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Some arithmetical identities for
Ramanvujan’s and divisor functions

D. B. Lahiri

A new linear expression in o(v) , v =1,2,...,n , which vanishes
identically is established. A linear expression in 0d(v)'s has
been found for o3(n) . A similar expression in O3(v)'s has been
proved for oy(n) also. Ramanujan's 1(n) = pyy(n-1) 1is given

in three different ways as linear expressions in O (n) and

2k+1
ok(v)'s with k=1, 3 , 5 respectively. Again, the
coefficient pug(n-2) 1is expressed as a linear expression in
011(v)'s and 0s5(v/'s . In establishing these results advantage
is taken of the general theorem, also established, that the
coefficients of the square of a power series whose coefficients
satisfy a certain functional equation are expressible as linear

functions of the latter coefficients.

1. Introduction and final results

There is a beautiful classical identity [7, p. 212] involving the
arithmetical function o(n) , the sum of the divisors of »n . This may be

stated as
(1) L tonv) =0
v
where the summation is over the pentagonal numbers
=4 = + + +
v--z-m(3m+1),m—O,_l,_Q,_3,......,

with the understanding that the sign to be prefixed to the term o(n-v) is

Received 21 April 1969. Received by J. Austral. Math. Soc. 12 February
1969. Communicated by E.S. Barnes.
307

https://doi.org/10.1017/50004972700042179 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700042179

308 D.B. Lahiri

positive or negative according as
v = (2m+l)(3m+l) or v = m(6m+l)

respectively, and further o(0) =n and o(m) =0 if m< 0 . An
interesting problem is to find other identities in which, as is in the
relation (1) above, the only arithmetical function involved is o(:) with
arguments which are all functions of the integral variable n . An answer

is provided by the following theorem which will be established later on.
2_n2
THEOREM 1. (n-l)a(n) - 6én % [—;—2' (d2-5r2)o[i,§-]} =0.
din r

The arguments in the above theorem unlike those in (1) involve squares
instead of pentagonal numbers. Also unlike that in (1), o(0) =0 . 1In
fact we shall adopt the convention throughout the paper, - with the single
exception stated for (1), - that all terms involving negative, zero or
fractional arguments which might appear in a function which is defined

strictly for positive integral values only are really vanishing. The sum

% extends over the divisors of »n . We shall use Z to denote a sum
din r

extended over all positive integers r»r , and Z' F(r) would be used to mean
r

1
5 F(0) + g F(r)

Another problem which the author has considered is to express Gk(n) N

the elementary divisor function of degree k , in terms of divisor functions
of lower degree. The answers for k =3 and 7T are shown in the following
theorems. For the sake of uniformity we have used Z' in Theorem 2 even

r

though 2 could have been used as well.
r

2_a2
THEOREM 2. o3(n) (2n-1)o(n) + 2in E%—Z' rzokifﬁlﬁ] 5
dln 3p

2_,2
a3(n) + 2hon3 d% [dl—a 1l oa[d—r'r H
n r

In connection with Theorems 2 and 3 it is relevant to point out that

THEQREM 3. o7(n)

the author has in an earlier paper [6] given expressions for
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ok(n) ,k=1,3,5,T7T,9 in terms of an arithmetical function of a

different category, namely, the unrestricted partition function p(n) . As

illustrations we give below the cases corresponding to k=3 and T .

)

v

:

+

[18n-d, (v)].vp(n-v) ,

(2) 5 0'3(71)

I+

(3) 5 g4(n) [1512n3-504d; (v} .n2+42d, (v) .n-d3(v) ] .vp(n-v) ,

where the polynomials di(v) s, =1,2 ,3 are as follows:
dy(v) =1+ 120 ,
da(w) =1 + 2k + 19202 ,
ds(v) = 1 + 36v + 5T6v2 + 345603

The mevnod followed in establishing the above theorems leads us

naturally to expressions for Ramanujan's 1(n) in terms of Gk(n)'s where
T(n) , as is well known, is defined by
x [;] I (l—:cn)] = ] tn)d"
=1 n=1
These expressions are given below.

THEOREM 4. For all positive integral values of n

T(n)

]

2_p2
%ngcs(n) - %{6715—571")0(71) - 105n°. [d 7' rto d "1" ]] ,

2 2 _p2
- %nzcy(n) +gnosm) + 27cm5.d§ L Z »2g {d =i ]] ,
n

2 _p2
011(7’1) + %0’5(71) 1382 d% [i z' 0'5 d hr ]]
n r

Incidentally a pair of expressions of a different type are given for

T(n) 1in the paper [6]. There not only ok(n)‘s are involved as in Theorem
L but also p(n)

Another function to which the method is applicable is pyg(n) . The
functions pk(n) defined for different values of k by
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® k 3
(1) [TT (l—mn)] = ] p(ws”
1 0

have received considerable attention. Explicit expressions for the values

of pk(n) for the cases k =1 and 3 are given respectively by the

famous identities of Euler and Jacobi. It is of interest to find explicit
values of k . We have already referred to such expressions for k = 2L ,
- we recall pyy(n-1) = T(n) . We shall now give for pyg(n) a finite
series involving the divisor functions only as in the previous theorems, in

addition to one involving Ramanujan's function.

2_p2
THEOREM 5. pyg(n-2) = 2n'} . 1 T[——d = H
dln 11 p

= 2n11d% [ﬁ‘ll Y’ {65011(3) + 69105(B) - 34826LRS. % £ P 05(6)}J
n tiB

r r

where

B = $(d?-r2)

2. Some lemmas

k+20

LEMMA 1. D(pn) = D(p).D(n) - p .D(n/p) where p 1is any prime and

D(n) = n® Ok(n) , a,k>0.

