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Abstract

Methods from the theory of orthogonal polynomials are extended to L-polynomials Y.qn=p anz". By
this means the authors and W. B. Jones (J. Math. Anal. Appl. 98 (1984), 528-554) solved the strong
Hamburger moment problem, that is, given a double sequence {cn }°?x, to find a distribution function
i|/(r), non-decreasing, with an infinite number of points of increase and bounded on -oo < t < oo,
such that for all integers n, cn = f™x (-t)

n dip(t). In this article further methods such as analogues of
the Liouville-Ostrogradski formula and of the Christoffel-Darboux formula are developed to investi-
gate when the moment problem has a unique solution. This will be the case if and only if a sequence of
nested disks associated with the sequence { cn }™x has only a point as its intersection (the so called
limit point case).

1980 Mathematics subject classification (Amer. Math. Soc): 30 E 05, 33 A 65.

0. Introduction

By a distribution function on an interval / (finite or infinite) we shall here mean a
bounded, real-valued, non-decreasing function with an infinite number of points
of increase. Distribution functions \p for which all the moments cn =
(-l)nfrt

nd\p(t), n = 0,1,2,..., exist, are of great importance and have been
extensively studied (see e.g. [1, 15]). Among other things they admit Gaussian
quadrature formulas, obtained by the aid of polynomials orthogonal with respect
to if-, which approximate the integrals fj(t) d\j/(t) for large classes of functions.
The Pade approximants at oo for the series E£LO

C«Z~" a r e closely related to the
same orthogonal polynomials. The integral jjd\l/(t)/{t - z) defines an analytic
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6 Olav Njastad and W. J. Thron [2 ]

function F(z) outside /, and the series E^=o cnz~" is an asymptotic expansion for
F{z) at oo with respect to suitable regions. The sequence of main diagonal Pade
approximants has subsequences converging to functions of the form G(z) =
zjr d<j>(t)/(t — z), where the functions <> are among the distribution functions
giving rise to the same moment sequence { cn: n = 0,1,2,...} as >//.

Among the important problems arising in the study of these connections, is the
question of existence of distribution functions having a given sequence {cn:
n = 0,1,2,...} as moments. If such a distribution function \p exists, then for
example the series L£Locnz~" may be said to have a generalized sum F(z) =
Jrd\p(t)/(t — z), since this series is an asymptotic expansion for F(z) at oo. It is
also of importance to know when the solution of the above moment problem is
unique, i.e. when a distribution function for which all positive moments exist, is
determineed by these moments.

Questions concerning two sequences {cn: n = 0,1,2,...} and {cn: n =
- 1 , - 2 , . . . } , or equivalently double sequences {cn: n = 0, +1, ±2,...}, arise as
natural extensions of the foregoing. Distribution functions \p having both positive
and negative moments cn = (-l)njjtn dip(t), n = 0, ±1 , ±2 , . . . , admit larger
classes of integrable functions than those with only positive moments. They give
rise to Gaussian quadrature formulas by the aid of a theory of orthogonal
L-polynomials (see Section 1), and these quadrature formulas approximate the
integrals f,f(t) dyp(t) for larger classes of functions than in the classical theory.
The two-point Pade approximants at oo and 0 for the series E^_ocnz" and
-E~_!cnz" are related to the same orthogonal L-polynomials. These series are
asymptotic expansions for the function F{z) = ffd\p(t)/(t — z) at oo and 0,
respectively, with respect to suitable regions. The sequence of main diagonal Pade
approximants has subsequences converging to functions of the form

= zfd*(t)/(t-z),
Ji

where the functions </> are among the distribution functions giving rise to the same
moment sequence { cn: n = 0, +1, + 2,...} as $.

For similar reasons as in the classical case it is of interest to study questions of
existence and uniqueness of solutions of this strong moment problem. When is a
double sequence { cn: n — 0, +1, + 2,...} the moment sequence of a distribution
function ^1 When is a distribution function with both positive and negative
moments determined by these moments?

When / is the interval [0, oo), the above problem is called the Strong Stieltjes
Moment Problem (SSMP), and when / is the interval (-00,00), the problem is
called the Strong Hamburger Moment Problem (SHMP).

