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A Beurling Theorem for Generalized Hardy
Spaces on a Multiply Connected Domain

Yanni Chen, Don Hadwin, Zhe Liu, and Eric Nordgren

Abstract. _e object of this paper is to prove a version of the Beurling–Helson–Lowdenslager invari-
ant subspace theorem for operators on certain Banach spaces of functions on amultiply connected
domain in C. _e norms for these spaces are either the usual Lebesgue and Hardy space norms
or certain continuous gauge norms. In the Hardy space case the expected corollaries include the
characterization of the cyclic vectors as the outer functions in this context, a demonstration that the
set of analyticmultiplication operators is maximal abelian and re�exive, and a determination of the
closed operators that commute with all analyticmultiplication operators.

1 Introduction

_e setting for this investigation is a ûnitely connected domain Ω in C with analytic
boundary curves Γ. _e Lebesgue spaces are deûned relative to harmonic measure
ω corresponding to an arbitrarily chosen point ŵ in Ω. Versions of the Beurling [3],
Helson–Lowdenslager [14] theorem in this context have appeared earlier in the work
of Sarason [23], Hasumi [13], Voichick [25, 26], and Rudol [21], although by using
Royden’s deûnition of inner function (see [19]), we can write the theorem in the sim-
plermore traditional form (see_eorems 3.3 and 4.6). Our version ismodeled on the
one obtained by Royden [19] for Hardy spaces on a multiply connected domain. It
describes the invariant subspaces of the set of all multiplication operators induced by
bounded analytic functions but does not address themore diõcult question of the in-
variant subspaces of “multiplication by z” alone, which was attacked by Royden [19],
Hitt [15], and Aleman and Richter [1, 2]. In addition to the added simplicity of our
representation, it also allows us to address thematter of uniqueness.

In addition to the Lebesgue space p-norms,we also consider more general contin-
uous gauge norms α on L∞(Γ,ω) with an L1(Γ,ω) dominating property. _is leads
us to general Lebesgue spaces Lα(Γ,ω) and Hardy spaces Hα(Γ) where we obtain a
general Beurling–Helson–Lowdenslager type invariant subspace theorem (see_eo-
rem 4.6).

We begin in Section 2 by collecting some of the needed background. _e domain
Ω has an analytic covering map τ from the unit diskD onto Ω that induces ameasure
preserving transformation from the unit circleT onto Γ, and consequently an isomet-
ric composition operator Cτ from the Lebesgue space Lp(Γ,ω) for 1 ≤ p ≤∞ into its
counterpart Lp(T,m) on the circle,wherem is a normalized Lebesguemeasure onT.
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_eHardy spaces on Ω were introduced by Parreau [18] and Rudin [20] as consisting
of analytic functions f with ∣ f ∣p dominated by some harmonic function. As on the
disk, these functions have boundary limits, and hence the spaces Hp(Ω) can be iden-
tiûed with isometrically isomorphic subspaces Hp(Γ) of Lp(Γ,ω). _e Hardy space
theory of the unit circle has been extended by the ûrst author [4, 5] by considering
norms that are more general than the Lebesgue norms, and these are introduced in
Section 2.2.
Although the Hardy space theory of amultiply connected domain is in large part

similar to that of the unit disk (see Royden [19, Section 1 and 2]), the multiple con-
nectivity introduces some interestingdiòerences. In particular, not all harmonic func-
tions on Ω have single-valued harmonic conjugates, because the holes in Ω can give
rise toperiods andmultiple valuedharmonic conjugates. Aconsequence, for example,
is that whereas on the unit circle L2(T,m) has an orthogonal direct sum decompo-
sition into a subspace of analytic functions, a subspace of constant functions, and a
subspace of co-analytic functions, on Γ the space L2(Γ,ω) has a similar decomposi-
tion, but with an additional n-dimensional subspace resulting from the possibility of
periods from each of the n holes. Also, inner functions in this context turn out to be
multiple valued if the restriction that their boundary values need to be unimodular
is enforced, but if we follow Royden [19] and relax the boundary condition to that of
constant modulus on each of the connected components of Γ, then themultiple value
problem can bemade to go away.

_e L2 case of the Beurling–Helson–Lowdenslager theorem is dealt with in Sec-
tion 3, where we make use of the Forelli [8] projection operator P, which maps
L1(T,m) onto the range of Cτ acting on L1(Γ,ω). It is shown that if M is a sub-
space of L2(Γ,ω) that is invariant under multiplication by every function in H∞(Γ),
then the image ofM underCτ can also be obtained by applyingP to the invariant sub-
space of the unilateral shi� generated by Cτ(M). _is fact is used to show1 that these
subspaces M are either of the form χEL2(Γ,ω) or φH2(Γ), where E is ameasurable
subset of Γ and φ is a function on Γ having constant modulus on each component of
Γ. As a corollary we obtain a special case of Royden’s result [19,_eorem 1] thatwhen
M is included in H2(Γ), then φ is inner. It is also shown that in this context, aswell as
that of the circle, the cyclic vectors of the set of multiplications by H∞(Γ) functions
on H2(Γ) are the outer functions.

_e Lα(Γ,ω) case is dealt with in Section 4 by using a slight modiûcation of the
proof of the ûrst author in [5] (see also [9, 10]). Every continuous, dominating, gauge
norm on L∞(Γ,ω) induces the same topology as the weak* topology on the ball of
L∞(Γ,ω), and this coincides with the topology of convergence in measure on the
ball. As in the case of the unit disk, the space Hα(Γ) consists of the members of
H1(Γ) that are also in Lα(Γ,ω), and thus members of L∞(Γ,ω) having reciprocals in
Lα(Γ,ω) diòer from outer functions by functions of locally constant modulus. _is
makes it possible to use the L2(Γ,ω) result to show that the invariant subspaces of the
H∞(Γ) multiplication operators on Lα(Γ,ω) have the same form as those in H2(Γ).
Consequently, invariant subspaces in Hα(Γ) also are determined by inner functions

1In a private communication, Alexandru Aleman has indicated that he has also obtained this result
by diòerent means on a region where the boundary curves are circles.
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φ and have the form φ ⋅ Hα(Γ), a result that contains the full version of Royden’s
invariant subspace theorem mentioned in the preceding paragraph.

Section 5 establishes some properties of inner functions on the basis of invariant
subspaces. On the disk the only simultaneously inner and outer functions are con-
stants, but on amultiply connected domain being both inner and outer is equivalent
to being inner and invertible, and the group of such functions is quite substantial.
Also in this section, the cyclic vectors in Hα(Γ) are characterized as outer functions.

Section 6 shows that the spacesHα(Γ)ût into themultiplierpair context of [12] and
consequently the algebra ofmultiplication operators by H∞(Γ) functions is maximal
abelian and re�exive. _e paper concludes in Section 7 with a characterization of the
closed operators on Hα(Γ) that commute with the analyticmultiplication operators.

2 Preliminaries

In this section we review some known facts for later use.

2.1 Hardy Spaces on Ω

Let Ω be a boundedmultiply connected domain in C with analytic boundary curves
Γ0 , . . . , Γn . Assume that Ω ⊂ Int Γ0, and let Ω j be Int Γ0 when j = 0 and Ext Γj in
the extended complex plane when j > 0. Also assume that for 1 ≤ k ≤ n the sets Γk
together with their interiors are pairwise disjoint subsets of Ω0. _us, Ω = ⋂

n
j=0 Ω j .

Fix a point ŵ in Ω and let Φ j be the Riemann mapping function that sends the open
unit disk D onto Ω j with Φ j(0) = ŵ for 0 ≤ j ≤ n. Because the boundary of Ω
consists of analytic curves, the functions Φ j are analytic on D. We will treat the Γj
as parameterized curves when convenient with parametrizations given by Γj(t) =

Φ j(e i t) for 0 ≤ t ≤ 2π. It follows thatwith Γ = Γ0 + ⋅ ⋅ ⋅ + Γn the points ofΩ have index
one relative to the cycle Γ and points of the complement of Ω have index 0.

_e parameterizations Γj give rise to arc length measure on Γ deûned by ds =

∣Γ′j(t)∣dt at points Γj(t) of Γ. (More precisely, arc length measure on Γ is the mea-
sure that is obtained on each component Γj of Γ separately by li�ing themeasure on
[0, 2π] that has Radon–Nikodym derivative ∣Γ′j(t)∣ relative to Lebesgue measure us-
ing themap t ↦ Φ j(e i t).) But there exists ameasure ω on Γ that is better adapted to
our needs and can be related to normalized Lebesgue measure m on T by means of
the Koebemapping function τ ∶ D→ Ω. _e function τ is analytic, surjective, locally
one to one, and it has the property that every point w ∈ Ω lies in a disk Dw whose
inverse image under τ is made up of connected components that are each mapped
bijectively by τ onto Dw (see Conway [6, Chapter 16]). Also, τ can be chosen so that
τ(0) = ŵ, and the additional requirement τ′(0) > 0makes τ unique. Since Γ is made
up of analytic curves, there exists an open subset T0 of the unit circle T over which τ
has an analytic continuation, such that τ(T0) = Γ, and such that the complement of
T0 in T has Lebesguemeasure 0 (see Tsuji [24,_eorem XI. 17]).
Every continuous function f on Γ has a continuous extension toΩ that isharmonic

on Ω, which we also label f . By themaximum principle, evaluation at a point w of Ω
is a continuous linear functional on the space C(Γ) of continuous complex functions
on Γ. _eRiesz representation theorem implies the existence of a probabilitymeasure
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ωw on the Borel subsets of Γ such that f (w) = ∫Γ f dωw . It can be shown that

dωw

ds
=

1
2π

∂gw
∂n

,

where gw is the Green’s function for Ω with pole at w and the derivative is in the
direction of the inward pointing normal. More importantly for our purposes, the
measure ωw can also be related to normalized Lebesgue measure m on T as follows.
If f is a continuous function on Ω that is harmonic on Ω, then f (w) = ∫Γ f dωw , and
f ○ τ is a bounded harmonic function on D with boundary values also given m-a.e.
by f ○ τ. For z ∈ D, let mz be deûned by dmz = Pz dm, where Pz is the Poisson kernel
for evaluation at z. _us, if τ(z) = w, then ∫T f ○ τ dmz = f (τ(z)) = f (w), and
consequently the transformation of integral formula implies ωw = mzτ−1. We state
this as a lemma for easy reference.

