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1. Introduction

Magill in [4] first proved that two Boolean rings are isomorphic if and only
if their respective endomorphism semigroups are isomorphic. His proof, however,
relied on topological techniques. More recently Maxson has published a proof of
the above using purely algebraic techniques [5]. In this paper, structure theorems
are given which allow us to extend the above result to the p*-rings of Foster [1].
As a special case, the result is shown to apply also to p-rings. An example is given
to show that a further extension to J-rings is impossible.

Throughout this paper a p-ring will be a ring R with unity 1 of characteristic
p, where p is prime, and having the property that x* = x for all xe R. We will
consider two types of p*-rings, the type always being identified by its author’s
name. Let p be a prime integer and k a positive integer. Then a p*-ring (McCoy)
R is a ring with unity 15 of characteristic p such that x?*=x for all x e R. These
were first introduced in [6]. The following more restrictive definition was in-
troduced by Foster in [1]. Again let p be a prime integer and k a positive integer.
A ring R is a p*-ring (Foster) if the following hold:

(i) 1zeR

(ii) x?* = x for allxeR

(iii) R has at least one subring F which is isomorphic to the Galois field of
p* elements, GF(p*), and

(iv) 1zeF.

Any subring F of a p*-ring (Foster) satisfying (iii) and (iv) is called a normal
subfield of R.

Note that since 1, € F and F is of characteristic p, R is of characteristic p,
and hence a p*ring (Foster) is a p*ring (McCoy). The reverse is not true, as
illustrated by the ring GF(2) @ GF(2?), which is a p*-ring (McCoy) but not a
p*ring (Foster). Both types of p*-rings are p-rings when k = 1. We observe also
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that if R is a p*-ring (Foster) and F is a normal subfield of R, then R is an aigebra
over F.

A J-ring is any ring R for which there exists an integer n > 1 such that
x" = x for all xeR.

Each type of ring we have defined is commutative (cf. [3] page 217), so the
set of idempotents R’ of such a ring R is easily seen to be a semigroup under
multiplication. The set of ring endomorphisms of R, End R, is a semigroup under
composition of functions. Thinking of a p*-ring (Foster) as an algebra over some
normal subfield F, the set of algebra endomorphisms of R over F, denoted by
EndgR, is also a semigroup under composition of functions.

The mapping e — ¢,, where ¢,(r) = er for all re R, is easily seen to embed
R’ in End R for each of the rings discussed above. If R is a p*-ring (Foster) and
F a normal subfield of R, then the same mapping embeds R’ in EndR.

2. p*-rings

We now present some structure theorems for the p*-rings of McCoy and
Foster. McCoy in [7] has shown that if R is a p-ring, then R is isomorphic to a
subdirect sum of fields GF(p), and that if R is a p*-ring (McCoy), then R is
isomorphic to a subdirect sum of fields of the form GF(p*?). If R is a p*-ring
(McCoy) and S a homomorphic image of R, then S is a p*-ring (McCoy). Further,
if S is subdirectly irreductible, then S is isomorphic to GF(p’), where zlk.

THEOREM 2.1. Any nonzero homomorphic image of a p*-ring (Foster) is a
p*-ring (Foster).

PROOF. Suppose #: R — S is an epimorphism, where R is a p*-ring (Foster).
If x €S then obviously x? = x. If F is a normal subfield of R, then necessarily
O(F) ~ F ~ GF(p"). 1zeF so 1g = (1) eB(F) = S and S is a p*-ring (Foster).

The following theorem forms the basis for the main result of this paper.

THEOREM 2.2. If R is a p*-ring (Foster) and F a normal subfield of R, then
each element reR can be uniquely expressed in the form

ro= z x; Xy
i
where the a; are the nonzero elements of F and the x; are idempotent elements

of R such that x,x, = 0if m # nand X;x; = 1;.
The proof of this theorem, in a somewhat more general setting, may be found

in [2].

As a result of this structure theorem we have the following theorem.

THEOREM 2.3. If R is a subdirect sum of finitely many pti-rings (Foster)
then R is isomorphic to a direct sum of some of these same rings.

