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MODULAR FORMS OF HALF INTEGRAL WEIGHT AND
THE INTEGRAL OF CERTAIN THETA-FUNCTIONS

SHINJI NIWA

§ 0. Introduction.

Recently G. Shimura [1] constructed modular forms of integral
weight from the forms of half integral weight. His construction is
rather indirect. Indeed, he proved that the Dirichlet series, obtained
from a form of half integral weight, multiplied by a certain L-function,
corresponds to a modular form of an integral weight by means of the
characterization of modular forms due to Weil.

In this paper, we shall give a more direct method of constructing
modular forms of integral weight, using Siegel-Weil’s indefinite theta
series, and at the same time prove the conjecture related to the level of
such forms (the former part of (A) in §4 of [1]). The relation of the
theory of the theta series and Shimura’s result was first pointed out by
T. Shintani [2]. Indeed, he constructed, in contrast to Shimura’s result
modular forms of half integral weight, using an indefinite theta series,
and showed that this correspondence is almost reciprocal to Shimura’s.
We note that our use of the theta series is, however, different from
Shintani’s.

Let N be a positive integer, y a character modulo 4N and y, = x(;*ly
with a positive integer .. We denote by H the complex upper half plane,
and by x = (2, 2,, ¥;) an element of the vector space R*. For ge SL(2, R)
we define a function on R® by f(x) = (x, — ix, — ;)" exp ((—2x/N)2x} + x5
+ 2x%). Forxk =214+ 1, 2 =u + ive H and for the lattice L' = ZB NZ
@ NZ/4) in @°, we define a theta series 6(z,9) by

0z, 9) = X q(x)v®"(exp mi(u/N)(@} — 4u,2)) f(v v g~'z) ,

TEL
where + v e R is viewed as a scalar of the vector space R° and
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g€ SL(2, R) operates on R® through the symmetric tensor representation,
that is, gx = (a1, =5, ;) € R® is determined by
g( &y xz/z)cg — ( fc{ x;/,2) .
%, [2 @, 2/2 @y
This series is naturally derived from Weil’s representation, and there-
fore a transformation formula in z is guaranteed. Now, we consider
the Petersson inner product of 6(z,g9) with a cusp form of half integral
weight with respect to z. Then, this inner product is a function of

ge SL(2,R) which becomes a holomorphic modular form of integral
weight on H. Such forms essentially coincide with those constructed

by Shimura, as precisely stated below. Let F(z) belongs to S,<4N , z(ﬂ)) ;
*
that is, F(oz) = z(d)(%)j(a, 2FF(2) for every ¢ = (g g) ¢ T'(4N), where

i(o,2) = 0(02)/0(2) and 0(z) = > 7., exp (2xin’z). Then, G(z) = F(—1/4Nz)
X (AN)~*(—iz)~** belongs to S.(4N,y), and has a Fourier expansion
G(2) = > 5., (k) exp (2nikz). Determine A,(n) by the relation

> Awn~ = Ls — 2 + 1,x1)(i a(kz)k-s) ,

where L(s,y) = > m. x(®)n~°. Then, putting w’ = & + @ = —1/2Nw with

/ —
w=¢+ipeH and g, = (’7(1)2 Z-iﬁ), we obtain

THEOREM. Asumme k = 7, then the function

dudv

v (z=u + )

O(w) = 2N)'(—2Nw) *(4y)~* L V*%0(2, 04 )F ()

of w belongs to &,_,(2N,y») and has a Fourier expansion
¢ Dy Ai(n) exp @rinw) ,

where ¢ = (—1):N¥2+142-4-12+32 Re (/2 — §)* and D is the fundamental
domain of I'y(4N) on H.

We denoted by &,_,(2N, ) the space of integral modular forms @
of weight « — 1 satisfying OGw) = y(D(cw + d)*"'O(x) for y = (g’ 3)
e I'v2N). Denote by ©&,_,(2N,y> the subspace of &, ,(2N,y’ which
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consists of cusp forms. Then the function @ in Theofem belongs to
S,_.:2N, ¥ by virtue of the magnitude of the growth of A,(n).

