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Abstract

Some inequalities in terms of the Gateaux derivatives related to Jensen’s inequality for convex functions
defined on linear spaces are given. Applications for norms, mean f-deviations and f-divergence
measures are provided as well.
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1. Introduction

The Jensen inequality for convex functions plays a crucial role in the theory of
inequalities due to the fact that other inequalities, such as that the arithmetic—geometric
mean inequality, Holder and Minkowski inequalities and Ky Fan’s inequality, can be
obtained as particular cases of it.

Let C be a convex subset of the linear space X and f a convex function on C. If
p=(pi,..., pn) €P" thatis, p; >0 foralli e{l,...,n}with ) ! ,pi=1isa
probability sequence and x = (x1, . .., x,) € C", then

f(Z pl-x,-) <> pifx), (1.1)
i=1

i=1
is well known in the literature as Jensen’s inequality.
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Recently the author obtained the following refinement of Jensen’s inequality
(see [9)):

S , 2i—1 PiXj — PiXk
f(Z pm) Ske{r{nnn}[(l—pk)f( ! 111_;% )+pkf(x;<)}

.....

1 n ’%_ Sy n
< ;[2(1 - m)f(zf‘l ff_x;k p"x") £y pkf<xk)}

k=1 k=1 (1.2)
< max [(1 - pk)f<zj=l Piti — p"xk) + Pkf(xk)i|
ke(l,...n) 1 — pi
< Z pjf(x;),
j=1

where f, x; and pj are as above.
The above result provides a different approach than the earlier one due to Pecarié
and the author, namely (see [14]):

Y - Xi A
f(E Pm) < Y b Pik+1f<%)
i=1 o

[yeees ir+1=1
n Xiy X
< Y Pi]"'Pikf(—ll p ”‘) (1.3)
iy eip=1
n
<2y pifl),
i=1

for k > 1 and p, x as above.
If g1, ..., gx =0 with le‘.zl gj =1, then the following refinement obtained in
1994 by the author [6] also holds:

" Xij X
()2 5 memr(ttn)
i=1

Z Pir - P fquxiy + - - - + qrxi) (1.4)

where 1 <k <n and p, x are as above.

For other refinements and applications related to Ky Fan’s inequality, the
arithmetic—geometric mean inequality, the generalized triangle inequality, the f-
divergence measures and so on, see [3-9, 13].
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In this paper, motivated by the above results, some new inequalities in terms of
the Gateaux derivatives related to Jensen’s inequality for convex functions defined on
linear spaces are given. Applications for norms, mean f-deviations and f-divergence
measures are provided as well.

2. The Gateau derivatives of convex functions

Assume that f: X — R is a convex function on the real linear space X. Since
for any vectors x, y € X the function g, y : R — R, gy ,(f) := f(x + ty) is convex it
follows that the limits

: S +1y)— fx)
Vi fx ;= lim
+() S O») i ;
exist, and they are called the right (left) Gateaux derivatives of the function f at the
point x in the direction y.
It is obvious that, for any > 0 > s,

fe+ tyt> —fD 9 rom) = in(f)[f(x + ryt> - f(x)}
1>

f(x+sy)—f(X)]

> sup[
K

s<0

=V_ /()
sy — f)

N

@2.1)

for any x, y € X and, in particular,

Vof@)(u—v)= fu) — f(v) = Vi f0)u—v) (2.2)

for any u, v € X. We call this the gradient inequality for the convex function f. It will
be used frequently in the following in order to obtain various results related to Jensen’s

inequality.
The following properties are also of importance:
Vif@)(=y) ==V_fx) (), (2.3)
and
Vi f () (ay) =aVi) f(x)(y) 2.4)

forany x, y € X and @ > 0.
The right Gateaux derivative is subadditive while the left one is superadditive, that
is,
Vif@OO+2) =VifO) + Vi f)(2) (2.5)
and

Vof)O+2)= Vo f(x)(y) + V- f(x)(2) (2.6)
forany x, y, z € X.
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Some natural examples can be provided by the use of normed spaces. Assume that
(X, |l - II) is a real normed linear space. The function f : X — R, f(x) := %llxll2 isa
convex function which generates the superior and the inferior semi-inner products

