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SUMMARY

A mathematical model of the dynamics of measles in New Zealand was developed in 1996. The

model successfully predicted an epidemic in 1997 and was instrumental in the decision to carry

out an intensive MMR (measles–mumps–rubella) immunization campaign in that year. While

the epidemic began some months earlier than anticipated, it was rapidly brought under control,

and its impact on the population was much reduced. In order to prevent the occurrence of

further epidemics in New Zealand, an extended version of the model has since been developed

and applied to the critical question of the optimal timing of MMR immunization.

INTRODUCTION

Immunization against measles was introduced in New

Zealand in 1969, but coverage was inadequate to alter

the pattern of 2- to 3-yearly epidemics until 1980 [1].

In 1978, a 5-year measles epidemic elimination

programme was instituted. The level of coverage

achieved by that programme is not known, yet it was

sufficient to defer the next epidemics after 1980 to

1985 and then 1991. In November 1990, the measles

vaccine was replaced by the measles–mumps–rubella

vaccine (MMR). A second dose of MMR, scheduled

at age 11 years, was added in 1992 in response to the

1991 measles epidemic [2]. In the 1990s, coverage has

been only a little above 80% for the first scheduled

dose (MMR1) [3, 4]. Coverage for the second dose

(MMR2) is likely to be about the same, although

there are no national data.

In 1996 a mathematical model for the dynamics of

measles in New Zealand was developed. The model
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included a representation of the vaccination strategies

employed from 1969–96, and assumed that the 1996

strategy would be continued until 2000. It successfully

predicted the 1997 measles epidemic, and showed that

the current levels of vaccine coverage would result in

further epidemics at intervals of approx. 6 years [5].

To help guide a decision about the optimal timing of

MMR doses, the model was extended (existing age

classes subdivided) and used to compare the likely

effects of different potential vaccination strategies. In

the present paper the initial (1996) model is referred to

as the ‘prediction’ model, and its extension with a

further sub-division of age classes is referred to as the

‘prevention’ model. The results from both models are

summarized below.

METHOD

The dynamics of measles were modelled under varying

immunization strategies in a population with size and

age structure similar to that of New Zealand, using

a deterministic SIR (susceptible-infective-recovered)

model. The boundaries of the age classes were chosen

using the assumption that those aged less than
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6 months or more than 25 years take no part in the

epidemic, with the other age-class boundaries co-

inciding with potential ages at vaccination. Hence the

‘prediction’ model had four active age classes and the

‘prevention’ model had eight. Vaccination rates were

based on the proportion of children vaccinated at

each opportunity and the vaccine efficacy. For

example, if a proportion q of the population are

vaccinated, and the vaccine efficacy is 90%, then the

proportion protected is p¯ 0±9q. Disease transmission

was assumed to be seasonal, with high transmission

between 28 February and 1 December, and lower

transmission throughout the summer. The overall

transmission rate was chosen by fitting the output of

the ‘prediction’ model to the historical timing of

measles epidemics. Full details of the models are

presented in the Appendix.

The prediction model

The model was solved numerically using the Rkadapt

function of Mathcad Plus 6.0 [6]. The time period for

solution was 1962! t! 2000, where t¯ 1962 implies

1 January 1962. Initially the equations were solved

with no vaccination to establish a ‘no-control ’ pattern

of epidemics. This was used to specify starting values

(at 1962) for state variables that gave the correct pre-

control epidemic timing, i.e. epidemics in 1963, 1965,

1967 and 1969. The equations were then solved using

historical vaccination rates and different values of the

parameters that control inter-class contact rate (ε), the

magnitude of the seasonal fluctuation in transmission

(δ), and the basic reproduction ratio (R
!
), until a

combination was found that gave the correct timing of

epidemics for the period 1970–92. The solution was

then continued until 2000 to obtain a short-term

prediction for future epidemic events. The number of

time steps was initially set at 1983 (equivalent to a step

size of 1 week), then calculations were repeated with

ten times the number of steps leading to the same

result, to confirm numerical stability.