PROOF. Let R be a subdirect sum of rings M(i = 1,2,---,n), where M; is a
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p; ‘-ring (Foster) containing a normal subfield F; ~ GF(p*). We prove the theorem
by induction on n. Clearly the theorem is true for n = 1. Suppose now that the
theorem holds for all rings that are subdirect sums of k — 1 =1 rings,
and suppose that R is a subdirect sum of p¥irings (Foster) M (i=1,2,--,k).
Let u: R » X¥., ® M; be a monomorphism and n;: X/, ®@ M, - M, be the
projection epimorphism such that n; i is an epimorphism for each j = 1,2, -, k.
Define T; = {u(x)|x€R and mu(x) = 0 for all j # i} for each i = 1,2, -, k.
We consider two cases.

Case 1. For each i,T; # {0}. Then for each i there exists a nonzero
a;eM; such that (0,---,0, 4,0, ---,0) € o(R), where a; is the ith component. Now
M, is a pf-ring (Foster), so by 2.2, a; = X,,x,,, where the a,, are the nonzero
elements of F; and the x, the appropriate idempotent elements in M,. Since for
each m, «,'x, € M,, there exists an re R such that mu(r) = a, 'x,, and con-
sequently there is an element in Xf_, @ M;, say (b, b{™, ---, b™, ---, b{™)
= p(r), where b{™ = ;. 'x,,. Thus (0,---,0,x,,0,-,0) = (0, -, 0, a,,0, ---,0)
(B, bY™, -, b™, .. b{™) € u(R), where x,, is the ith component. This is true for
each m, so the sum of all such elements is in w(R). But X,x, = 1z, so
0,---,0,1g,0,---,0), where 1 is the ith component is in u(R). Since i was
arbitrary we have u(R)= X.f.; ® M, and R is isomorphic to a direct sum of the M.

Case 2. T; = {0} for some i. Without loss of generality, assume T, = {0}.
We define a map ¢ of u(R) into the direct sum X%_; @ M; by d(x;, X2, -+, Xs— 15 X2)
= (%1, X3, -, Xg—q)- Since T, = {0}, ¢ is a monomorphism. Hence ¢u is a
monomorphism of R into X [Z!@® M, and m;¢p is an epimorphism for
j =1,2,---,k — 1. R is thus a subdirect sum of My, ---, M, _;, so by the inductive
assumption, R is a direct sum of some of the My,---, M, _,.

COROLLARY 2.4. (Foster) If R is a finite p*-ring (Foster), then R is isomorphic
to a direct sum of finitely many copies of GF(p").

Proor. This is an immediate consequence of Theorem 2.3 and that of the note
which precedes Theorem 2.1.

3. Endomorphisms of p*-rings

Throughout this section let p be a fixed prime integer, k a fixed positive
integer, R and S p*-rings (Foster) with normal subfields F and G respectively, and
R’ and S’ the semigroups of idempotents of R and S, respectively. We will show
that if End;R ~ End;S as semigroups, then R’ ~ S’ as semigroups.

We will identify R" and S’ with their isomorphic images in EndgR and EndS,
respectively. The elements of R’ will be denoted by ¢,, where r = r’*€R, and
those of S’ by Vs, where s = s>€ S. Specifically the zero and unit el.m nts of
R’ will be ¢, and ¢,, while those of S’ will be ¥, and ¥,.
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In some of the proofs that follow, we will refer, for example, to ¢, + ¢,,
where e = €%, r = r’ e R, although addition is not defined in End R. We can
legitimately do this if we consider ¢, and ¢, as elements of the ring End(R, + ),
where we are considering all endomorphisms of the abelian group (R, + ).

Let n: End;R — End;S be a semigroup isomorphism,
LEMMA 3.1. m(¢o) = Yo and n(¢y) = ¥;.
LemMA 3.2. If Y,€S', ¢ = n='(Y,), and ¢, € R’ then ¢, = ¢ .

Proor. Note that ¢; — ¢, = ¢;_.€ R’ < End[R, so ¢,4(¢; — ¢,) € EndR
We show now that ¢e¢(¢1 - d)e) = ¢0'

[n(p.H(¢1 — $N]Us) = [w(dNsm(d1 — ¢)](Ls) = m(p){s - [n(d) — ¢ )](15)}
[n(p$)][7(¢e — $)(19)] = [M(@)S)I[Vo(15)] = 0.

