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1. Introduction

Magill in [4] first proved that two Boolean rings are isomorphic if and only
if their respective endomorphism semigroups are isomorphic. His proof, however,
relied on topological techniques. More recently Maxson has published a proof of
the above using purely algebraic techniques [5]. In this paper, structure theorems
are given which allow us to extend the above result to the pl-rings of Foster [1].
As a special case, the result is shown to apply also to p-rings. An example is given
to show that a further extension to J-rings is impossible.

Throughout this paper a p-ring will be a ring R with unity 1R of characteristic
p, where p is prime, and having the property that x" = x for all xeR. We will
consider two types of p'-rings, the type always being identified by its author's
name. Let p be a prime integer and k a positive integer. Then a pk-ring (McCoy)
R is a ring with unity 1R of characteristic p such that xpk=x for all xeR. These
were first introduced in [6]. The following more restrictive definition was in-
troduced by Foster in [1]. Again let p be a prime integer and k a positive integer.
A ring R is a pk-ring (Foster) if the following hold:

(i) \ReR
(ii) xpk = x for all x e R
(iii) R has at least one subring F which is isomorphic to the Galois field of

pk elements, GF(pk), and
(iv) lReF.

Any subring F of a paring (Foster) satisfying (iii) and (iv) is called a normal
subfield of R.

Note that since lRsF and F is of characteristic p, R is ol characteristic p,
and hence a paring (Foster) is a paring (McCoy). The reverse is not true, as
illustrated by the ring GF(2) © GF(22), which is a paring (McCoy) but not a
p*-ring (Foster). Both types of p*-rings are p-rings when k = 1. We observe also
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that if R is a paring (Foster) and F is a normal subfield of R, then R is an algebra
over F.

A J-ring is any ring R for which there exists an integer n > 1 such that
x" = xfor allxeR.

Each type of ring we have defined is commutative (cf. [3] page 217), so the
set of idempotents R' of such a ring R is easily seen to be a semigroup under
multiplication. The set of ring endomorphisms of R, End R, is a semigroup under
composition of functions. Thinking of a paring (Foster) as an algebra over some
normal subfield F, the set of algebra endomorphisms of R over F, denoted by
EndFR, is also a semigroup under composition of functions.

The mapping e -> 4>e, where 4>e(r) = er for all reR, is easily seen to embed
R' in End R for each of the rings discussed above. If R is a //-ring (Foster) and
F a normal subfield of R, then the same mapping embeds R' in Endf/?.

2. p*-rings

We now present some structure theorems for the //-rings of McCoy and
Foster. McCoy in [7] has shown that if R is a p-ring, then R is isomorphic to a
subdirect sum of fields GF(p), and that if R is a pk-ring (McCoy), then -R is
isomorphic to a subdirect sum of fields of the form GF(pk'). If R is a //-ring
(McCoy) and S a homomorphic image of R, then S is a //-ring (McCoy). Further,
if S is subdirectly irreductible, then S is isomorphic to GF(p'), where t k.

THEOREM 2.1. Any nonzero homomorphic image of a pk-ring (Foster) is a
pk-ring (Foster).

PROOF. Suppose 6: R -> S is an epimorphism, where R is a //-ring (Foster).
If x e S then obviously xpk = x. If F is a normal subfield of R, then necessarily
9(F) ~ F ~ GF(pk). 1REF SO 1 S = 9(lR)e6(F) £ s and S is a paring (Foster).

The following theorem forms the basis for the main result of this paper.

THEOREM 2.2. / / R is a pk-ring (Foster) and F a normal subfield of R, then
each element reR can be uniquely expressed in the form

r = I XjX,,
i

where the a; are the nonzero elements of F and the xi are idempotent elements
of R such that xmxn = 0 if m =£ n and Z,oc; = 1R.

The proof of this theorem, in a somewhat more general setting, may be found
in [2].

As a result of this structure theorem we have the following theorem.

THEOREM 2.3. If R is a subdirect sum of finitely many pkl-rings (Foster)
then R is isomorphic to a direct sum of some of these same rings.