The prevention model

Immunization schedules

Four different immunization schedules each involving

two vaccinations were regarded as practical alter-

natives, and hence were tested in the model. These

represent the earliest possible time for both doses

Table 1. Vaccination co�erage rates used in the

‘pre�ention ’ model

Vaccination Rate (%)

MMR1 Low 80

MMR1 Medium 85

MMR1 High 90

MMR1 Target 95

MMR2 As second vaccination 90

MMR2 (As first vaccination)

Infant schedule 5

Preschool schedule 50

School schedule 70

Current schedule 70

Catch-up Infant schedule 50

at 3 years School schedule 50

Current schedule 50

Catch-up Infant schedule 50

at 5 years Preschool schedule 75

School schedule 50

Current schedule 50

(infant schedule : MMR1 at 12 months, MMR2 at 15

months), and retaining MMR1 at 15 months and

delivering MMR2 at entry to child care (preschool

schedule : MMR2 at 3 years), in the first year of

primary school (school schedule : MMR2 at 6 years)

or at 11 years (current schedule). As well as the

scheduled events, entry to an early childhood centre

(at 3 years of age) and to school (at 5 years of age)

provide ‘catch-up’ opportunities. For the preschool

schedule, only catch-up at 5 years applies, as there is

a scheduled immunization event at 3 years of age.

Immunization co�erage

For details of immunization coverage rates see Table

1. For MMR1 four coverage rates (labelled ‘ low’,

‘medium’, ‘high’ and ‘target ’) were modelled. For

MMR2 coverage was assumed to be dependent on

behaviour at MMR1. For those children not im-

munized at MMR1, coverage at MMR2 was assumed

to increase with age until school entry, then stabilize

(reflecting the fact that this represents a ‘hard to

reach’ group of children, even when ‘captive’ at

school). Coverage of catch-up vaccinations was

assumed to be 50%, with the exception of the

preschool schedule. As there is only one catch-up

opportunity for the preschool schedule, 75% catch-up

at 5 years of age was allowed for this schedule only.

Catch-up was considered to apply equally to children
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Table 2. Scenarios used in the ‘pre�ention ’ model

Scenario (symbol) Conditions

N No catch-up, low failure

NF No catch-up, high failure

C3 50% catch-up at three years of age, low failure†

C3F 50% catch-up at three years of age, high failure‡

C5 50% catch-up at five years of age*, low failure†

C5F 50% catch-up at five years of age*, high failure‡

* For the preschool schedule catch-up of 75%.

† Low failure means 10% primary vaccine failure rate and no allowance for

secondary failure.

‡ High failure means 20% primary vaccine failure for children who failed to

respond to their first dose (10% otherwise), and an allowance for secondary failure

(see text).

who had missed one or both scheduled immuni-

zations.

Vaccine failure

The literature on the short-term efficacy of MMR

vaccines is conflicting. Variables such as vaccine

formulation, cold chain integrity, and injection tech-

nique can influence response. Initially a primary

vaccine failure rate of 10% was modelled (12% for

the infant immunization schedule to allow for in-

terference from residual maternal antibody at age 12

months), as had been used in the earlier ‘prediction’

model. The question has often been raised as to

whether children who fail to respond to their first

immunization are more likely to fail again when re-

immunized. Although there is little evidence to

support this, for these children primary vaccine failure

rates of both 10 and 20% at MMR2 were modelled.

A meta-analysis of published data found no

evidence for secondary vaccine failure [7]. Our model

does not allow for a flux from the removed class into

susceptible classes ; however, in the high failure

scenarios an allowance was made for potential

secondary failure by adding 0±5% multiplied by the

time to next vaccination to the primary failure rate.

Calculations

For each schedule (infant, preschool, school, and

current) and MMR1 coverage rate (low, medium,

high, and target), the model was analysed for the six

scenarios based on catch-up and vaccine performance

summarized in Table 2, giving a total of 96 scenarios.

All calculations were performed using Mathcad 7

Professional [8].