R ki el 1
A0 P, v t '

For a comprehensive study of the properties of these mappings in the geometry of
Banach spaces, see the monograph [8].
For the convex function f, : X — R, f,(x) := [x]|? with p > 1,

plIxlIP=2(y, x)siy ifx#0

Vi fr0O) = {0 ifx=0

forany y € X. If p =1, then
Ixl7 1y, x)5@) ifx#0
+( Iyl ifx=0

for any y € X. This class of functions will be used to illustrate the inequalities obtained
in the general case of convex functions defined on an entire linear space.
The following result holds.

Vi ity = :

THEOREM 2.1. Let f: X — R be a convex function. Then, for any x,y € X and
t €0, 1],
(1 =D[V_f(y —x) = Vi f)(y —x)]
>1f)+A=0f(y)— flex+A =1y

2.7)
>t(1 —D)[V4fax+ (1 —)y)(y —x)
—V_fix+ A —-0)y)y —x)]=0.
PrROOF. Utilizing the gradient inequality (2.2), we have
fx+ A =0)y) = fx) = A=)V f(x)(y —x) (2.8)
and
fax+A=0)y) = f() ==tV fM —x). (2.9)

If we multiply (2.8) by ¢ and (2.9) by 1 — ¢ and add the resultant inequalities, we obtain
fax+ A =ny) —1f () = A =0 f()
==tV f)(y —x) —t(1 =) V_f(M(y —x),

which is clearly equivalent to the first part of (2.7).
By the gradient inequality we also have

A=DV_flex+A=Dy)(y —x) = ftx + (1 = 1)y) — f(x)
and
=tV fltx + (A =Dy (y —x) = fx + A =0)y) = f(),
which by the same procedure as above yields the second part of (2.7). O
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The following particular case for norms may be stated.

COROLLARY 2.2. If x and y are two vectors in the normed linear space (X, | - ||)
such that
0¢[x,y]l:={0—-s)x+sy,s ][0, 1]},

then for any p > 1 we have the inequalities

pt(1—=DIYIP 2y — x, )i — X172y — x, x)5]
> tllx|” + (1 =Dyl = lltx + (1 —)yll?

) (2.10)
> pt(1—D)|ltx + (1 —)y||P~
X[y —x,tx+ A —-0)y)s —(y —x, tx+ (1 —1)y)i] =0
foranyt € [0, 1]. If p = 2 the inequality holds for any x and y.
REMARK 2.3. For p =1 in (2.10) we derive the result
t(l—r)[<y—x, i> —<y—x, i”
Iyl /i /g
>tx|+0—¢ —ltx+ (1 —t¢
> 1lx]l + ( Myl —1l ( | @.11)
tx+(1—1t)y tx+ (1 —1)y
>t(l—-|{y—x, ———) —{(y—x, ———
lzx + (L =)yl ltx + (1 —=)yll/;

z 07
while for p =2 we have

201 =)y —x, ¥)i — {y — x, x)s]
> tllx )1 + (1 = 0)llyl* — llzx + (A — )yl (2.12)
>2t(1 = )[{y —x, tx + (1 = 1)y)y — (y — x, tx + (1 — )y);]1 > 0.

We notice that inequality (2.12) holds for any x, y € X, while in inequality (2.11) we
must assume that x, y and tx 4+ (1 — )y are not zero.

REMARK 2.4. If the normed space is smooth, that is, the norm is Gateaux
differentiable at any nonzero point, then the superior and inferior semi-inner products
coincide with the Lumer—Giles semi-inner product [-, -] that generates the norm and
is linear in the first variable (see, for instance, [8]). In this situation inequality (2.10)
becomes
pr(L = ylIP~ly = x, y] = Ix[I”7*[y — x, x])
>tx I + A =D)yl” = lltx + A =)y? =0

and holds for any nonzero x and y. Moreover, if (X, (-, -)) is an inner product space,
then (2.13) becomes