Thus n(¢.Pp(¢1 — ¢.)) = Yo and hence ¢.P(¢y — @) = ¢o, S0 ¢ = d.9¢..
Similarly ¢¢, = ¢.99.. Thus, ¢¢, = ¢.¢.

LemMMA 3.3. If y,eS’ and ¢ = n='(,) then ¢(ee’) = ed(e’) for all e = &2,
e’ = (e,)ZER.

PROOF. ¢(ee’) = ¢ (e') = ¢ Pp(e’) = edp(e’) by 3.2 since ¢,cR’.

Lemma 3.4. If y,eS’ and ¢ = n~'(Y,), then ¢(rr’) = ¢(r)r’, for all r,
r'eR.

PRrOOF. By 2.2 we may uniquely write r and r’ as r = Xax;, 1’ = X, B;x'},
where o, B,€F and x; = (x)%,x} = (x))?cR are such that x,x, = x,x, = 0
ifm# nand X;x; = X;x; = lg.

Thus
b0y = ¢ (ZaxE px) = ¢ (Z )
i j ij

/

Z_ (o B,)$(x; x7) since ¢ € End;R

Z_. d(a)B; p(x)x; since ¢ € End.R and by 3.3
= Z ¢(aixi)z. Bix; = o(r'.

LeMMA 3.5. If Y, €S and ¢ = n~'(Y,), then e R’.

Proor. If re R then ¢(r) = ¢(1g-r) = ¢(1g) - r by 3.4. Thus if e = ¢(1p)
then ¢ = e and ¢ = ¢, eR".

THEOREM 3.6. If EndgR ~ EndgS then R’ ~ §'.
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ProOF. By 3.5, n=!(S’) < R’ s0 S’ < n(R’). By a similar argument we can
show that n(R’) = S, giving S’ < n(R") € §’, so n(R’) = S’. Since = preserves
multiplication and is one-one, the theorem is proved.

4. The main theorem

Let p be a fixed prime integer, k a fixed positive integer, and R and S p*-rings
(Foster) with normal subfields F and G, respectively. Let R’ and S’ be the semi-
groups of idempotents of R and S, respectively, and let #: R’ — S’ be a semi-
group isomorphism. Since F ~ GF(p*) ~ G, let 6: F — G be a field isomorphism.
We will use the next two lemmas freely, without specific reference to them.

Lemma 4.1. n(0) = 0 and =n(ly) = lg.
Proor. The proof is basically the same as that of 3.1.
LemMa 4.2. If xe R’ then n(1g — x) = 1g — n(x).

PRrRoOOF. Trivially 1z —xe R’ if xe R’. Suppose n(lz — x) = 1 — s for some
seS. Then since n{lg — x)€S’, s = 1g — (1 — x) € S’. Hence s = n(y) for some
yeR',ie.,

@ n(lg — x) = 7n(lg) — n(y),
so that by multiplying by n(x) we have 0 = n(x) — n(xy). Since = is one-one,
x = xy. Multiplying (1) by n(y) gives y = xy, so x = y.

LeEmMMA 4.3. Suppose thatae F, xe R, and ax € R’. Then n(ax) = o(a)r(x).

ProOoOF. If x = 0 the conclusion is obvious. Suppose x # 0. Then since
ax,xeR’, ax = (ax)* = a*x, 50
2 (a2 —)x = 0.

Now since a> — xe F, a®> —a = 0, else we could multiply (2) by (¢ — a)~! and
obtain x = 0. But a(ax — 1) = 0 implies & = 0 or « = 1 because F is a field.
Since o is a field isomorphism, 6(0) = 0 and (1) = 1, the conclusion following
immediately.