Output

Reproduction ratio with immunization (R
V
). The basic

reproduction ratio (R
!
) of an infectious disease is

defined as the average number of secondary cases

generated by a primary case in a fully susceptible

population [9, 10]. R
V

is similarly defined as the

average number of secondary cases generated by a

primary case in a population rendered incompletely

susceptible as a result of immunization. If R
V
!1,

disease elimination occurs. In practice, a safety margin

is needed because of seasonal variation in transmissi-

bility and heterogeneities in the population (for

example, the geographic clustering of ‘pockets ’ of

susceptibles), and R
V

needs to be well below one

before elimination becomes realistic.

Inter-epidemic period. The model was solved nu-

merically over 20 years for selected strategies, to

determine the timing and scale of predicted epidemics.

A relationship exists between R
V

and the inter-

epidemic period, and visual representation of future

epidemics adds no new information.

RESULTS

Prediction

The parameter values that produced the best agree-

ment between the occurrence of model epidemics and

the observed historical pattern were consistent with

R
!
¯ 12±8 and R

V
¯ 2±85 with current vaccination
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Table 3. Obser�ed and predicted epidemic years

Observed 1963 1965 1967 1969 1972 1975 1977 1980 1985 1991 1997

Predicted 1963 1965 1967 1969 1972 1975 1979 1985 1991 1997

200

150

100

50

0
63 67 71 75 79 83 87 91 95 99

Year

200000

150000

100000

50000

0
63 67 71 75 79 83 87 91 95 99

Year

(a)

(b)

Fig. 1. Results from the prediction mode. (a) Predicted

number of susceptibles (thousands) and infecteds (hundreds)

in ages 0±5–25 years. (b) Predicted numbers of susceptibles in

age classes (reading from bottom) 0±5–1±25 years, 0±5–5

years, 0±5–11 years and 0±5–25 years.

procedures. These produced the epidemic patterns

summarized in Table 3 and Figure 1. Of note is the

prediction of an epidemic in 1997 (the calculations

were performed in 1996). Figure 1 also shows the age

structure of epidemics, as determined by the model.

When the epidemic occurred it was contained by a

mass-vaccination effort. Figure 2 shows the weekly

number of cases reported compared with model

predictions, note that the starting date of the model

epidemic has been adjusted to coincide with that of

the observed epidemic. For further details of the 1997

epidemic in New Zealand, including its age and ethnic

structure, hospitalization and reporting rates see [11].

Prevention

The model output is summarized in terms of R
V

for

different schedules, coverages, and scenarios (see

Tables 1 and 2) in Figure 3. The results show that at

low MMR1 coverage, no schedule will lead to measles

elimination. At intermediate coverage, only the school

schedule yields R
V
!1±0, and then only if catch-up is

high and vaccine failure low (scenarios C3 and C5). At

high coverage, both the school and preschool

schedules are capable of measles elimination (R
V
'1).

At this coverage, the school schedule slightly out-

performs the preschool schedule, whereas the opposite

is the case at target coverage. Essentially, these

schedules are equivalent.

The results show that target MMR1 coverage

(95%) is not required for measles elimination,

provided the timing of MMR2 is modified (to either

school or preschool entry). Yet if the current schedule

is continued, measles will not be eliminated at any

(realistic) level of coverage, catch-up and vaccine

failure. Unless coverage at scheduled opportunities is

at target level, a catch-up programme is also required

for measles elimination. For example, with the school

schedule and high (90%) coverage, R
V
¯ 0±7 with

preschool catch-up (scenario C3), but R
V
¯ 0±9 with-

out it (scenario N). On the other hand, given high

coverage at both scheduled and catch-up ages, vaccine

failure is of little consequence.

Figure 4 shows the relationship between R
V

and

inter-epidemic period for selected scenarios and

coverage rates. It clearly shows that as the value of R
V

decreases, the inter-epidemic period increases. How-

ever, at values of R
V

between one and two other

details of control strategies are secondary deter-

minants of the inter-epidemic period.