PROOF. Let R be a subdirect sum of rings M,(i = 1,2, ••-,«), where M ; is a
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p^'-ring (Foster) containing a normal subfield Ft ~ GF(pki). We prove the theorem
by induction on n. Clearly the theorem is true for n = 1. Suppose now that the
theorem holds for all rings that are subdirect sums of k - 1 ^ 1 rings,
and suppose that R is a subdirect sum of p*'-rings (Foster) Mt (i = 1,2, •••,£).
Let ju: R -> L?= 1 © M; be a monomorphism and TT,: X*=1 © M, -> Af,- be the
projection epimorphism such that Tij/x is an epimorphism for each j = 1,2, ••-, k.
Define T; = {j*(x)|xeK and 7r,/i(x) = 0 for all j ^ i} for each i = 1,2, --,k.
We consider two cases.

CASE 1. For each i, Tt ^ {0}. Then for each i there exists a nonzero
a,eMi such that (0, •••, 0,a,,0, •••,0)e^(R), where a,- is the z"rh component. Now
Mi is a pk'-ring (Foster), so by 2.2, a,- = Emccmxm, where the am are the nonzero
elements of Ft and the xm the appropriate idempotent elements in M,-. Since for
each m, a~1xmeMh there exists an reR such that n^(r) = <x~1xm, and con-
sequently there is an element in £ ? = 1 © Mh say (b^, bf\ •••,b\m\ •••,fe[m))
= Kr), where bjm) = a ' V Thus ( 0 , - , 0 , x m , 0 , - , 0 ) = (0, - , 0, a;,0, -",0)
(b[m), b(

2
m\---, b(r\ ••• btm))e^(R), where xm is the ith component. This is true for

each m, so the sum of all such elements is in fi(R). But Smxm = 1R, so
(0, •• -,0, lR,0, •••,()), where 1R is the ith component is in n(R). Since i was
arbitrary we have n(R)= Lf= t © M;, and /? is isomorphic to a direct sum of the M,-.

CASE 2. T; = {0} for some i. Without loss of generality, assume Tk = {0}.
We define a map 0 of n(R) into the direct sum X*=1 ©M,- by 0(x1 ;x2, •••,xt_,,xlt)
= (x1,x2,•••,xk_i). Since Tt = {0}, 0 is a monomorphism. Hence 4>n is a
monomorphism of R into Z f= I © M; and ^ </>/i is an epimorphism for
j = 1,2, ••-,£ — 1. R is thus a subdirect sum of Mu •••,Mt_1, so by the inductive
assumption, R is a direct sum of some of the Mu •••,Mt_1.

COROLLARY 2.4. (Foster) If R is a finite pk-ring (Foster), then R is isomorphic
to a direct sum of finitely many copies of GF(pk).

PROOF. This is an immediate consequence of Theorem 2.3 and that of the note
which precedes Theorem 2.1.

3. Endomorphisms of p*-rings

Throughout this section let p be a fixed prime integer, k a fixed positive
integer, R and S p^-rings (Foster) with normal subfields F and G respectively, and
R' and S' the semigroups of idempotents of R and S, respectively. We will show
that if EndFR ~ EndGS as semigroups, then R' ~ S' as semigroups.

We will identify R' and S' with their isomorphic images in Endfi? and EndGS,
respectively. The elements of R' will be denoted by <j)r, where r = r2eR, and
those of S' by \j/s, where s = s2eS. Specifically the zero and unit el.m nts of
R' will be 4>0 and <f>u while those of S' will be i^0 and t/'i-
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In some of the proofs that follow, we will refer, for example, to <j>e + (f>r,
where e = e2, r = r2 eR, although addition is not defined in End R. We can
legitimately do this if we consider <f>e and $, as elements of the ring End(J?, + ),
where we are considering all endomorphisms of the abelian group (R, + ).

Let 7t: EndFR -> EndcS be a semigroup isomorphism.

LEMMA 3.1. 7r(0o) = ^0 and rc^) = ^ , .

LEMMA 3.2. / / <AseS', <t> = T C " 1 ^ ) , and 4>eeR', then <jxj>e = 0e0.

