proposition 8 tha t if f(X) is an irreducible polynomial of 
odd degree and ( F , 6) is an F-representation of/, then Vi = 0, and F = Fo. 
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We introduce some notat ion. Let 

f(X) =Xm + a,X^ + . . . + am. 

If am 9^ 0 we define 

f(X) = am-*X™f(X-i) 

noting t ha t \lf(X) is irreducible a n d / = / , then am = 1 and w must be even, 
unless m = 1. 

We also define the (m — 1) X (m — 1) matr ix M(f) as 

M(f) = 

0 
« m - 1 «»; 

« 2 « 3 

« m - 2 « m - 3 «o 

« 1 a0 0 

where a0 = 1. 

We denote by r(f) the rank of M(f). We shall prove later t h a t when f(X) 
is irreducible in F[X] then 

K/) = 
m — 1 ifJW 
m / 2 — 1 if/ = / a n d m > 1. 

T H E O R E M 9. Given any monte irreducible polynomial j{X) G F[X] there exists 
an F-representation (V, 6) off(X) which is universal in the following sense: Every 
F-representation of f(X) is isomorphic to a quotient of (V, 6). This universal 
F-representation (V, 6) is unique up to isomorphism. Also, d im(Fo) = m = 
deg ( / ) , and d i m ( F i ) = m — 1 — r{f). 

Proof. Recall t ha t F = GF(q), q = pn. Let Vo and U be F-vector spaces 
with bases a0, «i, . . . , am_i and bi, . . . , bm-\ respectively. Let b be the column 
vector whose coordinates are the vectors bi, . . . , bm-i. Then M(f)b is an 
(m — 1)-tuple of vectors in U. Let N be the .F-subspace spanned by the vectors 
M ( / ) 6 a n d l e t Vi = U/N.Forx Ç F we let x = x + N. 

Let (j> be the bilinear map from F 0 X V0 to V\ defined by 

where b0 = 0 if p 9* 2, and, if p = 2, 

fro = / ( l ) ~ 2 ( X &*(<*! a*+i + «2«/+2 + . . . + a m - i a w ) l • 

We construct an F-group F = F 0 X V\ using this 0. 
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Let an /^-automorphism 0O of VQ be denned by 

0o(a*) = Ui+i for 0 ^ i S m — 2 

0o(am_i) = — amao — am-idi — . . . — aiam_i ( = am, say) . 

Note t ha t the characteristic polynomial of 0O is f(X) and hence 0O is ir­
reducible as an .F-linear automorphism of VQ. 

We claim tha t <l>(do(x), 6o(x')) — c/>(x, #') is symmetric. This is equivalent 
to the s ta tement tha t </>'(x, %') is 0o-invariant. Since <j>' is al ternating, it suffices 
to check tha t 0'(0o(a*), 0o (&;•)) = </>'(&*, Û^) for 0 ^ i < j g m — 1. Thus we 
have to show tha t </>r(ai+i, a ;+i) = <£'(#<, a ; ) , 0 ^ i < j ^ w — 1. This is 
clear if j 9e m — 1. If j = m — 1, this equation becomes 

# ' ( a i + i , — amdo — am-\a,\ — . . . — otiam-i) = 5w-i_* 

or 

am5 ï + i + 0Lm-ibi + . . . + OLm-ibi —am-.i-2bi — . . . — aJ)m-i-2 = 5m-i_*. 

This follows from the definition of Fi as a quotient. 
In case J = 2 we must check further t ha t the form 0(0o(#), 0o(#')) ~~ 

</>(x, x') is al ternating. I t is enough to check tha t 

0(0o(a*)> 0o(a*)) = 0(a<, a<) for 0 ^ i ^ m — 1. 

This is clear unless i = m — 1. In tha t case we need to show tha t <t>(ami am) = 
b0, i.e., 

( m—1 w—1 \ 

]T am-idi, X) am-fij) = 5o, i.e., X am-iam-jbj-i = / ( l ) 50 
<=0 ; = 0 / 05gK;^m—1 

which follows from our definition of 60-
Since this bilinear map is symmetric and, iî p = 2, al ternating, there exists 

a quadrat ic map 0oi : VQ —» V\ such tha t 
0oi(x + %') — 6QI(X) — d0i(x

f) = </>(0o(x), 0o(x')) — <f>(x, x') ; 

see [3, Proposition 2, p. 55] for the case of quadrat ic forms. Now we define 0 by 

d(x,y) = (0o(x),0oi(x) + y). 

