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1. Introduction. The line-graph Z(G) of an ordinary
graph G is that graph whose points can be put in one-to-one
correspondence with the lines of G in such a way that two
points of £(G) are adjacent if and only if the corresponding
lines of G are adjacent. This concept originated with Whitney
[5]. Z(G) has the property that its (point) chromatic number
equals the line chromatic number of G, where the point (line)
chromatic number of graph is the minimum number of colcrs
required to color the points (lines) of the graph such that adjacent
points (lines) are colored differently. Behzad [1] defines the
total chromatic number of a graph G as the minimum number
of colors needed to color both the points and lines of G so that
two adjacent elements (i.e., two points, two lines, or a point
and a line) have different colors, The total graph J(G) of a
graph G is that graph whose points can be put in one-to-one
correspondence with the points and lines of G in such a way
that two points of J(G) are adjacent if and only if the corres-
ponding elements of G are adjacent (see[1]). Analogous to the
situation with line-graphs, it follows that the chromatic number
of J(G) equals the total chromatic number of G.

Harary and Norman [2] generalized the definition of line-
graph to the directed case thereby introducing the 'line-digraph''.
It is the object of this paper to extend the concept of total graph
in a similar and natural way to the directed case and to develop
some of the properties of the ''total digraph''.

Work supported by the U.S. Air Fcrce Office of Scientific
Research under grant AF-AFOSR-754-65.

Canad. Math. Bull. vol. 9, no. 2, 1966.

171

https://doi.org/10.4153/CMB-1966-021-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-021-x

We begin by presenting some definitions. (For all terms
not defined here, the reader is directed to [3].) In the line

v.v. we say that the point v, is adjacent to vj and Vj is
1 1
adjacent from v. . We also say that the line x = vivj is
1
adjacent to the line y:v,vk, v, is adjacent to x, and x is
i

J
adjacent to v. .

J
If to the line x =v_v, in a digraph D we insert a new
1)
point v,. and lines x' =v v and x'"' =v_v_, then the path
1) 11 LN
v, x', V'j , x'', v. 1is called a carrier path to x. The
i i j

point vij is itself a carrier since its indegree id(vij) and
outdegree od(vij) are both 1. Also, if uwv and vw are

lines of D, then the line uw is referred to as a transitive
line of D .

We now define the total digraph J(D) of a digraph D to
be the digraph whose points are in one-to-one correspondence
with the points and lines of D, and such that the point u is
adjacent to the point v in J(D) if and only if in D the
element corresponding to u is adjacent to the element corres-
ponding to v . A digraph T is a total digraph if there exists
a digraph D such that T =3J(D) . (See Figure 1 for examples.)

KA

D, :j(D) D, j(D)

Figure 1

If D has p points and q lines, it follows immediately
that J(D) has p + q points. Since every line of J(D) must
correspond to either a line in D (there are q of these), two
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p
adjacent lines in D (this is givenby Z id(vi) od(vi)) , a line
i=1
adjacent to a point in D (there are q of these), or a point
adjacent to a line in D (there are also g of these), we see
p
that JJ (D) has precisely 3q + Z id(v.)od(v,) lines. Another
i i
i=1
invariant of interest which can be computed in a straightforward
manner is the number of cyclic triples (cycles of length 3); in
fact, if a digraph D has c¢ cyclic triples and n pairs of
mutually adjacent points, then TJ(D) has 2c + 4n cyclic triples.

2. An Alternative Approach to Total Digraghs. In this
section we give a characterization of total digraphs utilizing
the so-called subdivision digraph.

The subdivision digraph §(D) of a digraph D is that
digraph obtained from D by replacing each line Vivj of D

with a new point v,, and the two lines v.v,. and v_ v, . A
ij i ij ij J

digraph S 1is called a subdivision digraph if there exists a
digraph D such that S = §(D) . Necessary and sufficient
conditions for a digraph to be a subdivision digraph are given next.

THEOREM 1. A connected digraph S is a subdivision
digraph if and only if {(a) S is a cycle of even length n, n > 4,
or (b) every semipath joining two noncarriers (distinct or not)
has even length.

Proof of necessity. Since only a cycle can be subdivided
to yield a cycle and since the subdivision process doubles the
length of a cycle, it follows that the only cycles which are
subdivision digraphs must be of even length n> 4. If S isa
subdivision digraph which is not a cycle, then (b) iollows
directly.

Proof of sufficiency. If (a) holds, i.e., if S is a cycle
of even length n> 4, then let D be a cycle of length n/2, and
then S = g(D) . If S is not a cycle, we distinguish two cases.