PROOF. Note that ^ 1 - < ^ e = 0 1 _ e e j R ' £ EndF£, so <t>e<K<l>i — <£e)
W e s h o w n o w t h a t <f>e<j>{4>i - <t>e) = 4>0-

>o(lSXI = 0.

Thus n(<i>e<$>{<t>i - ^e)) = "Ao and hence &,<£(</>! - < ê) = <j)0, so </>c0 = ^>e4><j>e.

Similarly <j)4>e = </>e</></>e- Thus, <f>4>e = ^e^-

LEMMA 3.3. If^seS' and ^ = T T " 1 ^ ) then 0(ce') = e^(e') for all e = e2,

e' = {e'fsR.

PROOF. </>(ce') = <£&.(<;') = 0^(e ' ) = e<f>(e') by 3.2 since 0 e e ^ ' .

LEMMA 3.4. / / \liseS' and 4> = n-\\ps), then </>(rr') = <j>{r)r', for all r,

r'eR.

PROOF. By 2.2 we may uniquely write r and r' as r = Zfa.-x,-, r ' = HkPjx'p
where <Xi,PjeF and x,- = (XJ)2,XJ- = (x})2ert are such that xmxn = x'mx'n = 0
if m # n and Z,-x, = S7xy = 1R.
Thus

4>{rr') = (

= Z (friXjPjWiXjXj) since </>eEndfi?

= Z 0(a,))5j 0(x,)xj since <j) e Endf R and by 3.3
i.j

LEMMA 3.5. lf\\iseS' and 4> = n-\\jis), then 4>eR'.

PROOF. If r e R then (f>(r) = <f>(lR • r) = <j>(lR) • r by 3.4. Thus if e = 0(1
then e = e2 and 0 = 4>eeR'.

THEOREM 3.6. If EndFR ~ £nrfGS f/ien /?' ~ S'.
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PROOF. By 3.5, n*1^') £ R' so S' £ n(R'). By a similar argument we can
show that n(R') s S', giving S' £ TT(/?') £ S', so n(R') = S'. Since n preserves
multiplication and is one-one, the theorem is proved.

4. The main theorem

Let p be a fixed prime integer, k a fixed positive integer, and R and S /^-rings
(Foster) with normal subfields F and G, respectively. Let R' and S' be the semi-
groups of idempotents of R and S, respectively, and let n:R' -» S' be a semi-
group isomorphism. Since F ~ GF(pk) ~ G, let CT:F -» G be a field isomorphism.
We will use the next two lemmas freely, without specific reference to them.

LEMMA 4.1. 7t(0) = 0 and n(lR) = ls .

PROOF. The proof is basically the same as that of 3.1.

LEMMA 4.2. IfxsR' then n(lR — x) = l s — n(x).

P R O O F . Tr ivia l ly lR — xeR'ifxeR'. S u p p o s e 7r(lR — x) = l s — s for s o m e

seS. Then since n(lR — x)eS', s = l s — n(lR — x)e S'. Hence s = n(y) for some
yeR',i.e.,

(1) 7t(lR-x) = n(lR)-n(y),

so that by multiplying by n(x) we have 0 = n(x) — x(xy). Since n is one-one,
x = xy. Multiplying (1) by n{y) gives y = xy, so x = y.

LEMMA 4.3. Suppose that cteF, xeR', and zxeR'. Then n{<xx) = <r(a)7r(x).

PROOF. If x = 0 the conclusion is obvious. Suppose x # 0. Then since
ax,xeR', txx = (ax)2 = a2x, so

(2) ( a 2 - a )x = 0.

Now since a2 - a e F , a2 — a = 0, else we could multiply (2) by (a2 — a)"1 and
obtain x = 0. But a(a — 1) = 0 implies a = 0 or a = 1 because F is a field.
Since a is a field isomorphism, a(0) = 0 and cr(l) = 1, the conclusion following
immediately.