This theorem assures that the above conjecture related to the level
is true when ¢ = 1 with the notation of [1]. The more general cases,
when ¢ is an arbitrary square-free positive integer, are obviously reduced
to this case. Details will be given in §3.

We note that, in contrast to the situation in the theorem, the inte-
gral of 6 with respect to w’ is, as well known, an Einsenstein series
according to the Siegel formula.

I wish to express my hearty thanks to Drs. T. Asai, T. Shintani
and Y. Kitaoka, who gave me various important suggestions.

§ 1. Weil representation and theta series,

The purpose of this section is to explain the transformation formula
of 6 introduced in the preceding section. For this purpose, we introduce
Weil representation under the formulation by Shintani [2]. Let Q™ be
a nondegenerate n by n symmetric matrix of signature (p,q) with
rational coefficients, and let <{x,y> = *xQy be the inner product of 2 and

y in R*. For ¢ = (((’; 2) in SL(2,R) and f(x) in L¥R™), Weil represen-
tation ¢ — 7y(¢) is defined as follows:
(ro(0) ) ()

{lal"/ze[(ab/2)<x, z>lf(ax), forc=0,

|det Q[ lcl—n/zj‘ e[ alz, ry — Xz, Y + d<'!/, Y ]f(y)dy ,
Rn 2¢

for ¢+ 0,

where e[x] = exp @rix). Put 7(e6) = &(0)? ?r\ (o) with

Vi, c>0,
elg) = {i0-®on for o =0,
Vi, c<0.

Assume that (x,z) takes integral values on the lattice L in Q*. De-
note the dual lattice of L by L*, and for he L*/L and f e S(R™), define
the series 0(f,h) by >.c. f(h + 2); then we obtain

PROPOSITION 0 (Shintani). For o = (‘g g) e SL2,Z) such that
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ablx,x), cdlx,x> =0 mod2 for all xe L, we have

0(7'0(0')]“9 h) - Z C(h, k)aa(f, k)

k€ L*/L
where c(h, k), is equal to
ak,ahe[(ab/2)<hr k>]
for ¢ =0, and equal to
|det Q72 vol (L)~ |¢|™*
X e%}Le[(l/ 2c)ah + v, b + > — 2<k, b + > + d<lk, k)]

for ¢+ 0. Moreover, if ¢ =cl{x,zy) =0 (mod2) for every xecL* and
cL* C L are satisfied, then, for d < 0 and ¢ # 0, c¢(h, k), is given by

6k’ahﬁ—(p—q)sgncld|-n/2 Z 6[ b<h + T,h + 7'>] .
réLjaL 2d
COROLLARY (Shintani) 0. Under the same assumption as above, as-
sume that f satisfies r(k(@)f = (cos 6 — isin®)~*f for all 6, where Kk(6)

= (_gg:g i’g; Z) and k 18 a positive integer, and put 6(z, f,h)

= v~ ra,)f, h); then we get the transformation formula

(WD) e-o=ne(ez + d)~"6(oz, f, h) = L*Z/i ch, k)02, [, k),  (c+0).

Throuhout this paper we determine v z = 22 by —x/2 < arg 2/ < n/2.
Now, we give some examples and explanations for later use.

EXAMPLE 1. We consider the case n=1,Q = (2/N), L = NZ and
f(@) = exp (—(@2x/N)x®, then we have p=1,q9=0,L* = Z/2,rk@®)f
= (cos @ — i sin §)~V*f and 6(z, f,0) = 8(Nz), where 6(z) is defined in §.0.

From Corollary 0, it follows for ¢ = <Z 2)6 I'(4N) that (Vi)==(cz

+ @INo) = (0, 0),0¥) and 0,0), = (VT o, ez + ().

