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Exponential Polynomial Fitting for Fibre Spectrum CCD Profiles
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Abstract: A fibre spectrum profile fitting method based on the least-squares method is presented in this article.
For each spectrum of one fibre in spatial orientation, two exponential functions are employed to approximate
the profile. Experiments are performed with both simulated profiles and observed profiles to demonstrate the
effectiveness of the algorithm. Specially, the proposed method has a better performance for profiles that are
asymmetric or composed of multi-Gaussian functions.
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1 Introduction

Spectrum extraction, a key part of spectrum processing,
extracts the flux of a spectrum at each pixel along the
spatial orientation. The accuracy of spectrum extraction
plays an important role in 1-D spectrum processing. How
to measure flux more accurately is an ongoing focus of
research in this field.

The aperture extraction method (de Boer & Snijders
1981) is a simple approach that measures the flux within
a certain aperture around the centre of the spectrum pro-
file. This method is limited because it is easily affected
by noise and cross-talk from flux of an adjacent profile.
Some improved aperture extraction methods (Horne 1986;
Robertson 1986; Marsh 1989) were developed by adding
different weights to different pixels in order to weaken the
effect of noise. Some other modified approaches were pro-
posed by using an instrumental profile database (Becker
2001; Roth et al. 2005) to avoid the cross-talk of adja-
cent fibre energies. These methods require an accurate
determination of the profiles (Sanchez 2006).

Another approach is the profile fitting method
(Piskunov & Valenti 2002; Blondin et al. 2005), which
has better accuracy than the aperture extraction method,
but depends on the signal-to-noise ratio (SNR) of the data
(Sanchez 2006). This method is widely used to extract
spectra for fibre images, such as the Sloan Digital Sky
Survey (SDSS). The profile fitting algorithm is the most
important part of the method. Some functions (usually a
Gaussian function) are used to fit the profile of fibre flux.
An improved method named Gaussian suppression com-
bines the aperture method and Gaussian fitting method
(Sanchez 2006), but this does not work well if the pro-
files are non-Gaussian. The radial basic function method
(Qin et al. 2009) employed two Gaussian functions to
fit profiles for the Large Sky Area Multi-Object Fibre

Spectroscopy Telescope (LAMOST). This method works
well with mutli-Gaussian profiles but not for asymmetric
profiles.

In this paper, we propose another profile fitting
function — exponential polynomial. This fitting method
uses two different exponential functions to fit each pro-
file, and the parameters of the two functions are adaptively
obtained. First, we obtain the approximate centre of each
spectrum profile, and the profile data are separated along
the centre into two parts. Second, the two parts of the data
are used to fit the left exponential function and the right
exponential function. The criterion for function fitting is
based on the least-squares method. We use the parameters
of the two exponential functions, which are obtained by
function fitting, to reconstruct the new profile and count
the flux of the profile.

The model of the spectrum profile is described in
Section 2. In Section 3, the exponential polynomial fitting
method is introduced in detail. Experiments and results
are given in Section 4. The summary is presented in the
last section of this article.

2 Profile Model

The parameters employed in this paper are described in
Table 1.

The spectrum profile is usually considered to be a Gaus-
sian function. In spatial orientation, the spectrum profile
is mathematically expressed as

f(x) = A√
2πσ

e
− (x−xcen)2

2σ2 , (1)

where xcen denotes the centre of the spectrum profile, σ

denotes the Gaussian sigma, and A denotes the flux of the
profile.
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The profile fitting method usually used a single Gaus-
sian function to fit the spectrum profile and resulted in
an approximation of the actual profile. As the precision
required of spectrum extraction is increasing, however,
the actual profile of fibre spectrum flux on CCD is get-
ting more attention, and researchers are focussing on more
exact fitting of the spectrum profile.

Fibre grating has some width so it is not an ide-
alized line; therefore, each CCD pixel has some area

Table 1. Parameters exposition

Parameters Exposition

D The image after initial processing
C The original image
F A balance factor
f(x) The profile
xcen The position of profile centre
σ(σi, σj) The sigma of Gaussian function
A(Ai, Aj) The flux of Gaussian function
�xi, �yi Excursion of centre, positive value
xi The ith point of profile
yi Flux of the ith point of profile
M The order of polynomial
N The number of control points
K The point number of a profile
ak The coefficients of polynomial
p(xi) The ith fitting value
ni The noise of the ith point
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Figure 1 (a) Three types of profiles. (b) A profile with a flat top. (c) A profile with slight cross-talk. (d) An asymmetric profile.

rather than being a point. Hence, the spectrum profiles are
more complex than a single Gaussian function. Moreover,
the profiles are probably asymmetric. The profile can be
described by

f(x) =
∑

i

Ai√
2πσi

e
− (x−xcen−�xi)

2

2σ2
i

+
∑

j

Aj√
2πσj

e
− (x−xcen+�xj )2

2σ2
j . (2)

In Figure 1, three different profiles are given.