LeMMA 4.4. Let x,,x,, -, x,€ R’ and ay,a,,-,0,€ F. If

ﬁ o(x; x;)€ R’ then n[ ; ai(xlx,.)] = i a(a)n(xq x;).
i=1 i=1

i=

ProOOF. We proceed by induction. By 4.3 the conclusion holds for n = 1.
Suppose the lemma is true for n = k. Then

https://doi.org/10.1017/51446788700029086 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700029086

416 Douglas B. Smith, Jr. and Jiang Luh [6]

]

k+1 k1
7‘[.2 (x4 xi)] = _2 (x4 xi)] [7(x X4 1) + 7(1g) — (X X4 1)]

i=1 Li=1

- k+1 k+1
=T (Z aixlxi)(xlxk+l)] + 7'5[(2 aixlxi)(lR - xlxk+l)]

i=1 i=1

k1 k+1 k+1
=zl X °‘ix1xixk+1] + n[z XX — X aixlxixk+l]

ji=1 i=1 i=1

r k
=T L(“t + Gy X1 Xy + .2 04X 1 XX 4 1]

i=

k

+ 7’5[2 oxyx(1g — Xk+1)J .
i=1

Since each of the quantities enclosed by brackets is in R’ and in a form which

allows us to use our inductive assumption, we do to obtain

k K
o(oy + oy (X X4 1) + _Z o(a)n(x 1 x; X, q) + 2 o(a)n(xx)(15 — 7lxy41))

i=2 i=1
k+1

= Z o(o)m(x,x;)

i=1
after cancellation, using 4.2 and the additivity of o.

LemMma 4.5. If x4,x5,- ", X,€R’, ay,05,-,a,6 F, and X;_,0,x,€R’, then

n[zi"=laixi] = Z?=la(ai)n(xi)-

PRrOOF. Again we proceed by induction. The lemma is true for n = 1 by 4.3.
We now suppose the lemma to be true for n = k. Then following a technique
similar to the proof of 4.4 we have

n[kgllaix,-] = [n(kilaixi)] [7(xy) + n(1g) — n(x,)] = n[l:élla,-xix,]'

i=1 i=1

k+ 1
+ n[ ox;(1g — x,)]
i=1

k+1 k+1
= 2 o(a)n(x;x,) + n[z o;x;(1g — x,)]
i=1 i=2

by 4.4 and cancellations

k+1 k+1
= .2 o(o)m(x;x,) + .E o(an[x(1g — xy)]
=t =2 by the inductive hypothesis

k+1
= 2 o(o)n(x;) after cancellations.

i=1
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THEOREM 4.6. If R’ and S’ are isomorphic as semigroups, then R and S are
isomorphic as rings.

PrOOF. We define a function n*: R — S as follows: If r € R has as its unique
representation r = X; a;x; guaranteed by 2.2, let

) = I o@n(x).

Note that the image of r is indeed a legitimate representation of an element of
S — in particular X ;w(x;) = Ig by 4.1 and 4.5. By the uniqueness of the repre-
sentation of r, n* is a one-one function and obviously onto.

To show that =n* is additive, let r = X,ax;, ' = X;¢xi, and r+ 7'
= ¥, a;x] be the unique representations. Then
Toax! = X oox; + X oax;.
i i i
=17

Multiplying by «; " x; we have
X = X o taxxy + z ay lox{xPeR’.
Thus by 4.5 l l
mxf) = Z ol Yon(xn() + T olag Yoan(xn(xi

and since o is a field isomorphism,
on(sh) = 76| T o) + T oton(x) |

Summing over all k and using the fact that X, n(x};) = 15, we have

1) = Zo@n() = T oln(x) + T o@n(x)
’ = nl*(r) + n*(r’). '
A similar technique shows n* to be multiplicative, and thus an isomorphism.
COROLLARY 4.7, If EndgR ~ EndgS then R ~ S.

Proor. This follows immediately from 3.6 and 4.6.
Note that each p-ring R is a p*-ring in the sense of Foster, the normal subfield

F being isomorphic to GF(p). Further R is an algebra over F and EndzR = EndR.
With this in mind we have

COROLLARY 4.8. Let p be a fixed prime integer.If R and S are p-rings such
that End R ~ End S, then R ~ S.

5. Remarks

It is not known whether the Corollary 4.8 can be extended to the p*-rings of
Foster, wherein the entire semigroups of ring endomorphisms are used, to the
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pt-rings of McCoy, or to direct sums of p’”_rings in both senses. It does not extend
to direct sums of p-rings, where p takes on at least two distinct values, or to
J-rings as illustrated by the following example.

Let R = GF(2) ® GF(2) ®@ GF(3) and S = GF(3) ® GF(3) ® GF(2). Each
of these rings has the property that x® = x for each x in the ring and End
R ~ End S, but R is not isomorphic to S.
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