In [9] Jones, Thron and Waadeland began the study of strong moment
problems. In that article they stated and solved the SSMP. To solve the problem
the authors used continued fractions methods, in particular the theory of positive
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T-fractions, to show that the necessary conditions for the existence of a solution,
namely

H2n > U> W2n + 1 > U> "in > U> n2n+\ ^ U '

(the Hankel determinants Hln) are defined in Section 1) are also sufficient. In
addition they obtained necessary and sufficient conditions, in terms of the
positive T-fraction, for the solution to be unique.

Somewhat later Jones and Thron [7] pointed out that there is a sequence of
orthogonal functions (L-polynomials) associated with the SSMP and that the
concept of Gaussian quadrature can be extended to this case. They also stated the
SHMP. These ideas were then further elaborateed by Jones and the present
authors in [4] to show that the positive definiteness of the bilinear form associated
with the sequence {cn: n = 0, +1, + 2,...} (see Section 1), or equivalently the
determinant condition

H±-n
2n) > 0, H^l? > 0, for n > 0,

is necessary and sufficient for the existence of a solution of the SHMP.
In [5] we turned to the question to what extend the SHMP could be solved by

the use of continued fractions. For those sequences {cn: n = 0, +1, +2, . . .}
where all indices are non-singular (see Section 1) we solve the problem com-
pletely. That is, we established existence and also obtained necessary and suffi-
cient conditions for the uniqueness of the solution. In that article we put
properties of continued fractions, such as integral representation and complete
convergence, in the foreground.

Properties of doubly infinite moment sequences and corresponding quadrature
formulas and continued fractions expansions are also treated in [6].

In the present article we develop the machinery of orthogonal L-polynomials
further to obtain an answer to the uniqueness question in all cases (not just in
those where all indices are non-singular). Here we emphasize basic functional
analytic tools and use these combined with complex variable methods. The
presentation is closely related to that given in [1] for the classical situation. A
treatment of the classical case where general Hilbert space methods are more
systematically exploited is given in [12].

Among the central concepts discussed in this article are quasi-orthogonal and
associated L-polynomials and analogues of the Christoffel-Darboux and Green
formulas from the classical theory of orthogonal polynomials. There are however
also substantial differences from the classical theory. Chief among these are the
existence of singular L-polynomials and the non-existence of a three term recur-
sion formula betwen successive orthogonal L-polynomials.

As was the case in the classical Hamburger problem the SHMP has a unique
solution if and only if a certain sequence of nested discs shrinks to a limit point.
There will not be a unique solution to the SSMP if the positive T-fraction
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determined by the moments diverges (see [9]). Hence for this sequence of
moments the SHMP also must have an infinite number of solutions. In [4] we
have exhibited a class of moment sequences for which the SHMP has a unique
solution. Hence both alternatives are possible.

Recently other authors have also taken an interest in the SHMP. We are aware
of the work of W. B. Gragg (whose approach is sketched in [8, Section 5]), Chr.
Berg and A. Sri Ranga whose contributions have not as yet appeared in print. A
historical survey of moment problems and related topics can be found in [8].

Other questions related to doubly infinite moment sequences have previously
been considered by Cobindarajula [3], Kabe [10], Mendenhall and Lehman [11]
and Thomas [16].

1. Preliminaries

For any pair (p,q) of integers with p < q, let 31 pq denote the set of all
functions of a complex variable z of the form R(z) = Y.qj=pr^z', rp,...,rq complex
numbers. We shall write 0tlm_x = @_mm^v 3t2m = 3i_mm, and % = UJL0*«- A

function R belonging to Si is called a Laurent polynomial (or L-polynomial). The
sets 3tp<q and i% form linear spaces over the complex numbers with respect to the
usual operations of addition and multiplication by a scalar. A basis for each of
the spaces ®, @lm and @2m-i ls g i v e n by (1 , z~\ z, z~2, z2,. . . } ,
{ z - " \ . . . , 1 , . . . ,zm}, {z-m,... , 1 , . . . ,zm~1}, respectively.