Lemma 2.1 If z ∈ D and w = τ(z), then ωw = mzτ−1.

Knowledge of the measures ωw makes the solution of the Dirichlet problem ex-
plicit; if f ∈ C(Γ), then for w ∈ Ω, f (w) = ∫Γ f dωw gives the harmonic function
on Ω having the original f as its boundary function. _e relation between mz and
ωw makes it easy to derive properties of ωw from corresponding ones for mz . _e
following is an example.

Corollary 2.2 Each of themeasures ωw is boundedlymutually absolutely continuous
with respect to arc length measure.

_e case of z = 0, and hence mz = m, is particularly important. In this case we
will write ŵ for τ(0) and simply ω for ωŵ . _us, it follows from the preceding that
the operator Cτ of composition with τ maps each of the spaces Lp(Γ,ω) (1 ≤ p ≤∞)
isometrically into Lp(T,m), and there is an expectation operator E on Lp(T,m) hav-
ing the same range as Cτ . When p = 2 the operator E is the orthogonal projection
of L2(T,m) onto the range of Cτ . If it is only assumed that f ∈ L1(Γ,ω), then the
function on Ω given by f (w) = ∫Γ f dωw is harmonic and can be shown to have
non-tangential boundary limits given by f ω-a.e.

Let H∞(Ω) be the space of bounded analytic functions on Ω. _e mapping Cτ
can also be thought of as a transformation of functions on Ω into functions on D,
and as such transforms H∞(Ω) into a subspace of H∞(D). _e set G of all disk
automorphisms σ , i.e., linear fractional transformations of D onto itself, that satisfy
τ ○ σ = τ is the covering group of τ. It has the following useful property.

Lemma 2.3 A measurable function F on T has the form F = f ○ τ for a measurable
function f on Γ if and only if F ○ σ = F for all σ ∈ G.

Since functions in H∞(D) have non-tangential limits a.e. on T and τ is analytic
on T0, it follows that all functions in H∞(Ω) have non-tangential limits ω-a.e. on Γ.
Furthermore, it also follows that the Nevanlinna class Nev(Ω), consisting of all ana-
lytic functions on Ω that are quotients of functions in H∞(Ω), has the property that
all its members also have non-tangential limits ω-a.e. on Γ. _ese limits deûne their
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boundary functions, which constitute the class Nev(Γ), and H∞(Γ) is the subspace
of boundary functions ofmembers of H∞(Ω). _us Nev(Γ) shares with Nev(T) the
property that the vanishing of one of its members on a set of positivemeasure entails
its vanishing almost everywhere.

_e space Hp(Ω) for 0 < p < ∞ is deûned to consist of all analytic functions f
on Ω such that ∣ f ∣p ≤ h for some harmonic function h (see [20]). In this case there
is a smallest such harmonic function h, the least harmonicmajorant of ∣ f ∣p , and it is
used to deûne ∥ f ∥p as h(ŵ)1/p , which is a norm making Hp(Ω) into a Banach space
when 1 ≤ p <∞.

Suppose f ∈ Hp(Ω) and h is a harmonic function satisfying ∣ f ∣p ≤ h on Ω. If
f1 = f ○ τ and h1 = h ○ τ, then f1 is analytic on D, h1 is harmonic on D, and ∣ f1∣p ≤

h1. It follows that f1 ∈ Hp(D). (Reason: if ( f1)r(z) = f1(rz), then ∫T∣( f1)r ∣
p dm ≤

∫T h1 dm = h1(0) for all r ∈ [0, 1)). Taking the supremum over r shows that ∥ f1∥p ≤

h1(0)1/p . If h is the least harmonic majorant of ∣ f ∣p , then, as Rudin [20] showed, h1
is the least harmonicmajorant of ∣ f1∣p . Here is the argument: call the least harmonic
majorant of ∣ f1∣p for the moment h0, so h0 ≤ h1. If σ ∈ G, then ∣ f1 ○ σ ∣p ≤ h0 ○ σ ,
and hence ∣ f1∣p ≤ h0 ○ σ , implying h0 ≤ h0 ○ σ . Because G is a group, it follows that
h0 ○ σ = h0 for all σ ∈ G, and thus h0 = h2 ○ τ for some harmonic function h2 that
majorises ∣ f ∣p on Ω. Consequently, h ≤ h2, it follows that h1 ≤ h0, and the argument
is complete. Since h1 is the least harmonicmajorant of f1, ∥ f1∥p = ∥ f ∥p , and therefore
Cτ maps Hp(Ω) isometrically into Hp(D). Moreover, the image of Hp(Ω) under
Cτ consists of all functions f1 in Hp(D) satisfying f1 ○ σ = f1 for all σ ∈ G. _is
observation could have been used to establish that Hp(Ω) is a Banach space when
1 ≤ p <∞ on the basis of the known fact that Hp(D) is a Banach space.

Just as each of the Hardy spaces Hp on the disk is isometrically isomorphic to its
space of boundary functions, the same is true for the region Ω. Let f be in Hp(Ω)

and, as above, put f1 = f ○ τ. _en f1 is in Hp(D) and has a boundary function
f̂1 deûned almost everywhere on T. Since f1 ○ σ = f1 for all σ ∈ G, it follows that
f̂1 ○ σ = f̂1 on T, and therefore f̂1 = f̂ ○ τ for some function f̂ on Γ that belongs to
Lp(Γ,ω) and has the same norm as f̂1. If ζ ∈ T0,wb = τ(ζ), and f1 has non-tangential
limit f̂1(ζ) at ζ , then, because τ is analytic at ζ , it follows that f has non-tangential
limit f̂1(ζ) = f̂ (τ(ζ)) = f̂ (wb), and thus f has boundary function f̂ at almost every
point wb of Γ. _e process of taking limits of an Hp(Ω) function at boundary points
is reversed by forming integrals w ↦ ∫Γ f dωw , which are analogous to the Poisson
integrals on the disk. In summary, the spaceHp(Ω) can be viewed equivalently as the
collection of analytic functions f on Ω for which ∣ f ∣p has a harmonicmajorant, or as
the isometrically isomorphic subspace Hp(Γ) of Lp(Γ,ω) consisting of the bound-
ary functions ofmembers ofHp(Ω), or as the subspace ofHp(D) consisting of those
functions invariant under composition with all members of G, or as the subspace of
Hp(T)with the same invariance property relative toG. Wewill make use of these dif-
ferent views more or less interchangeably. Moreover, it can be shown that the rational
functions with poles oò Ω are dense in Hp(Ω) (weak* when p =∞.)
Although largely similar to theHardy space theory of the unit disk, the theory for

a multiply connected domain Ω diòers signiûcantly in one respect. We will conûne
ourselves here mainly to discussing the L2 case, which we will need in Section 3. In

https://doi.org/10.4153/CJM-2017-007-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-007-8


520 Y. Chen, D. Hadwin, Z. Liu, and E. Nordgren

the case of the disk there is the familiar decomposition L2(T,m) = H2(T)⊕H2
0(T)∗,

where H2
0(T)∗ is the set of complex conjugates of the functions in H2(T) that are or-

thogonal to 1 (the set of functions vanishing at 0). _e counterpart of this decompo-
sition for Ω is L2(Γ,ω) = H2(Γ)⊕H2

0(Γ)∗⊕N(Γ), where N(Γ) is an n-dimensional
subspace of bounded functions, and H2

0(Γ)∗ is the set of complex conjugates of the
functions in H2(Γ)that are orthogonal to 1 (the set of functions vanishing at ŵ). _e
subspace N(Γ) is the span of functions Q1 , . . . ,Qn , and it is orthogonal to the set of
real parts of the rational functions with poles outside of Ω. _e exact speciûcation of
the Q j is given by Q j dω =

∂h j
∂n ds, where each h j is the harmonic function on Ω with

boundary values 1 on Γj and 0 on Γk with k /= j. _ese functions will be encountered
again in Section 2.3, but for a full discussion see Fisher’s book [7, §4.2 and §4.5]. _e
subspace N(Γ) that they span is of importance because Cτ maps not only H2(Γ) into
H2(T), but in fact Cτ(H2(Γ)⊕ N(Γ)) = E(H2(T)); see [8].

2.2 Gauge Norms

In [4] the ûrst author introduced the study of Hardy spaces on T under a family of
norms that properly includes the p -norms. Since our interest is in the space Γ with
themeasure ω, we will introduce norms of this type in amore general setting. Let µ
be a nonatomic probabilitymeasure on a σ-algebra in a set X, and let α be a norm on
L∞(X , µ). We call α a gauge norm in the case where α(1) = 1 and α(∣ f ∣) = α( f ) for
all f ∈ L∞(X , µ), and we say it is continuous in the case where

lim
µ(E)→0

α(χE) = 0.