I t is a straightforward check tha t 0 Ç A u t 0 ( F ; T7). Since f(X) is irreducible, 
the order k of 0O is a / / -number . Hence the order of 0 is of the form prk. Then 
if 0' = 6pS, where 5 is chosen so tha t 5 ^ r and />s = 1 mod k, 6' will have order 
k. Thus , by replacing 0 by 0', if necessary, we may assume tha t 0 is a / / -e lement . 
Therefore, ( F , 0) is an /^-representation of f(X). Also d i m ( F 0 ) = m, dim (Vi) 
— m — 1 — r(f). 

We claim tha t ( F , 0) is universal. Let (W, œ) be any /^-representation of 
f(X). We can assume tha t Wo = Fo, and co0 = 0o. Define a linear map r : £/—> 
I F i b y 

r(&*) = <j)W
r{do, at) for 1 ^ i S m — 1. 
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We claim t h a t N C K e r ( r ) . For all integers k we write ak = 0o*(#o), con­
sistent with the notat ion for a4 used above. We compute 

Cf = T(am-i+ib! + . . . + <xmbi — otm-i-ibi — . . . — aQbm-i) 

= <i>w («o, am-i+iai + . . . + amdi — am_z-_iai — . . . — a^am-i) 

= <£Tj/(a0, aTO-i+iai + . . . + a m ^ ) _ 0p/(#o, a m - i - i a i + . . . + aoam-i). 

Now by equation (2) of Lemma 6, <j>w
f is 0o-invariant, and so 

(j)w' (do, am-i+iai + . . . + 0Lmai) 

= — <t>w (flu am-i+iao) — <!>w'(û2, am^i+2do) — . . . — <t>w(cLiy otmao) 

= —<t>w (UQI am-i+ia-i + am_ i + 2^-2 + . . . + a.ma>-i) 

= —$w'(fl*, oima-i + . . . + aw_z-+ia_i) 
so t h a t 

Ci = — $w'(uo> oima-i + . . . + a0am-i) 

= —cj)w(ao, 0(T*(amao + am-idi + . . . + a o O ) 

= -^ ' (oo^o- 'CO) ) = 0. 

Since this is t rue for all i, 1 ^ i ^ m — 1, we conclude t ha t N C K e r ( r ) . 
Let o-i be the r-induced map from Fi = U/N —> LFi. 

The bilinear map o"i(0F(x, # ' ) ) — 0^(x , xf) is symmetr ic because d i O ^ / = 
<t>w by definition of r and ci. If ^ = 2 we claim tha t this map is a l ternat ing. 
T h u s we have to verify t ha t 

(Ti{(j)v(o.'U ai)) = 4>w(ai, en) for 0 ^ i ^ m — 1. 

Bu t Gi(4)v(au at)) = o-i(50) = r(&o) and since 

(di, 0) 2 = (0, <t>w(au au), 

(œ(aif 0))2 = ((6o(di), u01(di))2 = (0, <pw(ai+it a i + ] ) ) 

it follows t ha t 4>w(au di) is independent of i. T h u s we just have to justify the 

single equali ty r(&o) = </>TF(̂ O, a 0 ) . Since 

m 

2 ^ am-idi = 0 
1=0 

we have 

( m m \ 

2 J Oim-fli, 22 am-ùaA 
i=0 j = 0 / 

m 
= Z^ OLm^iam-J4)W{dh dj) 

* , ^ = o 

= X) am-iOm-rfw'iaitaj) + / ( l ) 2 0 ^ ( a o , a 0) . 
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Using the identi ty 

2_, am-i<xo<l>w
r(ai, am) = <t>w\ z2 am-i^u ^m] = 0 

the preceding equality gives 

The left hand side of this equality is r (è 0 ) , since 

bo=f(D~ X) Clm-iam-jbj-i. 

Hence we have T(7?0) = (j)W(ao, do) and the map ai((j)V(x, x')) — <t>w(%,%') is 
shown to be alternating when p = 2. 

I t follows tha t there exists a quadrat ic map <r0i: VQ —> W\ such tha t 

0-oi(x + x') — o-oi(x) — o-oi(x') = <Ti{<j>v(x, x')) — (j)W(x, x'). 