In the following, C = {cn: n = 0, ± 1 , ± 2 , . . . } shall denote a given (double)
sequence of real numbers. For each n = 0, + 1 , + 2 , . . . , the Hankel determinants
Hfcn) associated with the sequence C are given by

= 1,2 ,3 , . . . .

A linear functional y on <%is uniquely determined by the sequence C as follows:

i

j=p I j=p

A solution of the SHMP for a given C is a distribution function (that is, a
bounded, real-valued, non-decreasing function \p with infinitely many points of
increase), such that the functional /^ defined by I^(f) = / ^ / ( O d\p(t) coincides
with yon^?.

Let 3tR denote the real linear space of all L-polynomials with real coefficients.
In terms of y we define a fuctional ( , > on^j , X 91R by setting (A, B) = y(A • B)
for all A, B e 31R. The SHMP has a solution if and only if the bilinear functional
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( , > is positive definite (i.e. an inner product), and a necessary and sufficient
condition for this to be the case is that the following condition (H) is satisfied:

(H) H<m
2m)>0, Htf*>>0, m = 0 , 1 , 2 , . . . ,

(see [4]). From now on we shall always assume that the condition (H) holds. By
applying the Gram-Schmidt orthonormalization process to the sequence
{1, z"1, z, z'2, z2, . . .} we obtain an orthonormal sequence {Qn(z): n =
0,1,2,...} of L-polynomials. For each n > 0, Qn e @n and \\Qn\\

2 = y(£>2) = 1.
We can write, for m — 0,1,2,...,

m

Qlm(Z)= £ <l2mJzJ> W h e r e I2m,m * 0,

Qim+i(z) = L ?2 m + i , / J . where q2m+1 _(m+1) # 0.
j—(m + l)

Note that Q0(z) = q00, where in general q0Q =£ 1. By a standard orthogonality
argument we get

All zeros of Qn(z) are real and simple, and the number vn of zeros is either n or
M — 1 (see Theorem 3.1 of [4]). The index n and the L-polynomial Qn{z) are
called singular if vn = n — 1, and non-singular if ?„ = «. If Q2m(z) 1S singular,
t h e n ? 2 m , - ( m - 1 ) ^ O a I l d

, - » / • • > Qlm,-(m-\) / ^
e2m(2) = ^ 2 m - l ( 2 ) .

Him— 1, - m

and if e2 m + 1(z) is singular, then q2m+i,m-i * 0 and

(See Corollary 3.2 and Theorem 3.3 of [4]. Note however, that the orthogonal
L-polynomials are normalized differently here.) Two successive orthonormal
L-polynomials Qn(z) and Qn+X(z) therefore cannot both be singular.

Let fjn), j = l,2,...,n, be the zeros of Qn{z) for non-singular n. There exist
positive constants X(j"\j = 1,2,... ,n, such that the Gaussian quadrature formula

is valid for all F G ^2m_1 (see Theorem 5.1 of [4]).
For complex numbers z and T we define Qn(z, T) by

Qlm(Z^) = Qlm(Z) -TZQlm-li2), m = 1,2,...,

0 2 m + i ( ^ ) = Q2m+l(z) - T Z - ^ J Z ) , m = 0,1,2,. . . .
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For real r, Qn(z, T) are called quasi-orthogonal L-polynomials. In particular
Qn(z, 0) = Qn{z). If n is singular, then Qn{z, T) = cTQn(z).

Let n be non-singular and T real. All the zeros of Qn(z, T) are real and simple,
and except for a single value of r the number of zeros is n. Let / J " ' ( T ) ,

j = 1,2,... ,n, be these zeros. There exist positive constants X ^ ^ T ) , ^ = 1,2,...,n,
such that the Gaussian quadrature formula

y(F)= I^(T)F( ( J '1T) )
7 = 1

is vahd for all / e ^ _ 2 m 2 m 2 when n = 2m and for all F e ^ _ 2 . 2 m when
n = 2m + 1 (see Theorems 6.2 and 6.3 of [4]).

For more detailed information on the concepts discussed in this section, see [4],
[7] and [13].