Also,wewill call α dominating in the casewhere ∥ f ∥1 ≤ α( f )whenever f ∈ L∞(X , µ).
_e property should more properly be called one-norm dominating, but we will use
the shorter locution. It was shown in [4, Proposition 2.2] that if a continuous gauge
norm on L∞(T,m) is rotationally symmetric in the sense that α( fθ) = α( f ) for all θ
where fθ(z) = f (e iθz) for all f ∈ L∞(T,m), then α is dominating.
A gauge norm α can be extended to all measurable complex functions f on X by

α( f ) = sup{α(s) ∶ s is a simple function and 0 ≤ s ≤ ∣ f ∣} .

Let Lα(X , µ) consist of all measurable functions f such that α( f ) < ∞. If α is a
continuous dominating gauge normon L∞(X , µ), then its extension toLα(X , µ) has
the same properties. _e space Lα(X , µ) is a Banach space, and we deûne Lα(X , µ)
to be the closure of L∞(X , µ) in Lα(X , µ).

Let α be a dominating, gauge norm, and deûne its dual norm α′ on L∞(X , µ) by

α′( f ) = sup{∣∫
X
f h dµ∣ ∶ h ∈ L∞(X , µ) and α(h) ≤ 1} .

_e following are Lemma 2.6 and Proposition 2.7 from [5].

Lemma 2.4 _e dual norm α′ of a dominating gauge norm α is also a dominating
gauge norm.
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Proposition 2.5 Suppose α′ is the dual norm of a dominating gauge norm α on
L∞(X , µ). _e dual space (Lα(X , µ))# isLα

′
(X , µ) in the sense that if φ is a continu-

ous linear functional on Lα(X , µ), then there exists a unique F ∈ Lα
′
(X , µ) satisfying

∥φ∥ = α′(F) such that for all f ∈ Lα(X , µ), f F ∈ L1(X , µ) and φ( f ) = ∫X f F dµ.

_roughout the rest of the paper, without explicit assumption to the contrary, α
will be assumed to be a continuous, dominating, normalized gaugenormon Lα(Γ,ω).
_e set of these norms constitute a set that we will label N. Also N∞ will beN with
the essential supremum norm adjoined.

Hardy spaces in this context are obtained by deûning Hα(Γ) to be the subspace
of Lα(Γ,ω) obtained by taking the α-norm closure of H∞(Γ). Since Lα(Γ,ω) is a
closed subspace of L1(Γ,ω), Hα(Γ) is a closed subspace of H1(Γ). _us, we can de-
ûne Hα(Ω) as the subspace of H1(Ω) consisting of those functions whose boundary
functions are in Hα(Γ). For f ∈ Hα(Ω) and w ∈ Ω, we have f (w) = ∫Γ f dωw ,
and since ωw is boundedly absolutely continuous with respect to ω, it follows from
the dominating property that point evaluations are continuous linear functionals on
Hα(Ω) and by extension on Hα(Γ). _us, Hα(Ω) is a functional Banach space and
provides an equivalent but diòerent view to Hα(T).

2.3 Harmonic Functions, Periods, and Harmonic Conjugates

For each j between 0 and n, let h j be the solution to the Dirichlet problem on Ω
corresponding to the boundary function χΓj , and note that, because the boundary
curves are analytic, each h j has a harmonic extension to an open neighborhood of
Ω. Hence, for 0 ≤ j ≤ n, we have h j(w) = ∫Γ χΓj dωw = ωw(Γj). We will call a real
linear combination of the functions h j with 1 ≤ j ≤ n a harmonic unit. (Royden [19]
calls these functions harmonic measures, but we will reserve that term for the actual
measures ωw introduced above.) _us, if a⃗ = (a1 , . . . , an) ∈ Rn , then the typical
harmonic unit is the function u a⃗ = ∑n

j=1 a jh j . Observe that a harmonic unit plus a
constant gives themost general linear combination of all the h j for 0 ≤ j ≤ n.

On the disk every harmonic function has a harmonic conjugate, but on an annulus
centered at 0, for example, the harmonic function u(w) = log∣w∣ does not have a
single-valued harmonic conjugate, and thus there is no analytic function on the entire
annulus that has u as its real part. However, the following lemma shows that one
can construct an analytic function f on Ω from any given harmonic function u by
modifying u by the addition of an appropriately chosen harmonic unit.

If u is harmonic and real-valued on Ω, then let v be the harmonic conjugate of u
onDŵ satisfying v(ŵ) = 0. _en f = u+ iv is an analytic function onDŵ . If γ is a loop
in Ω at ŵ, i.e., a path in Ω with ŵ as both initial and terminal points, then f can be
continued analytically along γ to produce a second holomorphic function fγ = u+ ivγ
on Dŵ . _e diòerence f − fγ = i(v − vγ) is both holomorphic and pure imaginary
and therefore constant with the value ivγ(ŵ). _e real number Per(u, γ) = vγ(ŵ) is
the period of the harmonic conjugate of u on γ. It is not hard to see that u will have
a (single valued) harmonic conjugate on Ω precisely when analytic continuation of f
along a path in Ω depends only on the end points of the path, and this condition is
equivalent to Per(u, γ) = 0 for every loop γ at ŵ.
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_e period Per(u, γ) can be expressed in terms of u with the aid of the Cauchy-
Riemann equations,

(2.1) Per(u, γ) = ∫
γ

∂v
∂s
ds = −∫

γ

∂u
∂n

ds,

where ∂
∂s indicates the directional derivative in the direction of the unit tangent vector

t⃗ = γ′(t)/∣γ′(t)∣ of γ at γ(t), and ∂
∂n indicates the directional derivative in the direc-

tion of the interior unit normal vector n⃗ = i t⃗. Using Green’s formulas, one can see
that the second integral in (2.1) is constant, as γ varies over its homotopy equivalence
class in Ω, and thus the period is a function deûned on the fundamental group π1(Ω)

of Ω, which is a free group on n generators, and Per is a homomorphism of π1(Ω)

into R. Hence to determine if u has a harmonic conjugate on Ω, it suõces to check
that Per(u, γ) = 0 for each γ in a set of generators for π1(Ω), and these can be taken
to be curves γ j for 1 ≤ j ≤ n, each with Γj in its interior, with Γk in its exterior when
k /= j, and such that each point interior to Γj has winding number one.

Lemma 2.6 Ifu is a real-valued harmonic function onΩ, then there exists a harmonic
unit u a⃗ such that u + u a⃗ is the real part of an analytic function on Ω.

Proof If u is harmonic on Ω and u a⃗ is a harmonic unit, then, by the above dis-
cussion, it will suõce to show that a⃗ can be chosen so that Per(u + u a⃗ , γ j) = 0 for
0 ≤ j ≤ n, which by equation (2.1) translates into ∫γ j

∂u a⃗
∂n ds = − ∫γ j

∂u
∂n ds for 1 ≤ j ≤ n.

Consider the integral ∫γ j
∂u a⃗
∂n ds = ∑n

k=1 ak ∫γ j
∂hk
∂n ds. Each γ j is homotopic to Γj in

Ω, and since hk is harmonic on Ω,

∫
γ j

∂hk

∂n
ds = ∫

Γj

∂hk

∂n
ds = ∫

Γ
h j

∂hk

∂n
ds.

_e n×n periodmatrix with entries p j,k = ∫Γ h j
∂hk
∂n ds is known to be symmetric and

invertible (see [7, p. 80] and [17, pp. 38–41]). _us the condition that u imposes on a⃗
is that the system of equations

n

∑
k=1

p j,kak = −∫
γ j

∂u
∂n

ds 1 ≤ j ≤ n

has a solution, which it does by the invertibility of the periodmatrix.

2.4 Outer Functions and Eigenfunctions of the Group G

In [19] Royden deûnes an inner function on Ω as a bounded analytic function having
a boundary limit function on Γ that has ω-a.e. constant modulus on each boundary
component Γj for 0 ≤ j ≤ n. He also calls an analytic function f ∈ Nev(Ω) outer in the
case where log∣ f (w)∣ = ∫Γ log∣ f ∣dωw . If w = τ(z), then ωw = mzτ−1 by Lemma 2.1,
and thus his condition becomes

log∣ f ○ τ(z)∣ = ∫
Γ
log∣ f ∣dmzτ−1

= ∫
T
log∣ f ○ τ∣dmz ,

which is the condition that f ○ τ be outer on D. _us, a function f is outer on Ω in
Royden’s sense if and only if f ○ τ is outer on D in the usual sense, and it follows, as
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in the case of the unit disk, that Royden’s condition holds for all w ∈ Ω if and only if
it holds for a single point. _is establishes the following lemma.

Lemma 2.7 A function f ∈ H1(Γ) is outer if and only if f ○ τ is outer in H1(T).

We remark that the above argument showing that f is outer in H1(Γ) if and only
if f ○ τ is outer in H1(T) also shows that Jensen’s inequality for an H1(T) function
implies the corresponding inequality for functions in H1(Γ). For if f ∈ H1(Γ), then
f ○ τ ∈ H1(T), and consequently for z ∈ D, log∣ f ○ τ(z)∣ ≤ ∫T log∣ f ○ τ∣dmz implying
log∣ f (w)∣ ≤ ∫Γ log∣ f ∣dωw .
Additionally, we note that if u is an integrable real-valued function on Γ and the

harmonic function deûned for w ∈ Ω by u(w) = ∫Γ u dωw has a harmonic conjugate
v on Ω, then the function f = exp(u + iv) on Ω is outer.