We note that c(h, k), in Proposition 0 does not depend on f. We can
interprete this representation by the so-called Fock representation. We
define a map I: L R) — H = L*C, exp (—=zZ)dz) by the integral trans-

formation (If)(2) = IR k(z,2) f(x)dx, where feL*R) and k(z,z) = exp

X (—mmadelzv/mz] exp ((x/2)2%), then I is bijective and maps the Hermit
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function exp (7rm9z;2);l—s ~ exp (—2rax?) in L*(R) to the polynomial z¢ in
X |Ymz

H up to a constant multiple. Moreover one can easily check, by direct
calculations, that Ir(k(9))f = (cos § — isin 6)~"V*M(e*)If, where f e L*(R),
Q = (m) and M(e*) is the map such that M(e)g(z) = g(e‘’z) for g(z) € H.
In this way we can find a function f,, in LAR) satisfying r(%k())f.,.
= (cos @ — isin )~ ®*V2f, = for a positive integer . Namely, f, .(x)

= H,2+vmma?), where H,(x) = (—1)*exp (:1:2/2)702T exp (—2°/2) is a so-

called Hermite polynomial.
Put again m = 2/N and let L be as above; then 6(z, f},.,0) = 6, .(2)

= v~ > =__ . H(2v2Nzrvx) exp (2riNzx?) satisfies 0,,(02) = <%—)j(a, 2)(cz

+ d)*6,,.(2) according to the independence of ¢(h, k), to f. In the same
way 0,.(—1/4N2) = 2N)** X (¥ —2iz)**9,(z) can be shown with 6,(2)
= (20)"*2 > 2 _. exp (2rix’2)H,(2+/27vx).

EXAMPLE 2. Next we consider the case =2 and Q = (2/N)
X (_2 —2)’ that is, <, y) = (—4/N)(®,y, + 2w,) and L = ANZ D (NZ/4),

then p=q=1, r =1, and L* = Z® (Z/16), and 4N L* = L satisfies the
assumption of proposition 0. Put L' =ZDNZ/4), hel’: then for

o= (3 5) TN, e,B), = duon and @), 1) = 6/, ak) are valid.
If feS(R) satisfies 7(k(6))f = e f, and if we define 6,,(z, /) by

02,;(2’, N = Z 1(h)0(z, f, n,
heL’/L*
then we obtain

0,,.(02, ) = w(d)(cz + d)6,.(2, [) .

We explain how to find f with this property. Put Q@ = m X (_ 9 ‘2), m

> 0. We define partial Fourier transformation F by

FF)(@,, z) = ¥2m j‘f F(@,, ) exp @nimtz)dt ,

F11) (@, @) = V2m j: F(@,, t) exp (—Animtz,)dt .
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One can easily check that 7(¢) f = FR(e)F~'f, where (R(0) f)(x) = f((xy, z,)0),
and so r is a representation of SL(2, R) although Weil representation is
not always a multiplicative representation. Put f'(x,x,) = (x, + iz,)"
X exp (—2ma (a} + 22), [,,.(2) = Ff) (@) = v 2 Waxm)~ " H(vdzm (¢, — x,))
X exp (—2m=n(x} + x3)); then R(k(B)f = e**’f’ and f,, has the required
property. Generally, the Weil representation commutes with the action
of the orthogonal group of @ on L*R"). In the present case, the
elements of that group are diagonal matrices in SL(2,R). Put f,(x,x,)
= f,,.(p7'®,, px,) with f,, above, and put m =2/N. Put 6,.z,7
=6,.,f,). Then we have
05,2, ) = 00797 >0 (@)

z1,22€2Z

. N 4 _
x exp (—2eiuzt, — N raty — 40 raiy)

)]

Observing that f,, = Ff’ and using the Poisson summation formula, we
obtain a different expression of 4,,:

0,.(2,7) = («/%)Hl(x/ﬁ_ﬁ)"‘i'r]"'lv“

4dr
Ny

X 25 zﬂ(%)(‘”ﬁ + x,)* exp (_.

Z1,T2€

|22 + x2|2> .

EXAMPLE 3. We denote by 7’ the Weil representation in the vector
space V,,(t = 1,2,3), and by L;,L¥, v, h;e L¥ and c;(h;, k;), correspond-
ing lattices, ete. If V, is the orthogonal sum of V, and V,, then »®
=rP Q@ rP,r® = r®r?®, and c,(hy, k), = ¢,(hy, k),c(h,, k), is obvious