2. Associated Laurent polynomials

Let L(t, z) be an L-polynomial in t, i.e. L(t, z) = £j_p aj(z)tJ. To emphasize
that y is operating on t in L(t, z) we write

y(L(t,z)) = y,(L(t,z))= £ fl,(z)(-l)^..
7-P

If »// is any solution of the SHMP associated with the sequence C, then clearly

For every z e C let Dz denote the difference quotient operator on 9$ defined by
(Z^PXO = ( ^ ( 0 ~ P(z))/(t - z). We note that DZP e # , , , _ ! when P G ^ p ?.

For every quasi-orthogonal L-polynomial 2 n ( z , T) we define Pn(z, r), n > 1,
by

We write Pn(z) for /^(z.O). We define P0(z) = 0. The L-polynomial An{z, T) =
zPn(z, T ) belongs to ^ n . In analogy with the situation in the theory of ordinary
orthogonal polynomials, An(z, T) may be called the L-polynomial associated with
Qn(z, T ) . We shall here find it convenient to work mostly with Pn(z, T) .

Next we formally state a simple lemma, some special cases of which will be
repeatedly used in the sequel.

LEMMA 2.1. The formula y,(Dz(PQn)) = P(z)Pn(z) is valid for every P e 0t
when n = 2m, and for every P e 32 _m m+l when n — 2m + 1.

_m m
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[7] Unique solvability of the strong Hamburger moment problem 11

PROOF. We may write

y,[Dz(PQn)] = P{z)yt{DzQn) + yt[QnDzP],

which implies that the desired formula is valid whenever DZP e &n_v

From Lemma 2.1 it immediately follows that we may write

We shall now prove some important identities involving the functions Qn(z)
and Pn(z). These identities are analogous to the Christoffel-Darboux formulas
and related formulas, which occur in the theory of ordinary orthogonal poly-
nomials. Note, however, that in our case 3-term recursion formulas for the
functions Qn(z) and Pn(z) are not available. For the classical results see, for
example, [2, Chapter 2].

LEMMA 2.2. The following equalities hold for an arbitrary complex number z =£ 0

(A) zQ2Jz)P2m-i(z) - zQ2m-i(z)P2Jz) = / 2 m ' ~ m ;
Him—\,-m

PROOF. We can write Qm(z)PH_!(z) - Qn_x{z)Pn{z) = y,[Qn • (AO,-i)] -
y,lQn-i • (DzQn)l a n d t h i s expression equals -7([gn-i • (AQJ1. s i n c e Qn i s

orthogonal to DzQn_v By using the expressions for y(t~mQ2m_1(t)) and
Y('me2m(O) from Section 1 we easily obtain yt[Q2m_1 • (DzQ2m)] =

from which formulas (A) and (B) follow.

PROPOSITION 2.3. The following equalities hold for arbitrary complex numbers

(A)
2 m - l

E Qj(z)QM)\
rf2m— 1,-ffi 7 = 0

(B)

m,m 7=0
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PROOF. We sketch a proof of (A); the proof of (B) is similar. We note that the
function F(f) = (f - zy^zQ^.^Q^) - ^Q2m(z)Q2m^)] belongs to
^2m i' anc* s o w e may write F(f) = T}J™Q\F, QJ)QJ(S)- Taking into account
Lemma 2.1 and the fact that (DzQj)(£) e ®2m_x and f • (A0>)(?) G ^ m - i
for j < 2m — 1, we get by simple calculation that (F, Qj) =
Qi(z)[zQ7m Az)Plm(z) - zQ2m(z)P2m_1(z)]. Substitution from Lemma 2.2 for
the expression in the last bracket leads to the desired formula.

PROPOSITION 2.4. The following equalities hold for arbitrary complex numbers

f 2m-l 1

2m |

<i2m,m j=\ I

PROOF. The formulas are obtained by using the operator Dz and then the
functional y, on both sides of the equalities in Proposition 2.3(A) and Proposition
2.3(B) (taking into account Lemma 2.1).