_e following lemma is a basic tool that will be needed on several occasions. It
is essentially Forelli’s [8, Lemma 5] with a slightly more explicit description of the
eigenfunctions.

Lemma 2.8 If η is a character of G (i.e., a homomorphism of G into T), then there
exists an invertible outer function F in H∞(T) such that ∣F∣ is constant m-a.e. on each
of the sets τ−1(Γk) for 0 ≤ k ≤ n and for every σ ∈ G, F ○ σ = η(σ)F.

Proof To construct the required function F, we begin with a harmonic unit u =

∑
n
k=1 akhk where each ak is a real constant that remains to be speciûed. Let U =

u ○ τ to obtain a bounded harmonic function on D with boundary function U =

∑
n
k=1 ak χτ−1(Γk).
If C is the harmonic conjugation operator on L2(T,m), then the matrix of C rel-

ative to the usual orthonormal basis for L2(T,m) is diagonal with negatively in-
dexed entries i, positively indexed entries −i, and 0 as entry at 0, so we observe that
C∗ = −C. Put V = C(U) and F = exp(U + iV). _en F is outer in H∞(T) and
∣F∣ = ∑n

k=0 eak χτ−1(Γk), where a0 = 0, so it will fulûll the requirements, provided the
condition F ○ σ = η(σ)F for all σ ∈ G is satisûed. _e task at hand is to show that for
1 ≤ k ≤ n, the ak can be chosen to satisfy this condition.

Observe that σ ∈ G implies that (F ○ σ)/F = exp i(V ○ σ − V) no matter how the
ak ’s are chosen, because U ○ σ = U . _e equation has an analytic function on the
le� side and a function taking values in T on the right, and thus these functions are
constant, with the constant, say η1(σ), dependent upon σ . Clearly, η1(σ) = 1 when
σ(z) = z, the identity of the groupG, and because η1(σ) = (F○σ)/F, it follows that η1
is a homomorphism of G into T. _us, it remains to show that the ak can be chosen
so that η1 = η.

_e groupG is isomorphic to the fundamental group π1(Ω). If {σ1 , σ2 , . . . , σn} is a
set of generators ofG, then since the values η1(σ j) for 1 ≤ j ≤ n completely determine
η1, it suõces to show that by an appropriate choice of the ak , we have η1(σ j) = η(σ j)

for 1 ≤ j ≤ n. Suppose η(σ j) = e iθ j . Since η1(σ j) = exp i(V ○ σ − V) = e iV(σ j(0)), the
requirement is that the ak can be chosen so that the system of equations V(σ j(0)) =
θ j for 1 ≤ j ≤ n has a solution.
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Observe that if Pj is the Poisson kernel for evaluation at σ j(0), then

(2.2) V(σ j(0)) = ⟨V , Pj⟩ = ⟨U ,E(C(−Pj))⟩,

where ⟨ ⋅ , ⋅ ⟩ is the inner product on L2(T,m), and, as before, E is the projection on
the range of Cτ . In Fisher [7] it is shown that if γ j is the loop chosen in the proof
of Lemma 2.6, then γ j can be li�ed to a curve in D with initial point 0 and terminal
point, say ζ j , and if σ j is the uniquemember ofG satisfying σ j(0) = ζ j , then the σ j so
chosen form a set of generators forG, and EC(−Pj) = Cτ(Q j),whereQ j dω =

∂h j
∂n ds.

_us, equation (2.2) leads to

V(σ j(0)) = ⟨Cτ(u),Cτ(Q j)⟩ =
n

∑
k=1
ak⟨hk ,Q j⟩.

Note that ⟨hk ,Q j⟩ = ∫Γ h j
∂hk
∂n ds = p j,k and (p j,k) is again the period matrix of Ω,

which is symmetric and invertible. _us, the condition on the ak is∑n
k=1 ak p j,k = θ j

for 1 ≤ j ≤ n, and again it can always be satisûed.

3 Beurling-Helson-Lowdenslager Theorem for L2(Γ,ω)
In [8, _eorem 1] (see also Fisher [7, Section 4.5]) Forelli proved that there exists
a projection P of H∞(T) onto Cτ(H∞(Γ)) satisfying P( f g) = fP(g) for all f in
Cτ(H∞(Γ)) and g in H∞(T). As Forelli noted, the projection is deûned on L1(T,m)

and maps it onto Cτ(L1(Γ,ω)). It is obtained as follows. Let P be the polynomial
whose n zeros are the critical points of theGreen’s function ofΩ with pole at ŵ. Since
E(H∞(T)) = Cτ(H∞(Γ) + N(Γ)), and P ⋅ (H∞(Γ) + N(Γ)) = H∞(Γ) (see [8] and
[7] again), it follows that 1/P ∈ H∞(Γ) + N(Γ) and there exists p ∈ H∞(T) such that
E(p) = Cτ(1/P). _us, if P is deûned for f ∈ L1(T,m) by P( f ) = Cτ(P) ⋅ E(p f ),
then the following proposition holds (see [8]).

Proposition 3.1 (i) P(L∞(T)) = Cτ(L∞(Γ)).
(ii) P(L2(T)) = Cτ(L2(Γ)).
(iii) For all f ∈ L2(Γ,ω), ψ ∈ H∞(T), P(ψCτ( f )) = P(ψ)Cτ( f ).
(iv) P(H∞(T)) = Cτ(H∞(Γ)).
(v) P(H2(T)) = Cτ(H2(Γ)).

Abasic idea for proving the Beurling–Helson–Lowdenslager theorem for L2(Γ,ω)

is contained in the following lemma (see [13]). We will write Mψ for the operator of
multiplication by ψ.

Lemma 3.2 SupposeM is a closed subspace of L2(Γ,ω) that is invariant under Mψ
for every member ψ of H∞(Γ) and
(3.1) N = span{ξCτ(g) ∶ ξ ∈ H∞

(T) and g ∈M} .
_en N is a subspace of L2(T,m) that is invariant under multiplication by every func-
tion in H∞(T), and P(N) = Cτ(M). IfM ⊂ H2(Γ), then N ⊂ H2(T).

Proof SupposeM is a closed subspace of L2(Γ,ω) that is invariant undermultiplica-
tion by every function in H∞(Γ), and letN be deûned by (3.1). _enN is the smallest
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H∞(T)-invariant subspace that includesCτ(M). By Proposition 3.1(iv), Forelli’s pro-
jection maps H∞(T) onto Cτ(H∞(Γ)), and thus it follows (Proposition 3.1(iii)) that
when P is applied to a generator ξ ⋅ Cτ( f ) of N the result is P(ξ) ⋅ Cτ( f ), which is
a member of Cτ(M) because the ûrst factor is in Cτ(H∞(Γ)), Cτ preserves prod-
ucts, andM is invariant under multiplication by functions in H∞(Γ). _us, P(N) ⊂

Cτ(M). _e opposite inclusion is true because, by Proposition 3.1(iii), P ûxes all
members of Cτ(L2(Γ,ω)), and hence we have P(N) = Cτ(M). _e last assertion is
immediate.

_eorem 3.3 Let M be a closed subspace of L2(Γ,ω) that is invariant under Mψ for
every ψ ∈ H∞(Γ). _en either
(i) M = χEL2(Γ,ω) for somemeasurable subset E of Γ, or
(ii) M = φH2(Γ) for some φ ∈ L∞(Γ,ω) such that ∣φ∣ is constant on each of the

components of Γ.
In the case whereM ⊂ H2(Γ) we have that φ is a Royden inner function.

Proof Suppose M and N are as above. By Lemma 3.2, P(N) = Cτ(M). Since
N is a subspace of L2(T) that is invariant under multiplication by all functions in
H∞(T), either (i) N = χFL2(T,m) where F is a measurable subset of T, or else (ii)
N = qH2(T) where q is a unimodular function on T. _us, it remains to analyze
P(χFL2(T,m)) in case one and P(qH2(T)) in case two. For this we use Lemma 2.3,
arguing the two cases separately.