3 Exponential Polynomial Fitting Method

The initial image processing includes the measurement
errors (Horne 1986)

D = C − B

F
. (3)

F , the balance factor, is allowing direct calculation of Pois-
son variance estimates, which include the estimating of the
readout-noise and the CCD gain. In this paper, all input
data are assumed after the initial processing.

3.1 Least-Squares Method

The theory of the least-squares method (Deng 1997) is to
minimize the sum of difference squares between the fitted
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values and original values. The method can be described
as follows: for one group of known data (xi, yi) where
(i = 1, . . . , N), the data are fitted in the form of some func-
tion to get a new group of data p(xi) where (i = 1, . . . , N),
and the sum of difference squares, err, between yi and
p(xi) is minimised. That is,

min err =
N∑

i=1

[yi − p(xi)]2. (4)

Polynomial fitting is a common method for profile fit-
ting based on the least-squares method. In the polynomial
fitting method, the function p(xi) has a certain format:

p(xi) =
M∑

k=0

ak × xk
i . (5)

In the polynomial fitting method, the fitting error can
be described by

errp =
N∑

i=1

(
yi −

M∑

k=0

ak × xk
i

)2

. (6)

The problem of polynomial fitting based on the least-
squares method is solving for the coefficients, ak, under
extremal conditions. Then,

∂errp
∂ak

= 2
N∑

i=1

(
yi −

M∑

k=0

akx
k
i

)
× xk

i = 0 (7)

The equations can also be displayed in matrix form:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N
N∑

i=1
xi · · ·

N∑
i=1

xM
i

N∑
i=1

xi

N∑
i=1

x2
i ...

N∑
i=1

xM+1
i

...
...

. . .
...

N∑
i=1

xM
i

N∑
i=1

xM+1
i · · ·

N∑
i=1

x2M
i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

a0

a1
...

aM

⎞

⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
i=1

yi

N∑
i=1

(yi × xi)

...

N∑
i=1

(yi × xM
i )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

The coefficients are estimated by solving these
equations.

3.2 Exponential Polynomial Fitting

Fibre profiles are always non-Gaussian and asymmetric,
so a Gaussian function will not provide the optimal fit to
the profiles. The profile fitted by an exponential function
can avoid the problems of a Gaussian function, which has a

fixed format profile. The exponential polynomial function
can be described by

ea0+a1xi+a2x
2
i = yi (i = 1, . . . , N). (9)

To fit the profile using an exponential polynomial func-
tion based on the least-squares method, the function must
be transformed to a linear function by taking the logarithm:

a0 + a1xi + a2x
2
i = ln yi (i = 1, . . . , N). (10)

For common profiles, third-order polynomials provide
the optimal approach. If the profile has a very flat top, third-
order polynomials may not approach it very well. In this
case, fourth-order polynomials can be used. Fourth-order
polynomials can be applied to more complex profiles:

a0 + a1xi + a2x
2
i + a3x

3
i = ln yi (i = 1, . . . , N) (11)

However, the higher the order of polynomial the easier
the approached profile is affected by the control points.

The algorithm for exponential polynomial fitting for
fibre spectrum CCD profiles is described in detail below.

1. For each profile, the profile centre can be obtained by
the gravity method. The centre of the profile should
be accurate to within a pixel. If the half-peak width
of the point spread function is narrow, as was the case
for the SDSS, the centre must be accurate to a width
smaller than a pixel to ensure the precision of the fitting
result. If the half-peak width is wider, like LAMOST,
the accuracy of the centre can be lessened slightly.

2. For each profile, the profile points are divided into two
parts along the centre point, creating a left part and a
right part. The number of pixel-points in the two parts
depends on the SNR and the cross-talk of the profile.

3. For each part, the exponential polynomial fitting
method is used to get the coefficients.

4. For each profile, the two groups of coefficients are used
to get two exponential functions. The two functions are
then combined to complete the profile fitting.

The number of control points can be selected based on
the SNR and the cross-talk of the spectrum profiles. For
a second-order polynomial, at least five points are needed
(the centre point of each profile, two left and two right
points that are adjacent to the centre point), and at least
seven points are necessary for a third-order polynomial.
More control points can be used to keep the method robust,
using more information from the profile, if these points are
not affected by cross-talk and heavy noise.

If middle points that should be adopted as control points
are negative due to noise or other reasons, the point should
not be used as a control point. If many points of one profile
are negative after reducing the bias, one constant value can
be added to the profile, then after the fitting, the constant
value can be subtracted from the extracted flux.