Now we define a\ V —* W by a(x, y) = (x, <j\{y) + o-0i(x)). I t is easy to 
check t ha t a is an .F-homomorphism and consequently a: (V, 6) —> (W, w) is 
a morphism. Since a- is onto and Ker(o-) C Vi the .F-representation (W, co) 
is a quotient of ( F , 6). Thus ( F , 0) is a universal representation. 

By a dimension argument it is clear t ha t the universal ^-representation is 
unique up to isomorphism. 

The theorem is proved. 

4. Universal representa t ions . In this section we compute r(f). In the 
course of this we prove a theorem about maximal non-singular subspaces of 
the space of al ternating matrices over a finite field. 

As before, q = pn. SP(2m, q) is the symplectic group, consisting of 2m X 2m 
matrices X with elements from the field F = GF(q) satisfying lXJX = J 
where 

T= I ° TA 
\-im o/-

We shall consider these matrices X as operators on the space of column vectors 
f2m _ y^ ^ e shall use MS(F) = Ms(q) to denote the set of all 5 X 5 matrices 
over F, and by KS(F) = Ks(q) the set of all al ternating matrices over F. 

T H E O R E M 10. If A £ M2m(q) has irreducible characteristic polynomial f(X) 
then the space K(A ; q) = {X £ K2m(q) ; lAXA = X} has dimension m iff = f 
and 0 iff 9^ f. As well, if 0 9^ X £ K(A, q) then X is non-singular. 

Proof. Let X Ç i£(^4 ; q), X 9^ 0. Note tha t K e r ( X ) is ^ - inva r i an t because 
v e FoandXz; = 0 imply tha t 0 = Xv = ('AXA)v = <AX(Av) and X{Av) = 
0. By the irreducibility of A and X 9^ 0 we must have K e r ( X ) = 0, i.e., 
X is non-singular. Now %AXA = X and so %A = XA~lX~l, lA and A~l are 
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similar, and the characteristic polynomial / of A satisfies f = f. Therefore if 
/ 5 ^ / w e h a v e X(i4;g) = 0. 

Assume then t h a t / = / . Let a = «i, a2, . . . , a2m be the distinct roots olf(X). 
They are all in F (a) = GF(q2m). Then A is similar in M2m(q2m) to the diagonal 
matrix Z) with diagonal entries «i, a2, . . . , o:2m. The dimension of i£(£>; g2m) 
over F (a) is the same as the dimension of K(A ; q) over .F [4, (29, 5), p. 200]. 
A matrix X G K2m(q2m) belongs to K(D; q2m) if and only if £>X£> = X, i.e., 
aia£ij — £ij where X = (£*y). We may assume, s ince/ = / , that am+i — af1 

for 1 ^ i S m. The above equations imply that £^ = 0 unless j — i = ±m. 
Now it is clear that 

dim F(a)K(D;q2m) = dimF(K(A,q)) = m. 

LEMMA 11. For each finite field F = GF(q)} and each positive integer 2m there 
exists an irreducible polynomial f (X) in F[X] of degree 2m such that f = f. 

Proof. Let L = GF(q2m). The multiplicative group of L has order q2m — 1. 
Let a be an element of L of order qm + 1. Letf(X) be the minimal polynomial 
of a over F. Then L — F(a), since if F (a) has order qr then we must have 
qm + \\qT — 1 and since r|2m it follows that r = 2m. Also a - 1 = aqm is also a 
root of f(X). Therefore/ = / and the lemma is proven. 

Definition 5. A subspace L of MS(F) is called non-singular if every non-zero 
matrix in L is non-singular. 

THEOREM 12. In K2m(q) the dimension of a non-singular subspace is ^ m. 
This upper bound is always achieved. 

Proof. Let S be a non-singular subspace of K2m(q). By choosing a basis 
Xi, . . . , Xk we can express any X in 5 as 

X = a1X1 + • - . . + akXk. 

Then d e t p O = (Pf(X))2 where Pf(X) is the pfaffian of X. Pi(X) is a 
homogeneous polynomial in the at of degree w. If k > m then by Chevalley's 
theorem [9, p. 13] the polynomial Pi(X) has a non-trivial zero, contradicting 
the hypothesis that 5 is non-singular. Therefore dim (S) ^ m. 

By the previous lemma, a polynomial f(X) of the desired kind can always 
be found. Let A G M2m(q) have characteristic polynomial f(X). Then dim 
K(A, q) = m, K(A, q) is non-singular, and the upper bound is achieved, as 
claimed. 