—2
for by = (hy, hy), ks = (e o). If n=3,Q = -127( 1 ) and L = ANZ
_2

®NZ®D(NZ/4), then, according to preceding two examples, we have

c(h, k), = 5k,an(\/7)sgnc j(o, 2)(cz + d)"”z(%>

for fe LR, o = (‘; 3) e(4N) and h,keL//L with L' = ZONZ

®(NZ/4). Consequently, if »(k(@)f = (cosd — sin)~**f 1is satisfied,
then, defining 6.(2, ) = 2 lner s 2:(M0(2, f, h), where z,(h) = 3,(h), h
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= (hy, hy, hy) and £ =24 4+ 1 is an odd integer, we obtain
b0z, f) = z,(d)(l;i)j(a, 2)(cz + 0.2, f)

by Corollary 0. One can take here f,.(,)f,—(2, %), (e=1,---,2), or
their linear combinations for such f(x). In view of (x — iy)*

= 3t (D @H@(= 1), @) = @ — iz, — 2 exD (—ma(2ad + a3 + 2aD)

is available, too. On the other hand, the action of SL(2,R) in R® de-
fined in §.0 gives an isomorphism of SL(2, R) with the orthogonal group
of Q. Let gfeL*R%) be defined by (9/)(x) = f(g7'x) and m = 2/N;
then 6(z, g) defined in §.0 coincides with 6(z,gf,). The action of r,(k(4))
commutes with that of g in L*R®), g f; has the same property as f;, and
the required transformation formula of 6(z, g) is

8(0z, 9) = 7(d) (%)y‘(o, 20(z, 9) .

Remark. We note that f, has the property f,(k(@x) = e** f,(x), and
80 6(z, gk(0)) = e7**0(z, 9).

§2. Construction of the modular forms identical with Shimura’s (Proof of
the theorem).

Let F(z) be in S,(4N, ;—((_I‘.’.)). Since F(2) is rapidly decreasing at
%

each cusp of ©, while 6(z,9) is at most slowly increasing there, the

following integral is well defined:

dudv

V) = () [ vz, o) F ()L

Put
1
O(w) = w(—_) ONY(—2Nw)~%
(w) Nw 2N)¥( w)
(this is the function given in Theorem). Then, in view of
(a b)(xl xz/Z)(a c> _ (x{ x;/Z)
¢ d/\x,)2 x, /\b d w2 a7

i.e.
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x, = a’z, + abz, + bz,
25 = 2cax, + (ad + cb)x, + 2bdz,
25 = ¢z, + cdx, + dix, ,

anda,de Z,ce NZ/2and be4Z for y = (a Z)e]”:(z 1/2)p0(2m<1/2 2),

both lattices L =4NZPONZD(NZ/4) and L' =ZDONZD(NZ/4) are
stable by 7, and z{=a’, (mod 4N) for z = (x, x,,x;) € L’, so we obtain
0(z, 79) = y(d)b(z, 9) and consequently.

U(yw) = y(d)(cw + d)*¥(w)

for y = (g: 3:) e I'y(@N), recalling the remark in the preceding section.

It It is easy to see that 6(z,0,,) is slowly increasing on H X H.
Therefore, if ¥'(w) is holomorphic on H, then we can conclude that ¥
is an integral modular form of weight 22 and so is @, too. The holo-
morphy of ¥ is a direct consequence of Shintani’s result

0* 0 0 0
D 6(z, 9) = {4'02( ) — 27 v(— zw)
0 9) ou? + oo "\ + v

o)+ s

whereDg:l((l 0>2+2(° 1)(0 0) +2( )(0 1))istheCasimir
2\ —1 o o/\1 o 1 o/\o o

operator on SL(2, R), (see [2], §1). By the Green’s formula we have

dudv dudv

D j v0(z, 9)F(2) = 2 — 1)f v"0(z, 9)F (2)

equivalently

(’72( a?; - a?;z ) - 22/‘”( 2 ))w(w) =0

Put T(w) = > n__.. 0,(n) exp 2rimé). Then, from the above partial dif-
ferential equation, we have a,(y) = b, exp (—2rmy) + ¢, exp (—2wmy)

X f;] 7™ exp (dnmy)dy, (m =+ 0) and ay(p) = b, + ¢y **!, where exp (—2rmy)

X IZ 7% exp (4zmy)dy = 0 (5 **'e**™). On the other hand 7 ¥ (w) = 0(y + 1/7)
uniformly in § as will be showed. Thus a,(p) = 0((7 + 1/, since
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[, rap s = S5 faatrr

Hence we have ¢, =0, (m > 0), and b, =0, (m <0), (¢, =0, (m < 0))
considering the behavior at co (resp. at 0). Thus ¥(w) is holomorphic
on H. We show 7% (w) = 0(» + 1/7). Using the notation in §0,

6 0)] < 05" 3 |1/ Bz
Put M =Z/4D Z/4® Z/4, then
ag:. [ vagm)| < z;:l If(W vez; )| = ;M IfWver)|  for yeSLQ, Z) .