LEMMA 4.4. Let x1,x2,--,xtteR' and aucn.2,---,ixneF. If

n r n -i ii

Z a.i(xlx^eR' then n X a^XiXj) = Z o-(a,)7r(xix,).
i = l l_i = l J i = l

PROOF. We proceed by induction. By 4.3 the conclusion holds for n = 1.
Suppose the lemma is true for n = k. Then
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= n\l Z a,x1x>.j(x1xik+1)J + n\ 1Z a,
r k + 1 -] rik+1 Jt+1 "I

= n Z a.XiX^+i + n Z a^x,- - I ajXjXjXt+i
Li = 1 J Li=l i = l J

= Jt (<*! + a t + 1 ) x 1 x t + 1 + Z a.XjXiXt

n Z a /XiXf( lR-x»+ 1) .+

Since each of the quantities enclosed by brackets is in R' and in a form which
allows us to use our inductive assumption, we do to obtain

k k

S ff(ai)7r(x,XiXt + 1) + £
i = 2 i = 1

after cancellation, using 4.2 and the additivity of a.

LEMMA 4.5. / / x1,x2,---,xneR', OC1,OL2,-••,a,,eF, and Z I = 1a;Xie/?', then

7r[Sr=1a£xJ = Zr=iff(«/W*,).

PROOF. Again we proceed by induction. The lemma is true for n = 1 by 4.3.
We now suppose the lemma to be true for n — k. Then following a technique
similar to the proof of 4.4 we have

7t Z ape,. = \nl Z a;X;j [7t(x!) + 7t(lR) - 7t(x,)] = n Z a.x.xj

[*+i -i

Z afXiClR-x,)
* + l rlt+l -i

= Z ff(a,Mx;*i) + t Z a^ l j , - Xj)
i = l Li = 2 J

by 4.4 and cancellations

*+i *+i

= Z <7(a,-)7r(X/*i) + Z <r(a,)7r[x,(lR - xj)]
1 = 1 I = : by the inductive hypothesis
k-H

= Z ff(a,)7i(x() after cancellations.
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THEOREM 4.6. If R' and S' are isomorphic as semigroups, then R and S are
isomorphic as rings.

PROOF. We define a function n*: R -* S as follows: If r eR has as its unique
representation r = £,- a,X; guaranteed by 2.2, let

n*(r) = 2 o-(a,)jr(x,-).
i

Note that the image of r is indeed a legitimate representation of an element of
S — in particular X jJi(x,-) = l s by 4.1 and 4.5. By the uniqueness of the repre-
sentation of r, n* is a one-one function and obviously onto.

To show that n* is additive, let r = XjOCjOC;, r' = Z,a;x|, and r + r'
= £,• a;*" be the unique representations. Then

X a-iX" = X a,x; + Z a;*-.
i i t

Multiplying by a^xx"k we have

I i

Thus by 4.5

i i

and since cr is a field isomorphism,

ff(a*M*i') = t « ) ^ ff(a,)^,) + 2 (7(a,)7t(x;) .

Summing over all k and using the fact that S t n(4) = ls, we have

n*(r + r') = S ^ a * ) ^ ) = I a<a()7t(*() + I o(«i)nW)
A: i i

= n*(r) + n*(r').

A similar technique shows n* to be multiplicative, and thus an isomorphism.

COROLLARY 4.7. / / EndFR ~ EndGS then R ~ S.

PROOF. This follows immediately from 3.6 and 4.6.
Note that each p-ring R is a p*-ring in the sense of Foster, the normal subfield

F being isomorphic to GF(p). Further R is an algebra over F and EndFJ? = End R.
With this in mind we have

COROLLARY 4.8. Let p be a fixed prime integer. If R and S are p-rings such
that End R ~ End S, then R ~ S.

5. Remarks

It is not known whether the Corollary 4.8 can be extended to the p*-rings of
Foster, wherein the entire semigroups of ring endomorphisms are used, to the
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p'-rings of McCoy, or to direct sums of pk' rings in both senses. It does not extend

to direct sums of p-rings, where p takes on at least two distinct values, or to

J-rings as illustrated by the following example.

Let R = GF(2) © GF(2) © GF(3) and S = GF(3) © GF(3) © GF(2). Each

of these rings has the property that x6 = x for each x in the ring and End

R ~ EndS, but R is not isomorphic to S.
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