4 Experiments and Discussion

Experiments are performed by applying the exponential
polynomial fitting method to different forms of fibre spec-
trum profiles, and the results are compared to the Gaussian
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function fitting method (which is used by SDSS; in the
experiments, different sigmas of Gaussian functions are
given to replace iteration and other processing). The effec-
tiveness is demonstrated by the ratio of the absolute error
to the original values.

In this section, dual Gaussian functions are adopted
to simulate different kinds of profile, which will be used
in following experiments. Through modifying the dis-
tance between the two centres and the parameters of the
two functions, different species of profile — which are
required for discussion in this section — can be obtained.
For each kind of profile, Poisson noise and Gaussian noise
are added into the profiles with different SNR. The error
ratio can be described by

err =
∑K

i=1 |yi − p(xi)|∑K
i=1 yi

. (12)

The SNR is defined as

SNR =
∑K

i=1 yi∑K
i=1 |ni|

. (13)

For the simulated profiles, there are nine control points.

4.1 Multi-Gaussian Function Profile

Due to the width of the fibre grating, the profile might
be composed of several Gaussian functions. For this kind
of profile, a Gaussian function will not obtain optimal
approximation profiles, whereas the exponential polyno-
mial fitting method works well. The simulated profile
consists of two equal Gaussian functions, σ = 2, with a
distance between the two centres of 2 pixels. This pro-
file has a flat top approximately like the multi-Gaussian
function profile. Figure 2 gives the fitting results of the
Gaussian method and exponential polynomial method for
this simulated profile.

Figure 2 shows that for profiles composed of multi-
Gaussian functions, the single Gaussian fitting is not a
good approach, while the exponential polynomial fitting
method works well if the data has a suitable SNR. Table 2
gives the errors for both methods for various SNR.

Table 2 shows that SNR plays an important role in the
fitting results. The exponential polynomial fitting method
is more effective than the Gaussian fitting method only
for suitable SNR. Because the parameters of exponen-
tial polynomials are very flexible and completely depend
on the control points, this method is more substantially
affected by noise than the Gaussian fitting method.

4.2 Asymmetric Profile

Profiles are usually asymmetric due to the effect of spec-
trograph optics. In this section, experiments are performed
on some asymmetric profiles to demonstrate the effective-
ness of the exponential polynomial fitting method.

The simulated profiles are also composed of two Gaus-
sian functions. The distance between the two centres
is 1 pixel, and the two Gaussian functions have the
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Figure 2 Fitting profiles to a multi-Gaussian profile. The solid line
is the profile with noise, the dash-dot line is the fitting profile using
the exponential polynomial fitting method, and the dashed line is the
fitting profile using a single Gaussian function.

Table 2. Error comparison for a multi-Gaussian function
profile

SNR EPTa (err) Gaussian fitting (err)

3.2b 3.0b 3.4b

16.719 0.050 0.103 0.101 0.103
10.538 0.059 0.108 0.101 0.108
8.640 0.069 0.105 0.102 0.109
6.621 0.129 0.110 0.101 0.108

aExponential polynomial fitting.
bSigma of Gaussian function.
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Figure 3 Fitting profiles for an asymmetric profile. The solid line
is the profile with noise, the dash-dot line is the fitting profile using
the exponential polynomial fitting method, and the dashed line is the
fitting profile using a single Gaussian function.

same flux but different sigmas: σ = 1.5 and σ = 2.5. The
experimental results are given in Figure 3 and Table 3.

As seen in Figure 3, for the asymmetric profiles, the sin-
gle Gaussian function is not a good fit even using different
centres and sigmas, whereas the exponential polynomial
fitting method works well. Table 3 gives the errors. For
asymmetric profiles, the exponential polynomial fitting
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Table 3. Error comparison for an asymmetric profile

SNR EPTa (err) Gaussian fitting (err)

2.2b 2.1b 2.0b

16.719 0.094 0.140 0.143 0.158
10.538 0.066 0.143 0.139 0.147
7.982 0.058 0.140 0.134 0.151
5.142 0.062 0.139 0.135 0.153

aExponential polynomial fitting.
bSigma of Gaussian function.

method achieves better results than the Gaussian fitting
method. When SNR reduces to a rather small value, the
effectiveness evidently decreases. When the SNR in a suit-
able range, the exponential polynomial fitting results are
robust.