(2.13)

pr(1 =0y —x, [yIIP"2y — |x[”"2x)

(2.14)
>tlx|I” 4+ (L =)lyl? = lltx + (1 =0)y|” = 0.
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From (2.14) we deduce the particular inequalities of interest:

11— t)<y - L> >tlxll+ A =Dyl = lltx + 1 =)y =0 (2.15)

y
X, — —
iyl ]
and
2t(1=0)|ly — x| 2 — 2 —yl?
y=xI"=¢tlxl*+ A =D)lyll” = llzx + (1T = )ylI” = 0. (2.16)

Obviously, inequality (2.16) can be proved directly on utilizing the properties of the
inner products.

PROBLEM 2.5. It is an open question for the author whether or not inequality (2.16)
characterizes the class of inner product spaces within the class of normed spaces.

3. A refinement of Jensen’s inequality

For a convex function f : X — R defined on a linear space X, perhaps one of the
most important result is the well-known Jensen’s inequality

f(Z pm) <Y pif), 3.1)
i=1 i=1

which holds for any n-tuple of vectors x = (x, ..., x,) € X" and any probability
distribution p = (py, . .., pn) € P*. The following refinement of Jensen’s inequality
holds.

THEOREM 3.1. Let f: X — R be a convex function defined on a linear space X.
Then for any n-tuple of vectors X=(x1,...,x,) € X" and any probability
distribution p = (p1, - . ., pn) € P" we have the inequality

Y pifi) - f(Z PiXi) >y PkV+f<Z Pixi>(Xk)
i=1 i=1 =1 i=1

" " (3.2)
- V+f<z Pm) (Z pm) > 0.
i=1 i=1
In particular, for the uniform distribution,
1 < 1 &
- Zl ) = f(; ;xl)
B B (3.3)
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PrOOF. Utilizing the gradient inequality (2.2), we have
n n n
£ — f(Z pz-xi> > v+f<2 pixi> (xk -3 pl-x,-) (3.4)
i=l1 i=1 i=l1

forany k € {1, . . ., n}. By the subadditivity of the functional V4 f(-)(-) in the second
variable, we also have

V+f<z Pixi) (xk -3 pm)
i=1 i=1

Y Y ; (3.5)
> V+f(z Pixi>(xk) - V+f(z Pixi) (Z Pixi)
i=1 i=1 i=1
forany k € {1, ..., n}.
Utilizing inequalities (3.4) and (3.5) gives
n
J ) — f(z Pixz')
i=1
= . . (3.6)
> V+f(z pixi)(xk) - V+f(z Pz‘)ﬁ') (Z Pm)
i=l i=l i=l1
for any k € {1, ..., n}. Now, if we multiply (3.6) by px > 0 and sum over k from 1
to n, then we deduce the first inequality in (3.2). The second inequality is obvious by
the subadditivity property of the functional V4 f(-)(-) in the second variable. O

The following particular case which provides a refinement for the generalized
triangle inequality in normed linear spaces is of interest.

COROLLARY 3.2. Let (X, || - |I) be a normed linear space. Then for any p > 1,
for any n-tuple of vectors X = (x1, ..., x,) € X" and any probability distribution
p=(pi,..., pn) €P" with ) 7_, pix; # 0 we have the inequality

p

n n
> pillwll” =3 pixi
= n l=1p—2 n n n 2
Z DiXi [Z Pk<Xk, Z ijj> - Z DiXi } >0.
i=1 k=1 i=1 s i3

If p > 2 the inequality holds for any n-tuple of vectors and probability distribution.

(3.7
zp

In particular, we have the norm inequalities

n n
> pillxill = | > pixi
i=1 i=1

n n
Zi—l PiXi >
[Z 1> i1 pixill [

k=1

(3.8)

n
3 pix
i=1

J=o
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and
2

n n

2
> pillxil? = | pixi
i=1 i=1

ZZ[Z p<zp> -1 o }zo.
k=1 i=1 s i=1
We notice that the first inequality in (3.9) is equivalent to
n n 2 n n
> pillxl* + ‘Z piXi Z2ZPk<Xk, me> ;
i=1 i=1 k=1 i=1 s
which provides the result
1 n n 2 n n n 2
E[Z pillxill® + | > pixi } =23 pk<xk, > p,-x,-> (z Y pixi ) (3.10)
i=1 i=1 k=1 i=1 s i=1

for any n-tuple of vectors and probability distribution.