We remark that the problem of finding maximum dimension for real non-
singular subspaces of symmetric, skew-symmetric, etc. matrices has been con­
sidered for real, complex and quaternionic matrices [1 ; 2]. 

The set of all upper triangular matrices in MS(F) = Ms(q) will be denoted 
by TS(F) = T.(q). 
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T H E O R E M 13. If A £ M2m(q), q — 2n
} has irreducible characteristic polynomial 

f(X), then the space T(A; q) = {X £ T2m(q), lAXA = X mod K2m{q)} has di­
mension m iff = / , 0 iff 7* f. As well, if X G T(A ; q) and X ^ 0 /Aen X -\- lX 
is non-singular. 

Proof. Suppose 0 ^ X € r ( 4 ; 5). Then ^ X ^ l = X + 5 with 5 al ternating 
and so lAlXA = lX + B. Adding, 

lA {X + lX)A = X + lX 

and so, as in the proof of Theorem 10, X + lX is either 0 or non-singular. 
I t remains to show tha t X + 'X ^ 0 or, equivalently, t ha t X is not diagonal. 

We can assume tha t A has the form 

0 a2m\ 
1 0 

1 0 
1 

|_ 0 1 otj j 

and tha t the diagonal matrix X has diagonal entries £1, £2, . • . , ?2W. By equat ing 
the diagonal entries of lAXA and X we get t ha t 

£l = £2 = • • • = ?2m 
and 

?2m = «2m2£l + «2w-l2£2 + . . . + «i2£2m 

so t h a t / ( l ) 2 £ i = 0, and the £< are 0. This is a contradiction, and so X -\- lX is 
non-singular. 

Let a be a root o f / ( X ) . Then F (a) = GF(q2m) and A is similar ( inM 2 w (g 2 m ) ) 
to a diagonal matrix D with diagonal entries a = ai, a2, . . . , a2m. If / = / then 
these may be taken as alf . . . , aw, a f 1 , . . . , c ^ - 1 while if / 9e / then a< 5^ a,,-1 

for all i and j . The dimension of T(D, q2m) over .F(a) is the same as the di­
mension of T(A, q) over F. Matrices X £ T(D, q2m) satisfy 

DXD = X mod K2m(q2m). 

Ii X = (Çij), then oLiOLj^ij = ^tj where ak = c^_m
_1 if k > m a n d / = / , and 

afCtj 9^ 1 for all i, j if/ 9e f. I f / = / , £^ = 0 un l e s s / — i = m, and these may 
be chosen arbitrarily, while if / ^ / , £^ = 0 for all i, j . Hence 

dim F(a)T(D;q2m) =dimFT(A;q) = 

T H E O R E M 14. Let (V, 6) be a universal F-representation for a monic irreducible 
polynomial f {X) of degree k over the field F = GF(q). Iff 9e f then d i m ( F i ) = 0 
while if f = / then k is even, k = 2m, and d i m ( F i ) = m. 

i f / = / 
iff 9*1 
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Proof. If k is odd t h e n / 9^ f and d i m ( F i ) = 0 by Propositions 7 and 8. 
Assume, then, t ha t k is even. If Vi ^ 0, then let xp: Vi —> i7 be a non-zero linear 
form. Then \p o $v

f is an al ternating bilinear form which is invar iant under 0O. 
Theorem 10 implies f = f, and d i m ( F i ) ^ m. 

Take Fo = F2/re, considered as column vectors. We choose a matr ix A Ç 
M2m(g),^4 = 0O, having characteristic po lynomia l / (X) . We take V\ = K(A,q)* 
if g is odd, and Vi = T(^4, g)* if g = 2W, where * denotes the dual. We define 
a bilinear map $: F 0 X F 0 —» Fi as follows: <£(#, 3/) is the linear function on 
Vi defined by 

<P(x,y)(X) = lxXy Ç F. 

Using this <f> we define the F-group V = VQ X Fi . 
If g is odd we define 6(x, g) = (Ax, g). I t is easy to check t ha t 6 £ A u t 0 ( F ; T7). 
If g = 2n we must check t ha t the form $(A (x), A(y)) — 0(x, 3/) is sym­

metric. This is equivalent to the claim tha t 4>f is A - invariant . This follows from 

4>'(Ax,Ay)(X) = lxlAXAy - lylAXAx = lxlA(X + XT),4;y 

= <x(X + lX)y = <\>f(x,y)(X). 