PROPOSITION 2.5. The following equalities hold for arbitrary complex numbers

(A)
2 m - l

2m-l,-m

2m

7 = 1

PROOF. The result can be obtained from Proposition 2.4 in the same way as
Proposition 2.4 is obtained from Proposition 2.3.

In the following, Tn(z, a, b) shall denote the expression aPn(z) + bQn(z),
where z, a and b are arbitrary complex numbers, z # 0.
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[9 ] Unique solvability of the strong Hamburger moment problem 13

THEOREM 2.6. The following equalities hold for arbitrary complex numbers

zT2m_^z, a, b)T2m(£, a, 0) - £T2m(z, a, b)T2m_^, a, 0)

(A)

(B)

im-\

a2m-l,-m[ 7~o

zT2m+l(z, a, b)T2m{L «, /*) - ST2m(z, a, b)T2m + 1(Z, a,

= 2m + 1'm Ua0 - ab) +(z - f) • J2 Tj(z,a,b)Tj(£, «, y8) |.
fi 2 m, m I i = Q

PROOF. By multiplying out the terms on the left side in (A) and (B) and using
the equalities of Proposition 2.3, Proposition 2.4 and Proposition 2.5, we obtain
the desired formulas.

In the following, w shall denote an arbitrary complex number different from
zero. An asterisk denotes complex conjugation.

COROLLARY 2.7. The following equalities hold when Im z # 0:

zT2m-\z,\,w)T2m{z,\,w)* - z*T2m_x(z,\, w)*T2m{z,\,w)

(A)

(B)

Hlm-
2m—1

E
y_0

l , m I Z — Z *

J,i,w)*-z*r2m+1(z,i,w)*r2m(z,i,w)

,2

a2m, z ~

PROOF. Note that Qn(z) and Pn(z) are L-polynomials with real coefficients.
Therefore Qn(z)* = Qn(z*), Pn(z)* = Pn(z*)- By setting f = z*, a = a = 1,
Z> = w, )8 = w* in Theorem 2.6, we obtain the desired formula.

3. Nested circles

For arbitrary complex numbers r and non-real numbers z we define wn(z, T) by
H>n(z, T) = -Pn(z, r)/Qn(z, T). Thus

0) W2m(Z'T) = " T T ^ V T "

(ii)
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14 Olav Njastad and W. J. Thron [ 1 o 1

For every non-singular index n the point wn{z, T) describes a circle Fn(z) in the
complex plane when T varies over the extended real axis (the point oo included).
(Recall that Q,n(z, T) # 0 when r is real and z non-real; cf. Section 1.) Let An(z)
denote the closed disc bounded by Fn(z). We shall show that these discs have
important properties in common with the nested discs encountered in the classical
case.

THEOREM 3.1. For a non-singular index n the disc An(z) is given by the inequality
n — \

| 7 } ( z , l , w | r
y=0 Z - Z

PROOF. Assume for example that n = 2m. Since 2n is non-singular we have
aim-m ^ 0» a n ( i ̂  follows from Corollary 2.7 that w e T2m(z) if and only if

2 m — 1 ., *

2 ^
0 Z — Z7

A standard mapping argument shows that
2m — 1

7 = 0

when z is inside F2m(z). The argument for n = 2m + 1 is similar.

THEOREM 3.2. Let m and n be non-singular indices, m > n. Then Am(z) c An(z).

PROOF. This is immediate from Theorem 3.1.

THEOREM 3.3. For a non-singular index n the radius pn(z) of the disc An(z) is
given by

n~ 1 ~l~l

* - * 1 - E |e,-(*)f
7=0

PROOF. Assume for example that n = 2m. A standard result on Mobius
transformations show that the radius of A2m(z) equals the modulus of the
expression

•\z*Q7Jz)Q-lm Az*)-zQ7m i(z)e2m(^*)l"1-
Substituting from Lemma 2.2 and Proposition 2.3 (with f = z*) we get plm(z) =
[|z - Z*|L"IQ IS,^)!2] ' 1- Similarly with « = 2m + 1, we obtain the desired
formula for p2m + 1(z).
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If the index 2m is singular, then q2m_m = 0, and the arguments leading to the
equation for the circle T2m(z) and the radius p2m(z) fail. From the formula
(?2m(z) = (42m,-(m-i/?2m-i,-m)z<?2m-i(2) (see Section 1) and Lemma 2.1 it
follows that P2m(z) = (q2mHm-1)/q2m-i,-m)zP2m~i(z)> a n d s o