REMARK 3.3. If in inequality (3.7) we consider the uniform distribution, then we get

n n
D olxl? =Py x
i=1

i=1

n p—2r n n

Yol [ ) -
k=1 i=1 s

i=1

p

3.11)

n

>

i=1

> pn!~P

2
|=o

4. A reverse of Jensen’s inequality
The following result is of interest as well.

THEOREM 4.1. Let f: X — R be a convex function defined on a linear space X.
Then for any n-tuple of vectors Xx=(x1,...,x,) € X" and any probability
distribution p = (p1, . . ., pn) € P" we have the inequality

PN AAEAEAEDY ka—f(xk)(z pm)
k=1 k=1 i=1

" " 4.1)
>3 pif (i) — f(Z Pixz')-
i=1 i=1
In particular, for the uniform distribution,
1 n n 1 n
—[Z YAVIEAIEAEDY Vf(xk)(— > x,-)}
L= =1 i3 42)

1 & 1<
>~ ;ﬂxn —f(; in)

i=1
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PRrROOF. Utilizing the gradient inequality (2.2), we can state that

V—f(xk)<xk - pm) > f o) — f(Z pm) (4.3)
i=1 i=1

for any k € {1, ..., n}. By the superadditivity of the functional V_ f(-)(:) in the
second variable we also have

V_f () () — V—f(xk)<2 pl-x,-> > v_f<xk><xk = pm) (4.4)
i=1 i=1
for any k € {1, . .., n}. Therefore, by (4.3) and (4.4), we get
Vo f o) () — Vf(xk)<z pm) > f o) — f(Z pm) (4.5)
i=I i=1

for any k € {1, ..., n}. Finally, by multiplying (4.5) by px > 0 and summing over k
from 1 to n, we deduce the desired inequality (4.1). O

REMARK 4.2. If the function f is defined on the Euclidian space R" and is
differentiable and convex, then from (4.1) we get the inequality

> V@), x) — <Z IASIENDY pl-x,->
k=1 k=1 i=1

> pifx) — f(z Pm)
i=1 i=1

(4.6)

where, as usual, for x; = (x,i, e, x,’f),

V£ () = (af(xk) M)

axl 7777 xn

This inequality was first obtained by Dragomir and Goh in 1996; see [11].
In one dimension we get the inequality

D et ) = Y pixi Y prf k) = Y pif(xi) — f(Z pixz), (4.7)
k=1 i= k=1 i=1 i=1

1

discovered in 1994 by Dragomir and Ionescu; see [12].
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The following reverse of the generalized triangle inequality holds.

COROLLARY 4.3. Let (X, || -|I) be a normed linear space. Then for any p > 1,
for any n-tuple of vectors x = (x1, ..., x,) € X"\ {0, ..., 0)} and any probability
distribution p = (p1, . . . , pn) € P" we have the inequality

n n n
p{Z prllxell? =) pk||xk||P2<Z pixi, xk> ]
k=1 k=1 i=1 i

n (4.8)
>3 pillxill” - i
i=1
In particular, we have the norm inequalities
n n n xk n
AT pk<2 pixi, —> > pillxill - Xi (4.9)
k=1 =1 \i=1 Il /i ™ =
forxy #£0, ke {l,...,n}and
n n n n 2
2[2 prllil® =) pk<2 i, xk> } >3 pillxill* — xif . (4.10)
k=1 k=1 j=l1 i i=1
for any x;. We observe that inequality (4.10) is equivalent to
n n 2 n n
> pillxil* + ‘ x| =2 pk<Z PjXj, xk> :
i=1 i=l1 k=1 j=1 i
which provides the interesting result
n n
[Z pillxill* + ‘Z pixi } > Z Pk<z Pixj, xk>
k=1 =1 i
! (4.11)

n n
<Z p/pk xj’xk
k=1 j=1

for any n-tuple of vectors and probability distribution.