Conclusions

The ‘prediction’ model successfully predicted the

1997 epidemic of measles in New Zealand, which was

then contained by a mass vaccination campaign. It

also showed that if no change is made in vaccination

policy, the next measles epidemic will occur in 2003 or

2004 and involve approx. 60000–80000 cases.
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Fig. 2. Reported and predicted weekly measles cases in New Zealand in 1997 shown on a log scale. The vertical arrow is at

the beginning of the vaccination campaign. (Adapted from [11].)
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Fig. 3. Calculated values of the basic reproduction ratio

under vaccination (R
V
) from the prevention model, with

different coverage rates (Low, Medium, High, Target ; see

Table 1) and under different vaccination scenarios (see

Table 2).
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Fig. 4. Calculated values of the basic reproduction ratio

under vaccination (R
V
) and inter-epidemic period for

selected coverage rates and vaccination scenarios.

The ‘prevention’ model showed that as long as the

current MMR schedule (15 months and 11 years)

remains in place, measles epidemics will continue to

occur. Bringing forward the second dose of vaccine

(MMR2) to approx. 3 or 6 years of age is necessary to

prevent the further occurrence of measles epidemics in

New Zealand. A change in the immunization schedule

alone will probably be insufficient by itself to eliminate

measles from New Zealand. Coverage at 15 months of

age needs to increase to 90% (or more), and effective

opportunities for catch-up immunization are also

required to be certain of success. The timing of the

second dose is not critical from an epidemiological

perspective, provided this dose is administered be-

tween the ages of approx. 3 and 6 years. Immunization

at or around school entry may offer logistic ad-

vantages.

DISCUSSION

For our study of the dynamics and control of measles

in New Zealand we chose to employ a model with

compartments for the numbers susceptible and in-

fectious within different age groups. This format,

combined with assigning the boundaries between age

groups to vaccination opportunities, provides a model

amenable to analysis. The success of the model in

reproducing the historical pattern of epidemics is

encouraging. Other authors have used models with

more detailed age structure to investigate the epi-

demiology and dynamics of measles control strategies

[9, 12–14] and obtained similar results. Although it

has been shown that the dynamics of measles models

can be qualitatively sensitive to the way in which age
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structure is incorporated, the major difference is that

more complex models suppress chaos, which is not a

feature in our results [15, 16]. In addition, we have

restricted our model population to those under 25

years of age, as those older play a negligible part in the

epidemiology of measles. Other authors have included

older age groups, but set the force of infection they

experience to a much lower level [9, 12–14]. If measles

were eliminated from the population for a con-

siderable time it would no longer be true that most

adults were immune, and this older age-group could

then potentially play a part in any future epidemic.

The set of parameters that led to the best fit of

model output to the historical timing of epidemics was

consistent with a basic reproduction ratio (R
!
) equal

to 12±8 (ignoring seasonality). The value of R
!
depends

on the biological characteristics of the disease, and the

social conditions under which it is transmitted. Hence,

for measles R
!
seems to vary from an estimated 11 in

the Faroe Islands [17] up to 18 in Africa [18], and is

generally in the range 12–18 [9, 16]. Our estimate is

consistent with values of R
!
between 12 and 13 quoted

for measles in the United Kingdom and United States

of America [19].

There is only limited evidence on the impact of

different strategies for controlling measles. The con-

sensus is that the most important factor is high

coverage with one dose. The second dose counters

vaccine failure (increasing vaccine efficacy) and failure

to vaccinate (increasing coverage). The model shows

that of these two effects, it is the latter (increasing

coverage) that is more important until coverage with

the first dose exceeds 95%. Similar results have been

found by others [20].