/ , _ _ AzPlm_x(z) - rzP2m_l{z) _ _ P2m_1(z)
W2n{Z' T) ' AzQlm_x{z) - rzQ2m_Az) ~ Qim-Az) '

Thus T2m{z) degenerates to a point in this case.
Similarly, if the index 2 m + 1 is singular, then T2m + 1(z) degenerates to the

point P2m(z)/Q2m(z).
We define the set A00(z) to be the intersection of all the discs An(z) for

non-singular indices n. Since Am(z)c An(z) for m > n (Theorem 3.2), the set
A00(z) is a point or a closed disc, the radius p(z) being given by

p(z)= km Pn(z).
n—>cc

n non-singular

THEOREM 3.4. If Ax(z) is a disc, thenL^olQjiz)^ < oo andI.JL1\PJ(z)\2 < oo.
z) is a point, then L»_o \Qj(z)\2 = oo andLJ,, \Pj(z)\2 = oo.

PROOF. It follows from Theorem 3.3 that E°°_o \Qj(z)\2 < oo if AK(z) is a disc
and £°°_o|(?y(z)|2 = oo if A00(z) is a point. Let w be a point in Ao0(z). Then
E°°=o \

pj(z) + wQj{z)\2 < oo (Theorem 3.1), and it follows that E ^ |P,(z)|2 = oo
if and only if E™L0 \Qj(z)\2 = oo (note that w ¥= 0, for example by Theorem 3.1).

THEOREM 3.5 {Theorem of invariability). If A00(f) is a disc for some non-real
number f, then A0O(z) is a disc for very non-real number z.

PROOF. Assume that A00(f) is a disc. It follows from Theorem 3.4 by elemen-
tary estimates by

«-0j=0

Let z # f, Im z # 0, and set M = max{ \z - £|, l&r1^ - 01}- Let 0 < e < 1. By
Theorem 3.5 and the foregoing remark there exists a natural number v such that

and
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(cf. [1, p. 17]). Straightforward calculations show that the formulas

2 m - l

G2M(*) = G2«tt)+(*-O E Qj(
7 = 0

and

G 2 » + i ( ) 62-,+i(O
2m

+z-1$(' - 0 1 G,-(
y=o

hold. By using these relations, the Schwartz inequality and Minkowski's inequal-
ity, we obtain for every N > v the estimate L^.v\Qn(z)\2 < e[l + L"n=0 \Qn(z)\2\
This shows that £"_„ |(?n(z)|2 < °°, and the result follows from Theorem 3.4.

In view of Theorem 3.5 we may use the terms limit circle case and limit point
case without reference to any particular point z.

4. Stieltjes transforms

Let if be a bounded, real-valued, non-decreasing function. The Stieltjes trans-
form if of if is given by

I m z ^ O .
t - z

The function if is said to represent the functional y (introduced in Section 1) on
a subspace ^ o f ® if y ( / ) = /_°^/(0 d\p(t) for every f<=J4?. In particular the
distribution function if represents y on 91 if and only if it is a solution of the
SHMP for the sequence C. (It is easily proved that when (H) is satisfied, then
every bounded real-valued non-decreasing function representing y on ^ has
infinitely many points of increase; see Proposition 2.2 of [4].)

We define the subsets Y.p q(z) of the complex plane as follows:

£ ( z ) = {if (z) : if is a representing function f or y on 91 p q).
p, q

THEOREM 4.1. Y,p q(z) is a compact, convex set.