REMARK 4.4. If in inequality (4.8) we consider the uniform distribution, then we get

n 1 n B n
p[Z beell? = = >~ llacell” 2<Z Xj. xk> }
k=1 = = i

n n
1—
ZE llx; |V —n' =P
i=1

» 4.12)
D%
For p € [1, 2), all vectors x; should not be zero.

i=1
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5. Bounds for the mean f-deviation

Let X be a real linear space. For a convex function f:X — R with the
property that f(0) >0, we define the mean f-deviation of an n-tuple of vectors
y= (1, .., Yn) € X" with the probability distribution p = (p1, . . ., pp) € P" by the
nonnegative quantity

K@ y)=Kp(p,y) =) p,-f(y,- -y pkyk). (5.1)
k=1

i=1

The fact that K ¢ (p, y) is nonnegative follows by Jensen’s inequality, namely

Kf<p,>>f(2< Zpkyk)) fO)=0.

i=1

Of course the concept can be extended for any function defined on X. However, if the
function is not convex, or if it is convex but f(0) < 0, then we are not sure about the
positivity of the quantity K ¢ (p, y).

A natural example of such deviations can be provided by the convex function
f(y) ;= |lyll” with r > 1 defined on a normed linear space (X, || - ||). We denote this

by
n n r
Ko, y) =Y pi|yi— Y ey (5.2)
i=1 k=1
and call it the mean r-absolute deviation of the n-tuple of vectors y = (y1, ..., yu) €
X" with the probability distribution p = (p1, - . ., pn)-

Utilizing the result from [9], we can state then the following result providing a
nontrivial lower bound for the mean f-deviation.

THEOREM 5.1. Let f: X — [0, 0c0) be a convex function with f(0)=0. If y=
01y .-, )€ X and p=(p1, ..., pn) is a probability distribution with all p;
nonzero, then

Kr(p,y) = pemax {(1 - Pk)f|: <Yk - Z pzyz)]
+ Pkf(yk -y P1y1> } (=0).
=1

The case for mean r-absolute deviation is incorporated in the following corollary.

COROLLARY 5.2. Let (X, || - |I) be a normed linear space. If y = (y1, ..., yp) € X"
and p = (p1, - . -, pn) is a probability distribution with all p; nonzero, then forr > 1
we have

} . (5.4)

= Z piyi

=1

.....
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REMARK 5.3. Since the function h,(t):=(1 —)'""¢" +¢, r>1, t€[0,1), is
strictly increasing on [0, 1), then

(min (1= p)"" ph 4 piy = pm + (1= pa) ™" pl,

.....

.....

) (5.5)

.....

which is perhaps more useful for applications.
We have the following double inequality for the mean f-mean deviation.

THEOREM 5.4. Let f:X — [0, 0c0) be a convex function with f(0)=0. If y=
1y ..o, ) €X" and p= (p1, ..., pn) is a probability distribution with all p;
nonzero, then

Kv_royo®.Y) =Ko, y) = Kv, o), y) > 0. (5.6)

PROOF. If we use inequality (3.2) for x; = y; — > y_; pkyk. we get
n n n n
> Pif<Yi -y Pkyk) - f<z pi <yi -y Pk)’k))
i=1 k=1 i=1 k=1
n n n n
= ij+f<Z pi ()’i - Z pkyk)) <yj -3 pkyk)
j=l1 k=1 k=1

i=1

Sl ErEn e En))

i=1 i=1

which is equivalent to the second part of (5.6).
Now, by utilizing the inequality (4.1) for the same choice of x;, we get

> ij—f(yj =3 pm) (yj -y pk)’k)
= k=1 k=1
-y ijf(yj -y pkyk) <Z pi ()’i -y pkyk>)
k=1 k=1 i=1 k=1
= Pif(yi -y pm) - f(Z pi <yi -3 pkyk>>,
i=1 k=1 i=1 k=1

which in its turn is equivalent with the first inequality in (5.6). O
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We observe that as examples of convex functions defined on the entire normed linear
space (X, || - ||) that are convex and vanish in 0 we can consider the functions

f@)=gdlxl), xeX,

where g : [0, co) — [0, c0) is a monotonic nondecreasing convex function with
£(0) = 0. For functions of this kind we have by direct computation that

Vi fO)W) =g, Olull forany u € X

and
V_f@) @) =g (lul)llull foranyu € X.