If > ¢ >0 and |&] < ¢, then there exist 0 < k;j(®) e SWR), (j =1,2,3)
such that

'((1, é{”)f (x>[ < h@)ho(@)ho(,)

for all z = (x,, z,, ;) ¢ R®. Thus

ghrevaa=Z |0 )6 Sl

= (TR0 o)) (3 meTe) ) (W m) .,
where x;e€ 1Z. Therefore

(W Vo) = 0~ + Do ' + 1))

xeM

for w=¢&+1dp (§]|<ecp p>¢,>0. Pt U={w=¢+ 1§ 9>0,
|w| =1}. Let ¢, <+ 3/2,¢,> % and choose ye SL(2,Z) for we H such
that ywe U. Then

SV Ul S 3 16 o)
= 0/~ + D¥Imypw + ) = 0@ + D + 7)) .

Thus |6(2, 0,,,)| = 0@ (v~ + 1)(np + ™) for all we H and ze H, and
7¥(w) = 0(p + ") for all we H.

We can also give a different proof of the holomorphy of ¥ which
is expected to be extended to the case x = 3,5 with some modification.

For this, it is enough to investigate the generators of S,(4N s ;z(ﬁ))

*
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which are given by Poincaré series G,(z) = >, x(d)( );)(a, 2)|ez + d|™*

X exp (2inez), (a = (‘g Z) e T\TW4N), n=1,2, .- ) Put

dudv

Tow) = Un™ | 070z, 0)Gr(@)
= (4~ J j V0(2, 0,,,) €7 du?'v .
0 Jo v
Then, we can easily evaluate this integral and have ¥ ,(w) = Z’“") Cn, k¥, (W),

where ¢, ; are constants and, denoting by X,,(k =1, ---, k(n)), repre-
sentatives of I'(2N)-equivalence clases of

{X = (2_1 2)(2/2 ﬁi/z)(z_l 2)‘detX= - niv ’xeL/}’

¥, x(w) is given by

(cw + d)™ 22 ' (arsw + ) *enww + A7,
7

(1= Qo).

The meaning of the letters 4,1, --- is as follows: r; = (g" g") is
0 0,
determined by X; = v N 7;1(1 1) rit and dety,=1. We set I';

= 1. W@N)yzt. 4, means the stabilizer in I', of 7, Xiy;, and ' is a
character of 4,\I",. Thus, we have proved the holomorphy of ¥,, and
consequently of all 7.

Now, let 2(s) be the Mellin transform of @(iy), the convergence of
which will be shown later; then

Q(s) = I: D(in)y’ %77_
= (—1yenyeNn [ T 77—%’1
= (—1}@Ny-#4-3 f : - f 0,0y DF () dy

7
with dy = dudv/v*. From the definition of 4(z, 9) and the relation
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a

@ — gy =3 (j)Hz-mH.(y)(—i)' ,

e=

we have a simple expression
O\ -2 2
0 0) = (24 22) " 33 ()= 02,90,

for 6(z,q;,), where 6,, ,,0,, are the functions defined in §1. Therefore,
changing the order of integration formally for a moment, justification
of which will be given later, we obtain

MQ=q@gxngw%umidﬁﬁk@mﬂwﬁ?Pﬂ

with ¢,(s) = (—12N)*~*4-%(24/2z/N)~*. Note that we can exchange the
summation and the integration as above. By virtue of the different
expression of 4,, given in Example 2, the integral in the bracket becomes
an Eisenstein series