Observe that the generators of N are mapped into other generators of N under
composition with members of G, and thus N is invariant under composition with
elements of G. _erefore, if σ ∈ G, then in case one χF ○ σ = χF f for some f in
L2(T,m), and consequently χF ○ σ ≤ χF. Since this holds for all members of the
group G, it follows that χF ○ σ = χF. _us, there exists a measurable subset E of Γ
such that χF = χE ○ τ. _us, we have

Cτ(M) = P(N) = (χE ○ τ) ⋅P(L2
(T,m)) = Cτ( χE ⋅ L2

(Γ)) ,

which implies M = χE ⋅ L2(Γ,ω), thereby completing the proof in this case.
In the second case, invariance of N under composition with members of G leads

to q ○ σ = q fσ for some fσ ∈ H2(T). Since q ○ σ and q are unimodular, it follows
that fσ is inner. Also, q ○ σ−1 = q fσ−1 , and hence on composing with σ we obtain
q = (q fσ) ⋅( fσ−1 ○ σ), which implies 1 = fσ ⋅( fσ−1 ○ σ). _us, the inner function fσ has
an inverse in H∞(T) and is therefore a constant in T. Call it η(σ), so q ○ σ = η(σ)q.
Again it is clear that η(σ) = 1, when σ(z) = z, the identity in G. Also, we have
η(σ1 ○ σ2)q = (q ○ σ1) ○ σ2 = η(σ1)η(σ2)q, and it follows that η is a homomorphism
of G into T. By Lemma 2.8, there exists an invertible function F in H∞(T), with ∣F∣
constant on the sets τ−1(Γj) for 0 ≤ j ≤ n, and satisfying F ○ σ = η(σ)F for all σ ∈ G.
It follows that q/F is unchanged by composition with members of G, and therefore
Lemma 2.3 implies q/F = φ ○ τ for some φ ∈ L∞(Γ,m). Since q is unimodular and
∣F∣ is constant on each set τ−1(Γj), it follows that ∣φ∣ is constant on each of the sets Γj .
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Since FH∞(T) = H∞(T), we have N = (φ ○ τ) ⋅ H2(T). As in the ûrst case, we
now have

Cτ(M) = P(N) = (φ ○ τ) ⋅P(H2
(T)) = Cτ(φ ⋅H2

(Γ)) ,

which implies M = φ ⋅H2(Γ) as required.
If M ⊂ H2(Γ), case (i) cannot occur, and consequently φ ∈ H2(Γ). Since ∣φ∣

is constant on the connected components of Γ, φ is a Royden inner function. _is
completes the proof.

_e question of uniqueness of the representation will be addressed in Section 5
(see _eorem 5.2). In the following we identify the cyclic vectors for H2(Γ) as the
outer functions. _e general case of this result will also be obtained in Section 5 (see
_eorem 5.4).

_eorem 3.4 A function f ∈ H2(Γ) is cyclic in the sense that H∞(Γ) ⋅ f is dense in
H2(Γ) if and only if f is outer.

Proof If f is cyclic, then the invariant subspaceM it generates is all of H2(Γ). In
this case the invariant subspaceN of Lemma 3.2 is generated by f ○ τ and is also all of
H2(T). _us, f ○ τ is outer in H2(T), and consequently Lemma 2.7 implies that f is
outer in H2(Γ). Conversely, if f is outer in H2(Γ), then Lemma 2.7 implies that f ○ τ,
which generatesN, is outer in H2(T), and thusN = H2(T). _is in turn implies that
M = H2(Γ), and consequently f is cyclic.

4 Beurling-Helson-Lowdenslager Theorem for Lα(Γ,ω)
_roughout this section α will be a continuous, dominating, normalized gauge norm
on L∞(Γ,ω), i.e., α ∈ N. To generalize _eorem 3.3 to the spaces Lα(Γ,ω), we use
the same technique as that of the ûrst author in [5] with a few modiûcations neces-
sitated by the multiple connectedness of the domain of the members of Hα(Ω). In
that paper invariant subspaces of the single operator multiplication by z on Lα(T,m)

were considered, in which case invariance under that operator is enough to imply
invariance under multiplication by all H∞(T) functions. In the multiply connected
case, the invariant subspaces of the operatormultiplication by z aremore complicated
(see [1,2, 15]), and so we assume invariance under multiplication by all H∞(Γ) func-
tions. A basic idea in [5]was also devised earlier byGamelin [9,10] to study invariant
subspaces in certain generalized Hp spaces.

Let B be the closed unit ball of L∞(Γ,ω). _e next lemma is [5, Lemma 2.9].

Lemma 4.1 If α ∈N, then
(i) on B the α-topology, the ∥ ⋅ ∥2-topology, and the topology of convergence in mea-

sure coincide, and
(ii) B is α-closed.

Lemma 4.2 Hα(Γ) = H1(Γ) ∩ Lα(Γ,ω).
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Proof _e inclusion of Hα(Γ) in H1(Γ) is a consequence of the dominating prop-
erty, and its inclusion in the intersection follows. For the opposite inclusion, sup-
pose φ ∈ Lα(Γ,ω)# is in the annihilator of Hα(Γ). By Proposition 2.5, there exists
F ∈ Lα

′
(Γ,ω) such that for all f ∈ Lα(Γ,ω), f F ∈ L1(Γ,ω) and φ( f ) = ∫Γ f F dω.

Because φ is in the annihilator ofHα(Γ),we have ∫Γ f F dω = 0 for all f ∈ H∞(Γ),
and it follows from [7, _eorem 4.8] that PF ∈ H1(Γ), where P is the polynomial
whose zeros are the critical points of theGreen’s function ofΩwith pole at ŵ. Further,
because P ⋅ (H1(Γ) + N(Γ)) = H1(Γ), it follows that F ∈ H1(Γ) + N(Γ), and thus
F = F1 + FN , where F1 ∈ H1(Γ) and FN ∈ N(Γ). Since 1 ∈ H∞(Γ) and ∫Γ f dω = 0 for
all f ∈ N(Γ), ∫Γ 1F1 dω = ∫Γ 1F dω = 0, and thus F1 ∈ H1

0(Γ).
Suppose g ∈ H1(Γ) ∩ Lα(Γ,ω). _en gF ∈ L1(Γ,ω), and because FN is bounded,

gF1 ∈ L1(Γ,ω), and consequently Cτ(gF1) ∈ L1(T,m). Also, from g ∈ H1(Γ) and
F1 ∈ H1

0(Γ), it follows that Cτ(g) ∈ H1(T) and Cτ(F1) ∈ H1
0(T). _us, the product of

Cτ(g) and Cτ(F1) is in H1
0(T), which implies ∫Γ gF1 dω = ∫T(gF1) ○ τ dm = 0. Since

H2(Γ)∗ and N(Γ) are orthogonal in L2(Γ,ω), and since H2(Γ) is dense in H1(Γ), it
follows that ∫Γ gFN dω = 0. Consequently, φ(g) = 0, and theHahn–Banach theorem
now implies that g ∈ Hα(Γ), thereby giving us the required opposite inclusion.

_e next lemma is fundamental for what follows.

Lemma 4.3 If b ∈ L∞(Γ,ω) and 1/b ∈ Lα(Γ,ω), then there exists a function ψ
having ω-a.e. constant modulus on each connected component of Γ, and there exists an
outer function h ∈ H∞(Γ) such that b = ψh and 1/h ∈ Hα(Γ).

Proof If b satisûes the hypothesis, then, since Lα(Γ,ω) ⊂ L1(Γ,ω), it follows that
log∣b∣ is integrable, and hence there exists a harmonic function u on Ω with log∣b∣ as
its boundary function. By Lemma 2.6, there exists a harmonic unit u0 such that u−u0
has a harmonic conjugate function v on Ω. Put h = exp(u − u0 + iv) to get an outer
function on Ω such that ∣h∣ has a boundary function ∣b∣e−u0 , and thus h ∈ H∞(Γ). If
ψ = b/h, then ∣ψ∣ = eu0 which is constant on each of the sets Γj . Finally, 1/h is in both
H1(Γ) and Lα(Γ,ω), and thus Lemma 4.2 implies 1/h ∈ Hα(Γ).

Proposition 4.4 Let M be a weak* closed subspace of L∞(Γ,ω) that is invariant
under multiplication by all members of H∞(Γ). IfM is the closure of M in Lα(Γ,ω),
then M is also invariant under multiplication by members of H∞(Γ) and M = M ∩

L∞(Γ,ω).

Proof _at M is invariant andM ⊂M∩ L∞(Γ,ω) are immediate. For the opposite
inclusionwe show that if φ is aweak* continuous linear functional on L∞(Γ,ω)with
M in its kernel, then φ(g) = 0 for every g ∈ M ∩ L∞(Γ,ω). By the Hahn–Banach
theorem, this will imply that M ∩ L∞(Γ,ω) ⊂ M. For this, suppose F ∈ L1(Γ,ω)

and ∫Γ f F dω = 0 for every f ∈ M. Apply Lemma 4.3 with b = 1/(∣F∣ + 1) to get an
outer function h ∈ H∞(Γ) such that 1/h ∈ H1(Γ) and a function ψ that has constant
modulus on each of the sets Γj for 0 ≤ j ≤ n satisfying b = ψh. We have hF ∈

https://doi.org/10.4153/CJM-2017-007-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-007-8


528 Y. Chen, D. Hadwin, Z. Liu, and E. Nordgren

L∞(Γ,ω), since

∣hF∣ = 1
∣ψ∣

∣F∣
∣F∣ + 1

.

_ere exists a sequence (hν) in H∞(Γ) such that limν→∞∥1/h − hν∥1 = 0, and thus
∥F − hνhF∥1 = ∥(1/h − hν)hF∥1 ≤ ∥1/h − hν∥1∥hF∥∞ → 0 as ν →∞.

If gµ ∈ M, then hνhgµ ∈ M, and it follows that ∫Γ hνhgµF dω = 0. If g ∈ M, then
there is a sequence (gµ) in M such that α(g − gµ) → 0 as µ → ∞, which implies
∥g − gµ∥1 → 0, since α is dominating. _us

∣∫
Γ
ghνhF dω∣ = ∣∫

Γ
(g − gµ)hνhF dω∣ ≤ ∥g − gµ∥1∥hνhF∥∞ → 0

as µ →∞, and consequently ∫Γ ghνhF dω = 0 for every ν.
Finally, if in addition to g ∈ M we also assume that g ∈ L∞(Γ,ω), then we have

that
∣∫

Γ
gF dω∣ = ∣∫

Γ
g(F − hνhF)dω∣ ≤ ∥g∥∞∥F − hνhF∥1 → 0

as ν →∞. _us, ∫Γ gF dω = 0, which completes the proof.