Until recently, the World Health Organization

(WHO) has not actively promoted two-dose schedules,

as it has considered achieving high coverage with one

dose to be the priority [21]. The WHO is now

promoting delivery of a second dose through mass

campaigns as a means of reaching children who would

not normally access primary health care services. The

effectiveness of this approach has been demonstrated

in the Americas [22]. The other approach with

demonstrated effectiveness is high coverage with two

scheduled doses, which led to the elimination of

indigenous measles in Finland [23, 24]. In Finland,

MMR has been scheduled at 14–18 months of age and

again at 6 years (prior to school entry) since 1982. The

vaccine used in Finland has been MMRII (MSD)

vaccine, the same vaccine as that now used in New

Zealand. The coverage achieved in Finland exceeds

95% for both doses.

By contrast, in 1982 Sweden introduced a two-dose

MMR schedule at 18 months of age and 12 years.

Initial experience showed declining incidence of

measles from 1982 to 1986, with achievement of over

90% coverage for both doses [25]. More recent

experience has not been fully reported, although a

1994 paper describing serological response reports

continuing success with the Swedish schedule [26].

The WHO database shows a declining number of

cases in Sweden from 1986 to 1996, although no data

were reported for 1994 and 1995. Since 1995, coverage

in Sweden at 12 years of age has been 99% for one

dose and 90% for two doses (J. M. Olive, WHO,

personal communication). The very high coverage,

relative homogeneity of the population, and low

population density may be factors contributing to the

success of measles control in Sweden despite an

apparently suboptimal schedule.

Mathematical modelling in France has replicated

the findings of this New Zealand study, and has led to

the recommendation that MMR2 be brought forward

to the time of school entry (or earlier) to enable

elimination of measles [27]. A serological study of

Canadian children supports delivery of the second

dose before school entry [28]. Some provinces in

Canada administer the second dose at 18 months of

age while others currently deliver it around school

entry [29]. The United Kingdom and United States

schedule MMR2 at school entry. Australia is currently

considering a change in the timing from the current

10–16 years to around school entry [30].

The 1997 measles epidemic in New Zealand,

modelling results presented in this report, limited

serological data, and international practice, all sup-

port bringing forward the timing of MMR2. The only

evidence against such a change appears to be the

success of Sweden in eliminating measles with a

similar schedule to that currently used in New

Zealand. However, this assumes firstly that Sweden

will not in fact experience another measles epidemic

over the next decade, and secondly that New Zealand

is capable of achieving and sustaining MMR im-

munization coverage rates of similar magnitude to

those achieved in Sweden. In deciding whether to

bring the second dose of MMR forward, the impact of

such a change in the childhood immunization schedule

on diseases other than measles must also be con-

sidered. There are also logistic aspects to consider.

The results of epidemiological modelling reported

here represent only one input into the decision-

making process. However, New Zealand is currently

considering a shift in the timing of the second
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Table 4. Age classes used in the models

Prediction Ages Prevention Ages

Class number 1 6 months to 15 months Class number 1 6 months to 1 year

Class number 2 1 year to 15 months

Class number 2 15 months to 5 years Class number 3 15 months to 18 months

Class number 4 18 months to 3 years

Class number 5 3 years to 5 years

Class number 3 5 years to 11 years Class number 6 5 years to 6 years

Class number 7 6 years to 11 years

Class number 4 11 years to 25 years Class number 8 11 years to 25 years

Table 5. Parameter �alues assumed in the models

Parameter Definition Value

a
"

Activity level 1

a
#

Activity level 2

a
$

Activity level 6

a
%

Activity level 3

δ Magnitude of seasonal

variation

0±2

ε Factor reducing inter-class

activity

0±4

β Disease transmission

coefficient

2±005¬10w%}year

γ 1}(mean time infectious) 52}year

scheduled dose of MMR to 5 or 6 years of age (i.e.

around the time of school entry).

APPENDIX

The models used for the ‘prediction’ and ‘prevention’

investigations were similar, but whereas the former

had 4 active age classes, these were subdivided to

obtain 8 classes for the latter. The annual birth rate

was assumed constant at B¯ 57435 births}year [31].

The size of each age class (see Table 4) was fixed at

class width ¬ B, and the transition rate to the next

class at (class width)w". For example, Class 5 in the

‘prevention’ model covers ages 3–6 years,

N
&
¯ 172305 and µ

&
¯ "

$
. Hence, model class sizes

remain constant and deaths are neglected up to age

25.