NR————

X F(—s;e—ﬂ> > le(wl)(xlz + )| wz + x|

2 r1€Z,22€

Changing the variable z to —1/4Nz and using G(z) = F(—1/4Nz)(4N)~*
X (—12)~** and

6,,(—1/4Nz) = @N)"* (v =2i2)**'0,(2) ,

we obtain
m@=@@i(6Wﬂw”Wﬂ@L
e=0 \ ¢
where c,(s) is like ¢,(s) above and I,(s) is given by

I,(S) — J;) G(z)gs(z),v(ws+2)/zﬂ.-<s-e+1)/z[v< s — ; +1 )

X Z X1(961)(4Nx2z + x1)1~t ]4N.’X722 + xl]—s+;-1d0z

Z1,T2€

— ﬂ—(s-s+1)/zp(i:§;*’_L>L(s — 2+ L)

oo M1
7] (s+6+2)/2
X L L G()0,(2)v dy2

https://doi.org/10.1017/5S0027763000016445 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016445

158 SHINJI NIWA

containing Rankin’s arguments. We note that 6,(2) =0 if ¢ is odd.
The convolution appearing in I(s) is easily computed by the Fourier

expansion 6,(2) = >.p._.. (2v)~?H (2+/2zvk) exp (2zk*%2) and by the partial
integration, that is,

.[ , I ' G(2)0.(2) duvor TV
0 Jo v

= 27D s — Dis = D)+ (s — Ol (225D,

2

where D(s) = > oo, a(kDk™* with G(2) = > 5. a(k) exp (2rikz). Using well
known formulas of I'-function, we obtain

I(s) = 2 #g=s+?['(s)L(s — 2 + 1,%)D(s) .
consequently, we have
2(8) = ¢@r)~*I'(8)L(s — A + 1, x)D(s) ,

where ¢ is the constant given in §.0.

There still remains the investigation of the asymptotic behavior of
O@ip) as — 0 and co. But, it is exactly same as that in Shimura’s
paper. In fact, 6,, (2,7 is majorized by y~***-'v~***F (2, ), where F(z,7)
is given by

Fop) = 3 |2 + 2,p~ exp (—4—’§|sz + xziz) ,
21,23 N?] v

(%, e Z, 2, € Z, (2, %) # (0,0) .
Therefore, if 8 be the smallest integer =(1 — ¢)/2, then

GoEtigmm=hion o 1, v >¢>0, ¢ < ‘/f

s

F(z,p) =

- DyEtigTs > 1, 9 > >0, ¢ < ‘/f ,

where 4,4’ and h are positive constants depending only on ¢ and ec.
Put U={z=wu+weH||ul <1 |2/ =1}, choose y; e SL(2,Z) such that
Uk, rnUD® and put T() = v, (»)F(z), then T(y:2) = 0(9;(v)) for
ze U where g,’s are some rapidly decreasing functions. Put Fi(z,7)

— g+ ely=1e e (2, ), then j T8y, (2 1) doz < ¥y 4 jv T(r2)F' iz, 77

https://doi.org/10.1017/50027763000016445 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016445

THETA-FUNCTIONS 159

Xdre <2k e N v"1°9,(v) exp (—ryhv~)dv hold for all » > 1 with some
constants c;, e;, v, a. Since v~ * exp (—ay’hv™") < C, for x> 0 with some

constant C, and 7#~= r v'in9,;(v) exp (—ap*hvHdv < C, r viteg(v)dy = C,

with some constant C/, then I |T(2)8,,,_.(2, 77| dez = 0(yp#) for any x> 0,
D

(»>1. In the same way we get =0 (3*) for any x>0, (<1).
Thus, T(2)8,,_.(2,77)7° is integrable on (2,7) € ® X R*. Hence the formal
computations are justified, and the theorem is proved.

§ 3. Supplementary discussions.

We assume £ > 7. The main theorem of Shimura [1] is as follows.
Let G(z) = > r, a(n)e(nz) be an element of S,(4N,y), let ¢ be a square-

2
free positive integer, let X, = x( _1) (i) be a character, and put @,(w)

* *

= > = A,m)e(nw) with A;(n) determined by the equality

HZ:; A(r)n® = (Z‘,} x;(m)m“”)(gi‘:1 a(tmz)m‘s) .