PROOF. Compactness follows by a simple application of Helly's theorems.
Convexity follows from the factthat if \px and if2 are representing functions for y
on 9ip q, then yp = d\l/l + (1 — 6)\p2, 0 < 0 < 1, is also a representing function
foryon^ p - o .

https://doi.org/10.1017/S144678870002646X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002646X


[13] Unique solvability of the strong Hamburger moment problem 17

We recall the Gaussian quadrature formulas associated with the quasi-orthogo-
nal L-polynomials Qn(z, T) as described in Section 1. For non-singular n, real t
and T we define the function *pn(t, T) by

This function is bounded and non-decreasing in t.
It follows immdiately from the quadrature formulas that except for a single

value of T, 4>n(t, T) represents y on f.2m2m_2 when n = 2m, and on ^ . 2 m 2 m

when n = 2m + 1. Thus ^ 2 m (z , T) G £-2m,2m-2(z)> ^2«+i(z» T) G £-2m,2m(z)-
In terms of wn(z, T) which was defined in Section 3, we have the following

result.

THEOREM 4.2. For every non-singular n and Im z =£ Qwehave^n{z, T) = wn(z, T).

PROOF. From the quadrature formulas we get for T fixed (taking into account
that Qn(t}"\r), T) = 0):

Pn(z, T ) = y,(DMQm(t. T ) ) = - £ Xy ^ ^,

THEOREM 4.3. The following equalities hold:

(A) A 2 O T ( Z ) = E (z) when 2m is non-singular;
-2m,2m — 2

(B) A2m + 1 = E ( z ) w'Aen 2m + 1 is non-singular.
-2mf2m

PROOF. It follows from Theorem 4.2 and the remarks preceding it that, except
for possibly two points, T2m(z) c E.2m,2m-2(z) i f n = 2m, T2 m + 1(z) c
£_2m,2m(z)ifw = ^m + 1- (^ n e t w o exceptional points correspond to T = oo and
the value of T for which the Gaussian quadrature formula may fail.) Hence by
Theorem 4.1 we get A2m(z) c L_2mt2m_2(z), A2 m + 1(z) c E.2 m,2 m(z) .

On the other hand let \p be a function which represents y on f.2m2m_!
(respectively ^ _ 2 m 2m)- Then the bilinear forms defined by y and by \p coincide on
f2m_! (respectively 3tlm)- Thus the system {Q0,Qi,--,Qn-i} is orthonormal
with respect to the function \p both in case (A) (n = 2m) and in case (B)
(n = 2m + 1). Set w = i^(z). Using Bessel's inequality for the function / ( / ) =
l/(t - z), observing that J^,d>p(t)/\t - z\2 = (w - w*)/(z - z*) and ( / , Qj)
= P/z) + wQj(z), we get E # |P,(z) + w^(z ) | 2 < (w - w*)/(z - z*). It fol-
lows from Theorem 3.1 that i£(z) = M> G An(z).
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5. The uniqueness theorem

We define the subset E(z) of the complex plane as follows: Y,(z) = {\j/(z): \p is
a representing distribution function for \j/ on &}. We recall that two successive
orthogonal L-polynomials Qn(z) and C + 1 ( z ) a r e n o t both singular; see Section
1 (cf. Corollary 3.4 of [4]). It follows from Theorem 4.3 that for every m, either
A2m(z) = E_2mi2m_2(z) or A2m+1(z) = £_2m)2n,(z).

THEOREM 5.1. For every non-real z we have E(z) = A00(z).

PROOF. The inclusion E(z) c A0O(z) follows immediately from Theorem 4.3
and the fact that a representing distribution function for y on f also is a
representing function on every subspace 31 p q.

Again by Theorem 4.3 we get AQ0(z) c E_2m2m(z) for every m. Thus for every
w G Aoo(z) and every m there exists a function \pm representing y on 3i_2mlm

such that ipn(z) = w- The sequence {$m} is uniformly bounded since f™xd\pm(t)
= c0. A standard argument involving Helly's selection theorems establishes the
existence of a distribution function \p which represents y on @ such that i£(z) = w
(cf. Section 7 of [4]), and hence 4M(z) c E(z).

THEOREM 5.2. The SHMP has an essentially unique solution in the limit point
case, infinitely many solutions in the limit circle case.

PROOF. This follows immediately from Theorem 5.1 and the essential unique-
ness of the inverse Stieltjes transform.
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