The above lemma can be proved from the following identities which can

be established successively without any difficulty.

x+1]

A k A-1
ck[p Gk(p).Ok[p ] -p .ok[p ] s A 20,

. k
O (pn) = ck(p).ck(n) -p .ok(n/p) s
[¢ 3
p® oy (p).n% oy (n) - pkrae, (%} ck[g-}
2
LEMMA 2. 12|} o(n)x
1

2
125 nG(n):cn]
1.

pod 2
120[2 03(n)xn:l =§ loyn) = o3(m) 1" .
1

(pn)cl O (pn)

8§ tr~g8 HI8

[505(n) - (6n-1)a(n)la" ,

(n203(n) - ndom)lz™ »
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The above identities are already known; they are respectively
wmere restatements of the identities (3.1), (3.3) and (7.1) of Table B{1)

given by the author in [4] where we have written

nros_r(n):cn = (r,s)

He~18

for the sake of simplicity.

2
LEMMA 3, suo[i an(n)x"] [15n%03 (n)-1knSa(n)-Tt(n) )™ ,
1

1]
e~ 8

® 2
510 [2 n03(n)xn] (27 (m)=t(m) 1" ,
1

[}
e~ 8

(650, 1 (n)+69105(n)~T56T(n) 1™ .

2
171;132[3 o 5(71):1:"]

1

"
He~18

The above identities are also known; they are respectively mere
restatements of the identities (3.2), (7.1) and (11.1) of Table B(2) given

in [5] where we have written

-3

¥ 1™ = {0} .
1
3. The basic theorem

All the theorems stated in the introductory section require for their

proof the following basic theorem.

THEOREM 0. If WN(n) <s a function of the integral variable n > 0
such that for any prime p

N(pn) = N(p)N(n) ~ Mp)N(n/p)
where MA(x) 1is completely multiplicative, that is,
Xuv) = AMu)i(v) , Mu) $0,

u and v being any arbitrary pair of positive rumbers, then

e I N[dz‘”zq =2 wm)
ot ke PN | Il vey

where
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2 o0
[E N(n)xn] = ) M(n)a" .
1 1

The validity of the above theorem can be seen from the following
observations. Formulas have been given by Hurwitz [3] for the number of
ways a square can be expressed as the sum of 3 and 5 squares. While
extending the results to 7 squares [§] and to 9 , 11 and 13 squares
[9]1, Sandham pointed out that Hurwitz's arguments applies to more general
numbers, and he gave in [9] a theorem in three parts. The part (or rather

an important particular case of it) which is relevant for our purpose is

2
that the coefficient of qm in the product

2 2 .2
(1+2q) +2g2 +2¢3 +..... ) [N(L)gq +n(2)q8+N(3)q'2+.. ... ]

is equal to

y M[%]A(r)u(r) ,
r

where WU(n) is the MGbius function, and N(n) and M(n) are the same as

those stated in Theorem 0. We can restate this fact as
(5) 2 J' N m_r_z_l,.z = 7 MZ|\(r)u(r)
= ™ ]J
r r
Now remembering the multiplicative property of A(x) we have
A(r).k{%] = A(m)

In virtue of the above relation and the fact that A(u) % 0 we obtain from
(5) the following

O s o - el - e

Theorem O is now easily established from (6) by the use of the Mobius

inversion formulsa [Z].

4, Proof of the theorems

Remembering Lemmas 1 and 2 and writing successively o(n) , no(n) and
o3(n) in place of N(n) , and n , n3 and n3 for A(n) in the basic

theorem we can show that
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2_p2Y]

(7 % {s03(n) - (6n-1)o(n)] = d% 1% N U[d ;r ] i
n r =

(8) Enl' log(n) - no(n)] = E;l' I (dz_rz)c{ﬁi_l"i‘:l ’
dln W3 r ’
2_p2
(9) loy(n) ~ o3(n)] [d "o d . }
2h0n3 -

Theorem 1 follows easily from (7) and (8) by the elimination of 03(n)
between them. Theorem 2 is equally simple, - we subtract (8) from (7).

Theorem 3 is an obvious consequence of the relation (9).

Again remembering Lemmas 1 and 3 and writing successively n2c(n) ,
no3(n) end ds(n) in place of N(n) , and n® for A(n) in the basic

theorem one can obtain without difficulty the following.

1 2 1 Ics d2-r?
(10) .O3(n) ~ —=.0(n) - T(m) = E;— ) (dz-rz)ZG{————J] ,

™ 15 105n° d%n 5p b

2_p2
(11) L —o,m) - —E—1(n) = EZ' (dz—r2)03[d ;” H ,
270n3 270n5 dln W5 »
2_p2

(12) 65011(n) + 69105(n) - T56T(n) = 348264n>. [d I'o d -P H

The first part of Theorem 4 is obtained easily by subtracting twice
the relation (8) from the sum of the relations {7) and (10). The second
part is obtained by subtracting (11) from (9). The last part is a direct

consequence of (12).
To prove Theorem 5 we note that in virtue of the relation [1]

tp*n) = tp)tp* n) - pllep* P

one is justified in substituting T(n) = pyy(n-1) for N(n) , and 11 for
& in Theorem 0. The first part of Theorem 5 is an immediate conseguence

when one notes that

2 i Y- I
E 'r(n)xn] = xzﬁ_[- (l-:cn)] = ¥ pyg(n-2)a”
1 1 2

The second part of the theorem follows easily on a joint consideration of

the first part of Theorem 5 and the last part of Theorem k.
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