Proposition 4.5 LetM be a closed subspace of Lα(Γ,ω) that is invariant under mul-
tiplication by all members of H∞(Γ). If M = M ∩ L∞(Γ,ω), then M is weak* closed
and invariant andM = M−α .

Proof _at M is weak* closed follows from Lemma 4.1 and the Krein–Šmulian the-
orem, as in [5]. Invariance is immediate.

It is clear that M−α ⊂M. Consider f ∈M, and apply Lemma 4.3 to b = 1/(∣ f ∣+ 1),
thereby producing a function ψ with ω-a.e. constant modulus on each component
of Γ and an outer function h ∈ H∞(Γ) with 1/h ∈ Hα(Γ) such that b = ψh. _ere
exists a sequence (hν) in H∞(Γ) such that α(1/h − hν) → 0 as ν → ∞. Since ∣h f ∣ =
∣ψ∣∣ f ∣/(∣ f ∣ + 1), it follows that h f ∈ M and h f is bounded, and hence h f ∈ M. _e
same is true of each hνh f , and α( f − hνh f ) ≤ α(1/h − hν)∥h f ∥∞ → 0 as ν → ∞.
_erefore, f ∈ M−α , and the proof is complete

With Propositions 4.4 and 4.5 in hand, we can now prove the principal result, the
Beurling,Helson–Lowdenslager theorem for a space with a continuous, dominating,
normalized, gauge norm on a multiply connected domain. As mentioned in the in-
troduction, the last statement contains Royden’s version of Beurling’s theorem in [19,
_eorem 1].

_eorem 4.6 LetM be a closed subspace of Lα(Γ,ω) that is invariant under Mψ for
every ψ ∈ H∞(Γ). _en either
(i) M = χELα(Γ,ω) for somemeasurable subset E of Γ, or
(ii) M = φHα(Γ) for some φ ∈ L∞(Γ,ω) such that ∣φ∣ is constant on each of the

components of Γ.
_e result is also true in the case where α is the essential supremum norm when M is
weak* closed. When M ⊂ Hα(Γ), case (ii) holds and the function φ is a Royden inner
function.
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Proof _e case of L2(Γ,ω) was handled in _eorem 3.3. Suppose M is a weak*
closed subspace of L∞(Γ,ω) that is invariant under Mψ for every ψ ∈ H∞(Γ), and
let M be the closure of M in L2(Γ,ω). _e preceding case then applies to M, and
Proposition 4.4 implies that M is obtained by intersecting M with L∞(Γ,ω). Since
the intersection of χEL2(Γ,ω) with L∞(Γ,ω) is χEL∞(Γ,ω) and the intersection of
φH2(Γ,ω) with L∞(Γ,ω) is φH∞(Γ,ω), this case is proved.

Next let M be a closed subspace of Lα(Γ,ω) for α ∈N. By Proposition 4.5, if M =

M∩L∞(Γ,ω), then M isweak* closed and invariant under each Mψ withψ ∈ H∞(Γ).
_e preceding case now implies that either M = χEL∞(Γ,ω) or M = φH∞(Γ). _e
closure ofM in the α topology isM, by Proposition 4.5, the α closure of χEL∞(Γ,ω)

is χELα(Γ,ω), and the α closure of φH∞(Γ) is φHα(Γ).
_e ûnal assertion is clear, and thus the proof is complete.

5 Inner Outer Factorization

As mentioned previously, the Royden deûnition makes a function inner if it is in
H∞(Ω) and its boundary function has ω-a.e. constant absolute values on each con-
nected component of Γ. Let I(Ω) be themultiplicative semigroup of inner functions
on Ω and let I−1(Ω) be the subgroup of invertible ones. As usual, I(Γ), I−1(Γ) will
be the sets of their boundary functions on Γ. _e Royden deûnition of inner func-
tion allows one to describe all of the invariant subspaces of theH∞(Γ)multiplication
operators on Hα(Γ), including {0}, very simply. _ey are the subspaces of the form
φHα(Γ), where φ is inner, but the correspondence is not one-to-one. It is easy to dis-
regard this phenomenon on the disk, since if two inner functions produce the same
invariant subspace of Hα(T), then they diòer by at most amultiplicative constant of
modulus one.

_e multiply connected case is more complicated than that of the disk. A minor
diòerence is that with Royden’s deûnition the constant 0 function is inner. Also, a
nonzero multiple of a nonzero inner function is inner and gives rise to the same in-
variant subspace. A modiûcation of this situation, making it a bit more in line with
the situation on the unit disk, can bemade by deûning a normalized inner function as
one whose absolute boundary values on the outer boundary Γ0 of Ω are one ω-a.e.,
and from here on inner functions on Ω other than the trivial one 0 will be assumed to
have this normalization. _us, a Royden inner function, or as we will say from here
on, simply inner function, on Ω will be either the constant 0 function or a bounded
analytic function φ on Ω such that ∣φ∣ has boundary values ω-a.e. equal to 1 on the
outer boundary Γ0 and ω-a.e. (necessarily nonzero) constant values on each of the
remaining connected boundary components Γj , 1 ≤ j ≤ n. Equivalently, a nonzero
inner function φ is a member of H∞(Γ) that satisûes log∣φ∣ = ∑n

j=1 a j χΓj for some
real constants a j , 1 ≤ j ≤ n.
But a more fundamental diòerence is that there are nonconstant invertible inner

functions. For example, on a zero centered annulus with outer radius 1, the functions
wk with k ∈ Z are all normalized inner and invertible. Kuratowski in [16] (see also [22,
p. 211]) studied functions without zeros on Ω. He showed that if points a1 , a2 , . . . , an
are chosen in the complement of Ω with one of them in each bounded component of
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that complement, and if

(5.1) f (w) = (w − a1)k1 ⋅ ⋅ ⋅ (w − an)
kn ,

where k1 , k2 , . . . , kn are integers, then every analytic function φ on Ω having no zeros
is homotopic to a function of the form f . _is means that φ(w) = f (w)e g(w), where
g is analytic on Ω. Moreover, the k j ’s are uniquely determined by φ, and g is uniquely
determined up to the addition of an integer multiple of 2πi. Moreover, φ is bounded
if and only if Re g is bounded above, and φ is invertible in H∞(Ω) if and only if Re g
is bounded both above and below. It follows that φ is an invertible inner function
precisely when, in addition, there exists a harmonic unit u such that u = Re g + log∣ f ∣.

Proposition 5.1 Let φ be a nonzero inner function in H∞(Γ). _en the following are
equivalent:
(i) φ is invertible,
(ii) φ is outer,
(iii) for some α ∈N∞, φHα(Γ) = Hα(Γ),
(iv) for all α ∈N∞, φHα(Γ) = Hα(Γ).
(v) there exist integers k1 , k2 , . . . , kn inducing f as in (5.1) and there exists g in H(Ω)

with bounded real part such that log∣ f ∣ + Re g is a harmonic unit and φ = f e g .

Proof It is easy to see that (i) is equivalent to each of (iii) and (iv). Also, (iv) implies
that φ is cyclic for H2(Γ), which, by _eorem 3.4, implies that φ is outer. Finally, if
φ is outer, then _eorem 3.4 implies φH2(Γ) is dense in H2(Γ). Since φ is inner, it
is bounded below on Γ, and thus φH2(Γ) is closed, hence all of H2(Γ). _erefore,
φ is invertible. Equivalence of (i) and (v) follows from the discussion preceding the
statement of the proposition.

We will call two inner functions equivalent if they diòer by an invertible factor,
which is necessarily inner. Modulo equivalence, I(Ω) has a lattice structure given by
divisibility. For φ,ψ ∈ I(Ω), we say φ divides ψ, written

φ ∣ ψ,

if and only if there is a ρ ∈ I(Ω) such that ψ = ρφ. Since I(Ω) is cancellative, ρ is
unique up to equivalence. Also, ϕ and ψ are equivalent if each divides the other.

_eorem 5.2 Suppose φ and ψ are inner functions on Γ. Each of the following implies
the others.
(i) φ and ψ are equivalent,
(ii) φH1(Γ) = ψH1(Γ),
(iii) φH∞(Γ) = ψH∞(Γ),
(iv) for some α ∈N∞, φHα(Γ) = ψHα(Γ),
(v) for every α ∈N∞, φHα(Γ) = ψHα(Γ).

Proof _e last four cases follow from the ûrst, because if ρ is an invertible inner
function, then ρHα(Γ) = Hα(Γ) for all α. In each of the last four cases φ is amultiple
of ψ and vice versa, which makes φ and ψ equivalent.
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Suppose ∅ /= S ⊂ I(Ω). We say that ρ ∈ I(Ω) is a least common multiple of S if
and only if ρ is divisible by every element of S and if σ ∈ I(Ω) is divisible by every
element of S, then σ ∣ ρ. It is clear that if there is such a ρ, then it is unique modulo
equivalence. Although uniqueness is only for equivalence classes, we write

ρ = LCM(S)

to denote that ρ is a least common multiple of S.
Similarly, we say that ρ is a (unique up to equivalence) greatest common divisor

of S, denoted by ρ = GCD(S), if and only if ρ divides every member of S, and every
σ ∈ I(Ω) thatdivides everymember of S must alsodivide ρ. _eproof of the following
proposition follows immediately from _eorem 4.6 and the fact that

⋂
ψ∈S

ψH1
(Ω) and spanH1

(Ω)
( ⋃

ψ∈S
ψH1

(Ω))

are always closed H∞(Ω)-invariant subspaces of H1(Ω).