4.3 Cross-talk

Experiments are carried out to evaluate the effect of reduc-
ing cross-talk. The distance between every two adjacent
profile centres is 13 pixels. The middle profile is composed
of two Gaussian functions with equal flux, σ = 2.5, and a
distance between the two centres of 0.5 pixels. In fact,
the middle profile is very close to a single Gaussian func-
tion, and the Gaussian fitting method performs adequately.
To check the ability of the algorithm to counter cross-
contamination between adjacent fibres, different degrees
of cross-talk are added into the middle profile. The ratio of
cross-talk flux, which is contributed to the middle profile
by the two adjacent fibres, and the middle profile flux is
used to denote the degree of cross-talk, dc, given by

dc = fluxcro

fluxmid
, (14)

where, fluxcro denotes the cross-talk flux, and fluxmid

denotes the middle profile flux.
The experimental results are given in Figure 4 and

Table 4.
The experimental results show that the two methods

have similar results. The proposed method has a similar
tolerance to the Gaussian fitting method for cross-talk.

4.4 Approximate Gaussian Profile

Two Gaussian functions are used to produce an approx-
imate Gaussian profile. The centres of the two functions
are very close, so the profiles are very similar to a single
Gaussian distribution. The experiments demonstrate that
the proposed method also works on this kind of profile
and gives acceptable results.

The simulated profile is also composed of two Gaus-
sian functions with the same flux, σ = 3.0 and a distance
between the two centres of 0.5 pixels.

Figure 5 and Table 5 show that for profiles with Gaus-
sian distribution, the Gaussian function fitting method
performs better, as expected, and the proposed method
also provides adequate results with sufficient SNR.
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Figure 4 Fitting profiles with cross-talk. (a) The solid line contains
three profiles with the middle one contaminated by the cross-talk
of adjacent profiles, the dashed line is the original profile without
cross-talk. (b) The solid line is the original profile without cross-talk
in (a), the dash-dot line is the fitting profile using the exponential
polynomial fitting method, and the dashed line is the fitting profile
using a single Gaussian function.

Table 4. Error comparison for profiles with cross-talk

dc EPTa (err) Gaussian fitting (err)

2.5b 2.6b 2.7b

1.130 0.014 0.052 0.017 0.021
3.674 0.047 0.051 0.040 0.046
7.065 0.098 0.086 0.086 0.088
8.761 0.128 0.114 0.114 0.115

aExponential polynomial fitting.
bSigma of Gaussian function.

4.5 Observed Profiles

In this section, the observed profiles from LAMOST
and SDSS are used. The SDSS data number is sdR-
r2-00031096 and the magnitude range is almost 14–18.
Each CCD image is 2128 × 2069 pixels. The LAMOST
data is a sky image. For LAMOST, each CCD image is
4096 × 4096 pixels, and the scopes of wavelengths are
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Figure 5 Fitting profiles for an approximate Gaussian profile. The
solid line is the profile with noise, the dash-dot line is the fitting pro-
file using the exponential polynomial fitting method, and the dashed
line is the fitting profile using a single Gaussian function.

Table 5. Error comparison for an approximate Gaussian
profile

SNR EPTa (err) Gaussian fitting (err)

3.2b 3.1b 3.0b

17.359 0.052 0.055 0.031 0.032
13.617 0.051 0.054 0.037 0.037
8.393 0.077 0.101 0.080 0.073
5.824 0.106 0.081 0.057 0.044

aExponential polynomial fitting.
bSigma of Gaussian function.

3700–5900Å and 5700–9000Å. For SDSS data, the num-
ber of control points is five, because the half-peak width
of the contours is narrow, whereas the half-peak width of
LAMOST profiles is relatively wide, and the number of
the control points is nine.

We examine the exponential polynomial fitting method
with the observed data. The results are compared to
the original profiles in Figure 6, which shows that our
proposed method is practical. Our method also has the
flexibility to fit the profiles for different sigmas — from
the SDSS data with a relatively small sigma to the
LAMOST data with a relatively large sigma.

5 Conclusion

In this paper, an exponential polynomial fitting method
for fibre spectrum CCD profiles based on the least-squares
method is proposed. Two exponential functions are used
to fit one profile in spatial orientation.

Due to the flexible parameters, the proposed method
can fit complex profiles. The proposed method is partic-
ularly effective for profiles with flat tops or asymmetric
contours. Although the method is more easily affected
by noise than the Gaussian fitting method, the proposed
method can still achieve good performance for suitable
SNR (that is, SNR approximately equal to or greater
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Figure 6 Fitting profiles for observed profiles. (a) SDSS profile.
(b) LAMOST profile. The solid line is the observed profile, and the
dashed line is the fitting profile by the exponential polynomial fitting
method.

than 8, based on experiments). Experiments demonstrate
the effectiveness of the proposed algorithm on both multi-
Gaussian and asymmetric profiles, and it obtains better
results than the single Gaussian fitting method provided
the data have suitable SNR. For approximate Gaussian
profiles, the proposed method also works well and gets
applicable results.
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