(i) If S is simply a semipath with points (in order) Vo Uyt Vo
then let D be the digraph consisting of the points
0<i<k d havi j i
VZi( < i< k) and having in adjacent to (from) V21+2 if and only
. . . . i s =80 .
if Vs is adjacent to (from) V2i+1 in S; then S( )
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(ii) ¥ S is not a semipath, then S contains at least one non-
carrier v which is not a terminal point. Let V be the set of
all points of S which are connected to v with a semipath of
even length. This set is well-defined since if a point u of V
were connected to v by both an even and an odd semipath, this
would imply the noncarrier v is connected to itself by a semi-
path of odd length, contradicting our hypothesis. Now if V is
taken to be the point set of a digraph D where a point v, is

adjacent to a point v, in D if and only if there is a path of
J

length two from v, to v, , it is then easy to see that S =§(D).
1 J

As an analogue to the square of an ordinary graph [4], the

2
square D of a digraph D is defined as that digraph whose
points are those of D and such that a point u is adjacent to a

point v in D if and only if u is connected to v by a path
of length one or two in D,

We are now in a position to state the principal result of
this section.

THEOREM 2. A digraph T is a total digraph if and
only if there exists a subdivision digraph S such that S% is
isomorphic to T.

2
Proof. We show that for any digraph D, [§(D)] = J(D).

Each of the digraphs §(D), [S(D)]2 , and J(D) has p+ g points,
where D has p points and q lines. By the definition of §(D),
each line Vivj of D 1is replaced by the carrier path
2
V 3 .- . .3 Pl .. -2 . i D - E)
. vl\flJ Vi vljvj VJ in §(D) . Furthermore, [§(D)]
from §(D) only by the addition of new transitive lines of two

types: lines v, v  and lines v.,v, added to each carrier path
ij jk i 2
from v. to vj . If we correspond the points v . of [§(D)]
i 1)
to lines V.Y in D and points v of [S(D)]‘Z to themselves in
j i

2
D, we readily see that [§(D)] = JD), inasmuch as a point u

differs

. . . 2
is then adjacent to a point v in [§(D)]” if and only if the
element of D corresponding to u is adjacent to the element of
D corresponding to wv.

Thus if T 1is a total digraph, i.e., T =7J(D) for some

4 A
1i“
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digraph D, then simply take S =§(D), and by the above

2
discussion S = T . Likewise, if S =$(D) and S2 = T, then
T is a total digraph, namely T = J(D) .

3. Some Properties of Total Digraphs. In this section
we investigate the connectedness properties of D, §(D), and

J(D) .

Unlike ordinary graphs, there are many ways in which a
digraph may be '"connected!. Again following the notation of
[3], e categorize digraphs as follows: C3 is the class of all

strong digraphs, C2 the class of all strictly unilateral digraphs,

Ci the strictly weak digraphs, and CQ is the class of dis-

connected digraphs.

Clearly, the addition to or replacement of a line of D
with a transitive line or a carrier path does not affect the
existence of a path (or semipath) between points of D, i.e.,
does not alter the connectedness category of D . This implies

2
that §(D) and D belong to category C, if and only if D
belongs to Ci , i=0,1,2,3. Since J(D) is isomorphic to

[‘$(D)]2 , it also follows that D and J(D) must belong to the
same connectedness category as well.

From the preceding remarks, it is now evident that if A
is a strong component of D, then §(A) and J(A) are strong
components of §(D) and J(D) respectively, and in addition
each line Vivj not contained in any strong component of D

gives rise to a trivial component vij in $(D) and J(D) .

We are now in a position to establish a result concerning
point bases and contrabases of a digraph D and its total
digraph J(D) . To do this we make use of the condensation
digraph D% . It is not difficult to show that the number of
points of indegree (outdegree) zero in [J(D)} equals the
number of points of indegree (outdegree) zero in D% ., This
fact coupled with the well-known result ([3], Chapter 4) that
the number of points in a point basis (contrabasis) of a digraph
D equals the number of points of indegree (outdegree) zero in
D# allows us to conclude that point bases (contrabases) of D
and J(D) must have the same number of elements.
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Another feature that a digraph and its total digraph share
concerns the existence of cycles. If D contains a cycle, then
certainly J(D) does also. On the other hand, suppose 7J(D)
has a cycle VVor VoV, - Then the points and lines of D

corresponding to the points Vj are similarly oriented and

produce a cycle (or cycles) in D . This result along with the
others in this section are summarized below.

THEOREM 3. Let D be adigraph and J(D) its
total digraph. Then

(2) D and J(D) belong to the same connectedness

category.

(b) The cardinalities of point bases (contrabases) of D
and JJ(D) are equal.

(c) D is acyclic (has no cycles) if and only if J(D) is
acyclic.
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