Proposition 5.3 Suppose ∅ /= S ⊂ I(Ω) and φ, γ ∈ I(S). _en
(i) γ ∣ φ if and only if φH1(Ω) ⊂ γH1(Ω),
(ii) γ and φ are equivalent if and only if each divides the other,
(iii) γ = LCM(S) if and only if γH1(Ω) = ⋂ψ∈S ψH1(Ω),
(iv) γ = GCD(S) if and only if γH1(Ω) = spanH1

(Ω)
(⋃ψ∈S ψH1(Ω)),

(v) LCM(S) always exists; GCD(S) exists if and only if ⋂ψ∈S ψH1(Ω) /= {0}. In
particular, if S is ûnite, then GCD(S) exists.

_e inner-outer factorization of elements ofH1(Γ), and hence of elements of every
Hα(Γ), could have been obtained earlier by transferring f ∈ H1(Γ) to H1(T) via Cτ ,
but we will obtain both the factorization and the characterization of cyclic vectors as
outer functions here as consequences of the Beurling theorem in this setting, _eo-
rem 4.6. Here a vector f is cyclic for a space Hα(Γ) means H∞(Γ) ⋅ f is norm dense
(resp. weak∗ dense) if α = ∥⋅∥∞, in Hα(Γ).

_eorem 5.4 Suppose f ∈ H∞(Γ). _e following are equivalent:
(i) f is outer,
(ii) f is cyclic for H2(Γ),
(iii) f is cyclic for H∞(Γ),
(iv) f is cyclic for all Hα(Γ) with α ∈N,
(v) f is cyclic for some Hα(Γ) with α ∈N.

Proof (i) is equivalent to (ii). _is is implied by _eorem 3.4.
(ii) implies (iii). Suppose f is cyclic for H2(Γ) andM = (H∞(Γ) ⋅ f )−w

∗
,where the

last superscript designates the weak∗ closure. IfM = M−∥⋅∥2 , then M is a ∥⋅∥2-closed
invariant subspace of H2(Γ), and _eorem 3.3 implies that M = φH2(Γ) for some
inner function φ. Since f is cyclic and belongs to M, H2(Γ) ⊂ M, and thus M =

φH2(Γ) = H2(Γ). Proposition 4.4 implies M = M ∩ L∞(Γ,ω) = H∞(Γ), so f is
cyclic for H∞(Γ).
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(iii) implies (iv). Suppose f is cyclic forH∞(Γ) and α ∈N. PutM = (H∞(Γ)⋅ f )−α
andM =M∩ L∞(Γ,ω). By Proposition 4.5,M is weak∗ closed andM−α =M. Since
f ∈ M and f is cyclic for H∞(Γ), M = H∞(Γ), and thus M ⊃ H∞(Γ). It follows that
M = Hα(Γ) and f is cyclic for Hα(Γ).

Trivially (iv) implies (v), so we can complete the proof by showing that (v) implies
(iii). Suppose f is cyclic for some Hα(Γ). Put M = (H∞(Γ) ⋅ f )−α andM = M−α .
Since M is a closed invariant subspace of Hα(Γ) that contains the cyclic vector f ,
M = Hα(Γ). Proposition 4.4 implies M =M ∩ L∞(Γ,ω) = H∞(Γ), so f is cyclic for
H∞(Γ).

_e cyclicity condition for bounded functions of the preceding theorem can now
be expanded to hold for all functions in Hα(Γ) for arbitrary α.

Corollary 5.5 A function f ∈ Hα(Γ) is cyclic if and only if f is outer.

Proof Let f be any vector in Hα(Γ) for arbitrary α ∈ N, and let M be the cyclic
subspace of Hα(Γ) generated by f , i.e.,M = (H∞(Γ) ⋅ f )−α . It is clear that if h is any
function in H∞(Γ), then the cyclic subspaceN generated by h f is included inM. We
will show that h can be chosen to be outer so that the reverse inclusion holds.

Put g = 1/(∣ f ∣ + 1). _us, g ∈ L∞(Γ,ω) and 1
g ∈ Lα(Γ,ω). Lemma 4.3 implies the

existence of a function ψ with constant modulus on each connected component of Γ
and an outer function h inH∞(Γ) such that 1

h ∈ Hα(Γ) and g = ψh. _en h f ∈M and
there exist hk ∈ H∞(Γ) such that α( 1

h −hk)→ 0 as k →∞. Because ∣h f ∣ = g
∣ψ∣ ∣ f ∣ ≤

1
∣ψ∣ ,

h f is bounded and hence α( f −hkh f ) = α(h f ( 1
h −hk))→ 0. It follows that the cyclic

subspace generated by h f contains f and thereforeM is included in N.
We have shown that the cyclic subspace generated by f is also generated by the

bounded function h f . _us, f in Hα(Γ) is a cyclic vector for H∞(Γ) if and only if
the bounded function h f is, and_eorem 5.4 therefore implies that f is cyclic if and
only if h f is outer. But h is outer; it follows that h f is outer if and only if f is, and
hence f is cyclic if and only if it is outer.

Corollary 5.6 Every function f in H1(Γ) has a factorization f = φg,where φ is inner
and g is outer. _e factors are unique up to equivalence.

Proof If f ∈ H1(Γ), let M be the cyclic subspace generated by f . _is is a closed
invariant subspace, and _eorem 4.6 implies M = φH1(Γ) for some inner function
φ. _en f = φg for some g ∈ H1(Γ). If h ∈ H1(Γ), then φh ∈ M, and consequently
there is a sequence of vectors hk in H∞(Γ) such that ∥hk f −φh∥1 → 0 as k →∞, and
this implies ∥hk g−h∥1 → 0. _us, g is a cyclic vector for H1(Γ), and, byCorollary 5.5,
g is outer.

If f = ψh is a second inner-outer factorization of f , then the relation g
h =

ψ
φ shows

that g
h is an outer function having boundary values that have constant absolute val-

ues on each connected component of Γ. _us, ψ =
g
h φ, and

g
h is an invertible inner

function by Proposition 5.1, which makes φ and ψ equivalent.
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Suppose 0 /= f ∈ H1(Ω). We deûne the zero set for f to be

Z( f ) = {w ∈ Ω ∶ f (w) = 0} .

_ere is also amultiplicity function m f ∶Z( f )→ N deûned bym f (a) is the order of a
as a zero of f . SupposeK is a subset ofΩwithout limit points in Ω and ν ∶ K→ N. We
can deûne a closedH∞(Γ)-invariant subspaceM(K, ν) to be the set of all f ∈ H1(Ω)

such that K ⊂ Z( f ), and for every a ∈ K, m f (a) ≥ ν(a).

Proposition 5.7 Suppose K ⊂ Ω has no limit points in Ω and ν ∶ K → N. _ere are
only two possibilities.
(i) M(K, ν) = {0}, which means that (K, ν) is determining for H1(Ω), i.e., if f , g ∈

H1(Ω) and f ∣K= g ∣K and m f−g ≥ ν on K, then f = g. If ν is the constant 1 on
K, this means that K is determining for H1(Ω), i.e., f = g on K implies f = g.

(ii) _ere is an inner function φ such that
(a) M(K, ν) = φH1(Ω),
(b) Z(φ) = K, and
(c) mφ = ν.

Proof Suppose (i) is false and M(K, ν) /= {0}. It follows from _eorem 4.6 that
there is an inner function φ such that M(K, ν) = φH1(Ω). Since φ = φ ⋅ 1 ∈ M(K, ν),
we know thatK ⊂ Z(φ) and ν ≤ mφ onK. Assume, via contradiction, that a ∈ K and
ν(a) < mφ(a). _en φ/(z − a) ∈ H1(Ω), so φ/(z − a) ∈ M(K, ν) = φH1(Ω). _is
implies 1/(z − a) ∈ H1(Ω), an impossibility. Hence, ν(a) = mφ(a) for every a ∈ K.
A similar argument shows that φ(a) /= 0 for every a ∈ Ω ∖K. Hence Z(φ) = K and
mφ = ν.

Corollary 5.8 If 0 /= f ∈ H1(Ω), then there is a unique (up to units) factorization of
the inner part of f into a product φ0φ1, where φ0H1(Ω) = M(Z( f ),m f ) and Z(φ1) =

∅.

Proof If f = φh is the inner-outer factorization of f , Z(h) = ∅, so Z( f ) = Z(φ)
and m f = mφ . If φ0 is the unique (up to equivalence) inner function for which

φ0H1
(Ω) = M(Z( f ),m f ) = M(Z(φ),mφ),

we see that there is a unique (up to equivalence) inner function φ1 such that φ =

φ0φ1.

We call φ0 in the preceding corollary the Blaschke factor of φ (or f ) and φ1 the
singular factor of φ. It is clear that I−1(Ω) is precisely the set of functions that are
both inner and outer.

Suppose u, v are inner; thenw = GCD(u, v) is the unique, up to a unit factor, inner
function such that

[uH1
(Ω) + vH1

(Ω)]
−∥∥1

= wH1
(Ω).

We write w = GCD(u, v).
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Lemma 5.9 If φ, ρ and ψ are inner functions and GCD(φ, ρ) = 1 and φ ∣ ρψ, then
φ ∣ ψ.