We then have the following norm inequalities that are of interest.

COROLLARY 5.5. Let (X, || - ||) be a normed linear space. If g : [0, co) — [0, c0)
is a monotonic nondecreasing convex function with g(0) =0, then for any y =
1y -+, )€ X andp = (p1, - .., pn) a probability distribution,

n n n
> Pig/<H)’i — > P ) H}’i — D Pk
i=1 k=1 k=1
n n n
= pig<’ Yi— Y Pk ) >, (0)) pi
i=1 k=1 i=1

(5.7)

n
Yi— Z Dk Yk
k=1

6. Bounds for f-divergence measures

Given a convex function f : [0, o0) — R, the f-divergence functional

I¢(p, Q) :=Zqif(§), 6.1)
i=1

1
where p= (p1, ..., pn), 9= (q1, - - - , qn) are positive sequences, was introduced by

Csiszar in [1] as a generalized measure of information, a ‘distance function’ on the set
of probability distributions P”. As in [1], we interpret undefined expressions by

. 0
fO) = lim f(), 0f<6) =0,

a . a D
01(5) =t or(G) = 7o

The following results were essentially given by Csiszar and Korner [2].

(i) If f is convex, then I;(p, q) is jointly convex in p and q.
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(i) Foreveryp, q € R,

=1 Pi > 6.2)

Ir(p,q) > 'f(n—
f j;ql Zj:l qj

If f is strictly convex, equality holds in (6.2) if and only if

pi_p2_ _Pn
a @ qn

If f is normalized, that is, f(1) =0, then for every p, q € R’, with >/, p; =
>, gi, we have the inequality

I7(p,q) >0. (6.3)

In particular, if p, q € P, then (6.3) holds. This is the well-known positivity property
of the f-divergence.

We endeavour to extend this concept to functions defined on a cone in a linear space
as follows (see also [10]).

Firstly, we recall that the subset K in a linear space X is a cone if the following
two conditions are satisfied:
(i) foranyx,ye K wehavex +y e K;
(i) for any x € K and any @ > O we have ax € K.

For a given n-tuple of vectors z = (zy, . . ., z,) € K" and a probability distribution
q € P" with all values nonzero, we can define, for the convex function f : K — R, the
following f-divergence of z with the distribution q:

Iz q):=) qif(z—"_). (6.4)
i=1

1

It is obvious that if X =R, K = [0, o0) and x = p € P", then we obtain the usual
concept of the f-divergence associated with a function f : [0, co) — R.

Now, for a given n-tuple of vectors x=(x,..., x;) € K", a probability
distribution q € P" with all values nonzero and for any nonempty subset J of
{1, ..., n}, we have

4/ :=(Qys. Qy) € P?
where Q) =Y., qj, Q) := 07, J:={l,...,n}\ Jand
XJ :=(X],)_(J)GK2
in which, as above,

XJtzzxi and XJiZXj.
ieJ
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It is obvious that

If(XJ»qj)—QJf( )+Q1f< )
0y

The following inequality for the f-divergence of an n-tuple of vectors in a linear
space holds [10].

THEOREM 6.1. Let f: K — R be a convex function on the cone K. Then for any

n-tuple of vectors X = (x1, ..., x,) € K", a probability distribution q € P" with all
values nonzero and for any nonempty subset J of {1, . .., n} we have
I¢(x,q) > max I+(xy, > Tr(xy,
F(x,q) g X Xy, qu) = 1r(xy,qy) .
> min Ir(xy, > (X ’
L r(xy,qy) = f(X,)
where X, :=Y '_| Xi.
We observe that, for a given n-tuple of vectors x = (xq, ..., x,) € K", a sufficient

condition for the positivity of /(x, q) for any probability distribution q € IP" with all
values nonzero is that f(X,) > 0. In the scalar case and if x = p € P, then a sufficient
condition for the positivity of the f-divergence I(p, q) is that f(1) > 0.