We also claim tha t the form 4>(A(x), A(y)) — <j>(x, 3;) is a l ternat ing. This 
follows from 

(<t>(Ax,Ax) - cj)(x,x))(X) = lxlAXAx - xlXx = 0 

because lAXA — X is a l ternat ing. 
Thus there is a quadrat ic map 0Oi-* F 0 —> Fi satisfying 0Oi(x + 30 — 0oi(#) — 

#01(3O = 0(^4 (x), A (y)) — cf)(x, y) and we define 6: V -> V by 

0(x, g) = (Ax, g + 0oi(x)). 

By Lemma 6, 6 £ A u t 0 ( F ; T7). 

We claim tha t F is a special .F-group. I t is enough to show tha t 

<$>' (x, y) (X) = 0 for all x, y £ F 0 => X = 0. 
But 

</>'(x, 3>)(X) = ' x ^ J O y - YAXAx = ^ ^ ( X - ' X ) ^ = 0 

for all x, y implies X = lX. Bu t if q is odd, X is skew-symmetric and we have 
X = 0. If g = 2W, and X = XT then, since X is tr iangular, X must be diagonal. 
By Theorem 13, this cannot happen unless X = 0. 

We require as well t ha t 9 have p' order. If it does not, then we replace 6 with 
an appropr ia te power of 6, as in the proof of Theorem 9. 

Clearly ( F , 0) is the universal .F-group for f(X) which we require, since 
dim ( F i ) = m and, by Theorem 12, dim (F i ) ^ m. 

T H E O R E M 15. If f(X) and g(X) are irreducible polynomials of degree 2m over 
F, satisfying f = f and g — g, and if (V, 6) and (W, co) are the universal F-
representations of f and g respectively, then V and W are F-isomorphic. 
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Proof. Choose A £ M2 m(g) having characteristic p o l y n o m i a l / ( X ) . Since A 
is irreducible, its centralizer in Mïm{q) is F[A]. I t is clear t ha t F[A] is a finite 
field with q2m elements. We may assume without loss t h a t / ( X ) is such tha t A 
has order qm + 1. By the proof of Lemma 11, this can be done. There is an 
element B in F[A] whose minimal polynomial over F is g(X). I t follows tha t 
B is irreducible. 

Suppose now tha t q is odd. We claim tha t 

K(A;q) CK(B;q). 

By [7, Satz 9.23, p. 228] and the fact t ha t the characteristic polynomial of B 
satisfies g = g so tha t B is conjugate to an element of Sp(2w, q), Bqm+1 = 1 
and so B = As for some 5. I t is now clear tha t 

K(A;q)CK(B',q). 

Similarly, if q = 2n. 

T(A;q)CT(B;q). 

By Theorems 10 and 13 these spaces have the same dimension and so K (A ;q) = 
K(B; q) if q is odd, and T(A\q) = T(B\ q) if q = 2n. 

I t is clear from the construction of the universal ^-representation in Theorem 
14 t h a t V and W are ^-isomorphic. 

5. A n o p e n q u e s t i o n . Let V = V(2m, q) be the non-degenerate F = 
GF(q)-group with dim Vo = 2m, dim V\ = m such tha t there exists 6 Ç 
A u t 0 ( F ; F) which induces an F-irreducible linear automorphism #0 in VQ. (We 
have seen in the previous section tha t such a group is unique up to ^-isomor­
phism.) Recall tha t F(2m, q) is a non-degenerate .F-group. 

Question 1. If W is a non-degenerate GF(q)-group, q odd, dim Wo = 2m is it 
t rue t ha t W is an ^-quot ient of V(2m, q)l 

This question is equivalent to the following question about matrices: 

Question 2. Let L be a subspace of K.2m(q), q odd, such tha t if X ^ 0, X Ç. L 
then X is non-singular. Is it t rue t ha t there exists A Ç M<im(q) having ir­
reducible characteristic polynomial and satisfying ^4X^4 = X for all X G L? 

We conjecture tha t the answers are affirmative. 
I t is interesting to remark tha t if V = V(2m, 2) then the quadrat ic forms 

\poQv, where Qv(x) = <t>v{%, x) and \p: Vi —» GF{2) is any non-zero linear form, 
are all of ( - l ) - t y p e (see [7, p . 248]). 
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