Proof Choose a Royden-inner function γ such that ρψ = φγ. Since GCD(φ, ρ) = 1,
we can choose sequences (cn), (dn) in H1(Ω) such that ∥cnφ + dnρ − 1∥1 → 0. _en
∥ψ(cnφ + dnρ − 1)∥1 → 0. _is means ψ = limn→∞ φ(cnψ + dnγ) ∈ φH1(Ω). Hence,
φ ∣ ψ.

6 Multiplier Pairs

In this sectionwewill show that themultipliersofHα(Ω) are the functions inH∞(Ω),
and that (Hα(Ω),H(Ω)) is amultiplier pair in the sense of [12].

_eorem 6.1 Suppose α ∈ N, ψ ∈ Hα(Ω), and ψHα(Ω) ⊂ Hα(Ω). _en ψ ∈

H∞(Ω).

Proof It was observed earlier that Hα(Ω) is a functional Banach space on Ω. It
follows from [12] that every multiplier of Hα(Ω) is bounded on Ω, which means
ψ ∈ H∞(Ω).

We letH(Ω) denote the vector space of analytic functions onΩ, andwe giveH(Ω)

the topology of pointwise convergence. _is makes H(Ω) a Hausdorò topological
vector space. Pointwisemultiplication is a bilinear map

⋅ ∶ Hα
(Ω) ×Hα

(Ω)→ H(Ω)

that is jointly continuous, since the evaluation maps at points in Ω are continuous on
Hα(Ω). _e constant function 1 is an identity, and multiplication is associative on a
triplewhenever the factors are all in Hα(Ω). Moreover, the set H∞(Ω) ofmultipliers
isnormdense inHα(Ω). It follows that (Hα(Ω),H(Ω)) is amultiplier pair asdeûned
in [12]. _e following is an immediate consequence of_eorem 1 of that paper,where
an algebra of operators is called re�exive if it contains every operatorwhose invariant
subspaces include those of the algebra.

Proposition 6.2 If α ∈ N, then the algebra H∞(Ω), acting as multiplications on
Hα(Ω), is maximal abelian and re�exive.

Proof Re�exivity follows because point evaluations are continuous linear function-
als that are eigenvectors of the adjoints of all multiplication operators.

Suppose that ρ∶H∞(Ω) → H∞(Ω) is a unital homomorphism and φ = ρ(z).
Since z − λ is invertible in H∞(Ω) whenever λ ∈ C ∖ Ω, we see that φ(Ω) ⊂ Ω.
It follows from the open mapping theorem that either φ(Ω) ⊂ Ω or φ = λ0 ∈ Γ. It
follows that for every rational function f with poles oòΩ that ρ( f ) = f ○φ. It is easily
shown that if φ = λ0 ∈ Γ, then ρ does not extend from H∞(Ω) to a bounded operator
on Hα(Ω). _us, the only composition operators on Hα(Ω) in the multiplier-pair
sense [12] have the formCφ f = f ○ φ for some analytic φ∶Ω → Ω. We do not know
which φ’s give a bounded operator, but we denote this class by F. A local composition
operator T on Hα(Ω) is an operator such that, for every f ∈ Hα(Ω) there is a φ f ∈ F
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such that T f = f ○φ f . A local multiplication operator on Hα(Ω) is an operator S such
that, for every f ∈ Hα(Ω) there is a g f ∈ H∞(Ω) such that S f = g f ⋅ f . Here are
immediate consequences of (Hα(Ω),H(Ω)) being amultiplier pair with multipliers
in H∞(Ω) (see [12,_eorems 2 and 4]).

Proposition 6.3 Suppose α ∈N.
(i) Every local composition operator on Hα(Ω) is a composition operator.
(ii) Every local multiplication operator on Hα(Ω) is multiplication by some member

of H∞(Ω).

7 Affiliated Operators

Let φ be a quotient of functions in H∞(Γ): φ =
ψ
η

u
v ,whereψ and η are inner and have

no nontrivial common inner divisor and u and v are outer in H∞(Γ). IfD consists of
all f ∈ Hα(Γ) such that φ f ∈ Hα(Γ), then let Mφ be the linear transformation from
D into Hα(Γ) deûned by Mφ f = φ f . _en Mφ is a closed operator on Hα(Γ) with
domain D, and Mφ commutes with multiplication by every function in H∞(Γ).

We will obtain amore useful form for the graph of Mφ than

Graph(Mφ) = {( f , φ f ) ∶ f ∈D} .

_e functions u and v havemoduliwith integrable logarithms, and thus log(∣u∣+∣v∣) is
also integrable. By taking the harmonic extension of log(∣u∣+ ∣v∣) to Ω and adding an
appropriate harmonic unit to it as in Lemma 2.6, we are able to construct a harmonic
conjugate of the sum on Ω, and by exponentiating the resulting analytic function, we
obtain an outer function F in H∞(Γ) with a boundary function satisfying

(1/C)( ∣u∣ + ∣v∣) ≤ ∣F∣ ≤ (1/c)( ∣u∣ + ∣v∣)

for constants c,C > 0. _us, if a = u/F and b = v/F we obtain a pair of outer functions
in H∞(Γ) satisfying

(7.1) c ≤ ∣a∣ + ∣b∣ ≤ C

and φ =
ψ
η
a
b .

_emapping Φ ∶ Hα(Γ)→ Hα(Γ) ×Hα(Γ) deûned by

(7.2) Φ(g) = (ηbg ,ψag)

has its range in Graph(Mφ), and we will show that it is bounded and invertible when
Hα(Γ) × Hα(Γ) is given either of the equivalent norms α2( f , g) = α( f ) + α(g) or
α′2( f , g) = α(∣ f ∣+ ∣g∣). Equation (7.1) implies that Φ is a bounded operator relative to
α′2 that is bounded from below in the sense that α′2(Φ(g)) ≥ c1α(g) for some c1 > 0
and all g in Hα(Γ). _is is because both ψ and η have absolute values that lie in some
interval [c′ ,C′] with c′ > 0 and

α′2(Φ(g)) = α( ∣ηbg∣ + ∣ψag∣) = α((∣ηb∣ + ∣ψa∣)∣g∣) = xα(g),

where x is a number in the interval [cc′ ,CC′]. _us, the range ofΦ is a closed subset
of Graph(Mφ).
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To see that Graph(Mφ) is included in the range ofΦ, suppose f ∈D, we also have
that φ f ∈ Hα(Γ). _en both f and φ f belong to H1(Γ) and

∣
f
b
∣ ≤

1
c
(
∣b∣ + ∣a∣

∣b∣
∣ f ∣) ≤

1
c
∣ f ∣ + C

′

cc′
∣φ f ∣,

which implies that both f /b ∈ H1(Γ) and f /b ∈ Lα(Γ,ω). By Lemma 4.2, f /b ∈

Hα(Γ). Also, if φ f = h, then ψa f = ηah, which implies η ∣ ψa f , and, since ψ and
η have no nontrivial common inner divisor and a is outer, it follows that η ∣ f . _us
f /(ηb) ∈ Hα(Γ), and consequently if g = f /(ηb), then, by the deûnition (7.2), we
have Φ(g) = ( f , φ f ).

We can summarize the above as follows.

Proposition 7.1 If φ is a quotient of functions in H∞(Γ), then there exist inner func-
tions ψ and η with no nontrivial common inner divisors, and there exist outer functions
a and b in H∞(Γ) such that φ =

ψ
η
a
b and such that the mapping Φ of equation (7.2) is

a boundedly invertiblemapping of Hα(Γ) onto

Graph(Mφ) = {(ηbg ,ψag) ∶ g ∈ Hα
(Γ)} .

Suppose that T is a closed operator deûned on a subspace D(T) of Hα(Γ) and
into Hα(Γ) such that T commutes with every multiplication operator Mh with h ∈

H∞(Γ). By [11], there exists aquotient φ ofH∞(Γ) functions such thatT f = φ f for all
f ∈D(T). _e graph of T is a closed subspace ofGraph(Mφ) that is the image under
Φ of a closed subspace M of Hα(Γ). _e commuting of T with all multiplications
by members of H∞(Γ) makes M invariant under multiplication by all members of
H∞(Γ), and hence, by _eorem 4.6, M = ξHα(Γ) for some inner function ξ. It
follows that Graph(T) = ξGraph(Mφ).

_eorem 7.2 If T is a closed operator deûned on a subspace D(T) of Hα(Γ) and
T commutes with all multiplications by members of H∞(Γ), then there exists φ =

ψ
η
a
b

where ψ and η are Royden inner functions without a nontrivial common inner divisor
and a and b are outer in H∞, and there exists a Royden inner function ξ such that
D(T) = ξD(Mφ) and T = Mφ ∣ D(T). If, in addition, T is densely deûned, then η = 1
andD(T) = bHα(Γ).

Proof Only the last assertion remains to be veriûed. If T satisûes the additional
requirement ofhaving a dense domain, then it follows fromProposition 7.1 that ηmust
be invertible and can therefore be absorbed into ψ. Also, from the same proposition
and the discussion preceding the statement of the theorem, it must be the case that ξ
is invertible, and therefore it is not necessary. _us,D(T) =D(Mφ) = bHα(Γ).

In the case of densely deûned operators of the preceding theorem, the functions φ
can be written in the form φ =

ψa
b , where ψ is inner and a and b are bounded outer

functions. _ese functions constitute the Smirnov class of Ω.
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