The case of functions of a real variable that is of interest for applications is
incorporated in [10].

COROLLARY 6.2. Let f : [0, o0) — R be a normalized convex function. Then for any
p. q € P" we have

—P
Ir(p.q) =  max |:Qlf< )+(1—Q1)f( J)] (=0).  (6.6)

0#J C{1,....n) - Qy
In what follows, by using the results in Theorems 3.1 and 4.1, we can provide an

upper and a lower bound for the positive difference 1¢(x, q) — f(Xp).

THEOREM 6.3. Let f : K — R be a convex function on the cone K. Then for any
n-tuple of vectors x = (x1, ..., x,) € K" and a probability distribution q € P" with
all values nonzero,
Iv_roo& @ — Iv_rox) X @ = 1 (X, q) — f(Xp)
z IV+f(X,1)(.)(X, q) - v-‘rf(Xn)(Xl’l) > 0.

The case of functions of a real variable that is useful for applications is as follows.

(6.7)

COROLLARY 6.4. Let f : [0, c0) — R be a normalized convex function. Then for any
P, q € P"* we have

I oo® @ —1p . @ =1f(p, q =0, (6.83)

or, equivalently,
L or=11Ps @ = 15 (p, @) > 0. (6.9)
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The above corollary is useful for providing an upper bound in terms of the
variational distance for the f-divergence I¢(p, q) of normalized convex functions
whose derivatives are bounded above and below.

PROPOSITION 6.5. Let f :[0, 00) >R be a normalized convex function and
P. q € P". If there exist constants y and I with

—oo<y§fl(%>§l“<oo forallke(l, ..., n),

then we have the inequality

0<1I;(p,q <4T =)V, q, (6.10)
where

Vp. 9 =) g

i=1

f—l‘ lel—ql.

PROOF. By inequality (6.9) we have successively that

0<1Ir(p. @ =1y 0)-nP: D
" : N\ T
)]
i qi qi 2
i r
< Zqz'——leL@) -
qi 2

n

p

< E(F—)’) > " qi|—
i=1

i

which proves the desired result (6.10). O

COROLLARY 6.6. Let f:[0,00) - R be a normalized convex function and
P, q € P". If there exist constants r and R with

0<r<PX<R<coo forallkefl,... n),
qk
then we have the inequality
0<Ip(p. @ <3[f.(R) — fLMIV(p. . (6.11)

The Karl Pearson x2-divergence is obtained for the convex function f(r)=
(1 —1)%,t € R, and given by

2 n N2
x*(p, q)—qu(—— ) =ZM.

qj j=1 dj
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Finally, the following proposition giving another upper bound in terms of the
x2-divergence can be stated.

PROPOSITION 6.7. Let f : [0, 0c0) = R be a normalized convex function and p, q €
P, If there exists a constant 0 < A < 0o with

FLE) = f1.(1)
R T E— <A forallke{l,..., n}, (6.12)
B
then we have the inequality
0<1Ir(p,q) <Ax%(p,q). (6.13)

In particular, if f! () satisfies the local Lipschitz condition
|fL00) = fFLDI < Alx = 1] for any x € (0, 00) (6.14)

then (6.13) holds true for any p, q € P".

PROOF. We have from (6.9) that

0=<1I¢p, @ =1y -1 D
n

= m(ﬁ - 1) [fl <ﬁ> - fl(l)}
i1 qi qi

" b 2| fLE = fL(D
= i\ -~ b1
i=1 qi (1_1 -
n . 2
=A) gi (& - 1)
i=1 qi
and inequality (6.13) is obtained. O

REMARK 6.8. It is obvious that if one chooses, in the above inequalities, particular
normalized convex functions that generate the Kullback—Leibler, Jeffreys, Hellinger
or other divergence measures or discrepancies, then one can obtain some results of
interest. However, the details are not provided here.
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