Then, @, belongs to &,_,(N,;,y») with a certain positive integer N,.
In §4 of [1], he conjectured that 2N can be taken as N,.

COROLLARY TO THE THEOREM. The above conjecture is true.
Proof. Since G(tz) = > 7., b(m)e(nz) belongs to S,(4tN, X(i», our
*
theorem implies that @'(w) = > 7., B(n)e(nw), determined by the equality
il B,(n)n~* = (Z: )(,('m)'ml"l-s)(i]1 b(mz)m‘s> s

belongs to &,_,(2tN, ). Since b(m?) is equal to a(tk?) or 0 according as
m = tk or t does not divide m,

> Biwn = ( > At(m)m‘“)t"s
holds and so B,(n) = A, (n/t) or 0 according as t|n or #in. Hence,

O (w) = O,tw), and so D,(ow) = (cw + PO (w) for all ¢ = (‘c‘ g)
a b

e I'Y@N) with T'@N) = {(0 d) e I'@N)|b = O(t)}. Put I, = {((1) ’;)]b
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€ Z}. Then, since I'(2N) is generated by I'.. and I'}(2N), @, belongs to

12N, ).
By considering the reproducing kernel function of the space

S,(4N , z(ﬂ)) and the orthogonality relation, we can also give the
£

inverse map like Shintani’s. We denote by ¢’ the map G — ¢/(G) = @,
and put ¢ = c¢’ with the constant in Theorem. Denote by + the map
F — (F) = ¥ with the notation used in the first paragraph of §.2.
Then, our theorem says that the diagram

S.4N,y —2>&._,@N,y)

S,(4N, z(ﬂ)) —> B, (@N, )
*

is commutative, where we denote by ¢ ¢ the maps G(z)— (G)(2)
= G(—1/4ANz)AN) " —i2) ", U(w)— @) w) = ¥ (—1/2Nw)2N)*(—2Nw) %,
respectively. For the sake of simplicity, we assume that ¢’ is bijective
and that G;,, ¢ =1, - - -, d), are the common eigen-functions of the Hecke
operators which form a basis of S,4N,y). Put F; = «(Gy),¥; = (z7 o p)(Gy)
and 9; = ¢(G;). Then, F;,¥;, and @; are the orthogonal basis of S

= S‘(4N, z(%)), ©,_1(2N,7) and ©,_,(2N,y?), respectively, because @,’s
also are the common eigen-functions of the Hecke operators. We denote
by (x,%) the Petersson inner product. Put K(z,2') = > %, e (R)F ()
with ¢; = (F;, F;)™ !, then K(z,2') is a reproducing kernel function of S,
ie. (F(2),K(z,2)) = F(). Define 6(z,w) = (K(z,2), 770, o)), then,
we have (F(2), 8(z, w)) = (F(2), 77%0(2, 0,)) = v(F)w) and 6(z, w)
= 3%, ¢, ;2T (w). Therefore, @z, w),T,(w)) = ¢;¥;, VHF,(z). Put
F(2) = (62, 0,0), Ts(w)). Then, as is proved in [2] for a special case or
can be proved with slight modification for many other cases, F'(z) belongs
to S, hence F(2) = ¢;(¥;, ¥)F(2), and we obtain a way to get the invere
image of ¢’ as far as the common eigen-functions concern.

In [3], K. Doi and H. Naganuma constructed a Hilbert modular
form with respect to a real quadratic field Q(#D) from an integral
modular form of one variable. This situation is similar to that of [1],
and the methods of the proofs of [1], [3] are the same. Thus, [3] can
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be reformulated by means of the ideas of this paper. In this paper,
we used the theta series of a ternary zero form, and the discussion was
based on the classical isomorphism, O(2,1) =~ SL(2,R). We can find a
quaternary quadratic form @ with signature (2,2), which does not split
over Q but splits over Q(+/D), such that the orthogonal group of Q is
isomorphic to SL(2, R) X SL(2, R) and the group of units of Q corresponds
to the Hilbert modular group with respect to @Q(+/D). The theta series
of @ takes the place of 6(z,g), in this case, and the inner product of
this theta series with a cusp form of one variable gives rise to a Hilbert
modular form.
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