The disease transmission model was constructed as

follows. Consider first the situation with a single age

class. If the number of contacts that an individual

makes with another per unit time is C, then the

number of contacts with an infectious individual is CI.

If the number of new infectives formed per infectious

contact is β, then the rate at which susceptibles

become infected (force of infection) is βCI. Where

contact rates vary throughout the year we introduce a

periodic function |(t) as a multiplier, hence with n age

classes the force of infection in class i is

λ
i
(t)¯|(t)β 3

n

j="

C
ij

I
j
,

where C
ij

is the rate of contact between individuals in

age class i and those in age class j. It is convenient to

estimate contact rates relative to those in one selected

class, for example age-class one. The parameter β then

has dimension (year)−".

Suppose that an individual in age class i has an

activity level measured by a
i
. Under the proportionate

mixing assumption the number of contacts per unit

time between individuals in age class i and individuals

in age class j is proportional to o(a
i
a
j
) ; and under the

preferred mixing assumption this is true for within-

class contacts, but between-class contacts are assumed

to be zero. We have combined the two assumptions by

choosing a parameter ε! 1 to weight between-class

contacts [32]. The ‘prediction’ model had four age

classes, hence we constructed the contact matrix

E

F

C
#"

C
""

C
$"

C
%"

C
##

C
"#

C
$#

C
%#

C
#$

C
"$

C
$$

C
%$

C
#%

C
"%

C
$%

C
%%

G

H

¯

E

F

εo(a
#
)

1

εo(a
$
)

εo(a
%
)

a
#

εo(a
#
)

εo(a
#
a
$
)

εo(a
#
a
%
)

εo(a
#
a
$
)

εo(a
$
)

a
$

εo(a
$
a
%
)

εo(a
#
a
%
)

εo(a
%
)

εo(a
$
a
%
)

a
%

G

H

.

This plays a similar role to the familiar WAIFW

matrix [9, 33]. The ‘prevention’ model had 8 age

classes. In order to keep contact rates within and

between classes compatible in both models we used

the contact rate matrix C equal to
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E
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)
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)
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)
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)
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a
%

G

H

to represent within and between class contacts.

The model equations for the susceptible (S
i
) and

infectious (I
i
) populations are

dS
"

dt
¯µ

!
N
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®0µ"

­ω(t)β 3
n
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"j

I
j1 S

"

dI
"

dt
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3
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C
"j

I
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®(µ

"
­γ) I

"

and for i¯ 2,…, n

dS
i

dt
¯ ν

iw"
S

iw"
®0µi

­ω(t)β 3
n
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C
ij
I
j1 S

i

dI
i

dt
¯µ

iw"
I
iw"

­ω(t)βS
i
3
n
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C
ij
I
j
®(µ

i
­γ) I

i
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The effect of vaccination is to reduce the incoming

transition rate to class i­1 from µ
i

to ν
i
. The

seasonality function was defined by

|(t)¯

1

2
3

4

κ (1®δ) for otherwise,

κ (1­δ) for τ
"
! τ! τ

#

where τ is the decimal part of t, κ¯
1}(2δ(τ

#
®τ

"
)­1®δ) and δ! 1. Note that the mean

value of | is 1. We set τ
"
¯ 0±1615 (28 February) and

τ
#
¯ 0±9151 (1 December).

Next generation matrices [10] were calculated with

ω3 1. The matrix M
!

for the ‘prediction’ model is

equal to
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with a similar but larger matrix for the ‘prevention’

model. For both models the matrix M
V

is equal to the

same matrix, but with N
i
replaced with S*

i
, the steady

state value of S
i
(t). The basic reproduction ratio R

!

and the basic reproduction ratio under vaccination R
V

are the spectral radii of matrices M
!

and M
V

respectively. Parameter values assumed for the model

are given in Table 5. With these parameter values we

obtain R
!
¯ 12±8.
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