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Abstract

In this paper, we study ruin in a perturbed compound Poisson risk process under stochastic
interest force and constant interest force. By using the technique of stochastic control, we
show that the ruin probability in the perturbed risk model is always twice continuously
differentiable provided that claim sizes have continuous density functions. In the
perturbed risk model, ruin may be caused by a claim or by oscillation. We decompose
the ruin probability into the sum of two ruin probabilities; one is the probability that ruin
is caused by a claim and the other is the probability that ruin is caused by oscillation.
Integrodifferential equations for these ruin probabilities are derived when the interest
force is constant. When the claim sizes are exponentially distributed, explicit solutions
of the ruin probabilities are derived from the integrodifferential equations. Numerical
examples are given to illustrate the effects of diffusion volatility and interest force on the
ruin probabilities.
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1. Introduction

Let

Ut = ct −
N(t)∑
k=1

Yk + σWt = ct − St + σWt , t ≥ 0, (1.1)

be a compound Poisson risk process perturbed by a diffusion or a jump diffusion process, where
c > 0 is the rate of premium; {Yk, k = 1, 2, . . .} is a sequence of independent and identically
distributed nonnegative random variables, denoting claim sizes; {N(t), t ≥ 0} is a Poisson
process with rate λ > 0, representing the number of claims up to time t ; {Wt, t ≥ 0} is a
standard Brownian motion; σ > 0 is a constant, representing the diffusion volatility parameter;
and St = ∑N(t)

k=1 Yk is the compound Poisson process. In addition, {Yk, k = 1, 2, . . .},
{N(t), t ≥ 0}, and {Wt, t ≥ 0} are independent. As pointed out in Dufresne and Gerber
(1991), the perturbed compound Poisson risk process adds an uncertainty to premium income
or an additional uncertainty to aggregate claims.
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Assume that the surplusUt is invested continuously at a constant interest force δ > 0 and let
Xt denote the surplus at time t under the constant interest force δ with an initial surplus u ≥ 0;
thus,

Xt = eδt
(
u+

∫ t

0
e−δs dUs

)
, t ≥ 0, X0 = u. (1.2)

More generally, if the surplus Ut is invested continuously at a stochastic interest force and
the deterministic function δt in (1.2) is another jump diffusion process δt with

δt = δt + σRWR,t +
NR(t)∑
i=1

ln(1 +Xi) = δt + σRWR,t + SR,t

or, equivalently, the deterministic function eδt in (1.2) is replaced by a stochastic process eδt

given by

eδt = eδt+σRWR,t

NR(t)∏
i=1

(1 +Xi),

then the surplus at time t under the stochastic interest force δt with an initial surplus u ≥ 0 is
given by

Xt = eδt
(
u+

∫ t

0
e−δs dUs

)
, t ≥ 0, X0 = u. (1.3)

Here σR is a constant; {WR,t , t ≥ 0} is a standard Brownian motion; {NR(t), t ≥ 0} is a Poisson
process with rate λR ≥ 0, {Xi, i = 1, 2, . . .} is a sequence of independent and identically
distributed random variables such that 1 + Xi > 0 for all i = 1, 2, . . . ; {WR,t , t ≥ 0},
{NR(t), t ≥ 0}, and {Xi, i = 1, 2, . . .} are independent; and SR,t = ∑NR(t)

i=1 ln(1 +Xi) is a
compound Poisson process. Furthermore, the process {δt , t ≥ 0} is assumed to be independent
of the process {Ut, t ≥ 0} and, by convention,

∑0
i=1 = 0 and

∏0
i=1 = 1.

The risk process (1.3) has been studied by Paulsen and Gjessing (1997) and expressed in the
form of their Equation (2.4). The risk process (1.2) is a special case of the risk process (1.3)
when σR = 0 and λR = 0.

Denote the ruin time of the risk process (1.3) by T , i.e. T = inf{t : Xt < 0} or T = ∞ if
Xt ≥ 0 for all t ≥ 0. Define the ruin probability with an initial surplus u ≥ 0 by

ψ(u) = Pr{T < ∞ | X0 = u} = Pr{Xt < 0 for some t ≥ 0 | X0 = u}.

In this perturbed risk model, ruin may occur in two different situations. In one situation,
ruin is caused by a claim and, in the other, ruin is caused by oscillation. We let

Ts =
{

inf{t : Xt < 0, Xh > 0, 0 < h < t},
∞ if Xt ≥ 0 for all t ≥ 0,

i.e. Ts is the time at which ruin is caused by a claim. Furthermore, we let

Td =
{

inf{t : Xt = 0, Xh > 0, 0 < h < t},
∞ if Xt ≥ 0 for all t ≥ 0,

https://doi.org/10.1239/aap/1127483749 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1127483749


The perturbed compound Poisson risk process 821

i.e. Td is the time at which ruin is caused by oscillation. Then T = min{Ts, Td}.Moreover, we
denote the ruin probabilities in the two situations by

ψs(u) = Pr{Ts < ∞ | X0 = u}
and

ψd(u) = Pr{Td < ∞ | X0 = u},
respectively.

It is obvious that the ruin probability ψ(u) can be decomposed as follows:

ψ(u) = ψs(u)+ ψd(u), u ≥ 0. (1.4)

In addition, it follows from the oscillating nature of the sample paths of Xt that

ψd(0) = ψ(0) = 1 and ψs(0) = 0. (1.5)

See Dufresne and Gerber (1991) for a detailed discussion of (1.4) and (1.5) in the perturbed
compound Poisson risk process (1.1).

Given that ruin has occurred, the probability that it is due to a claim is given by
Pr{Ts < ∞ | T < ∞} = ψs(u)/ψ(u) and the probability that it is due to oscillation is
given by Pr{Td < ∞ | T < ∞} = ψd(u)/ψ(u).

Ruin in the perturbed compound Poisson process has been studied extensively in the liter-
ature; see, for example, Dufresne and Gerber (1991), Gerber and Landry (1998), Paulsen and
Gjessing (1997), Yang and Zhang (2001), and references therein. Recently, ruin under interest
force has attracted increasing attention in the risk theory literature. For instance, ruin in the
compound Poisson risk process under constant interest force has been studied in Asmussen
(2000), Cai and Dickson (2002), Paulsen and Gjessing (1997), Sundt and Teugels (1995), and
references therein.

In the study of ruin probability, a commonly used method is to first derive integrodifferential
or differential equations satisfied by the ruin probability and then to discuss the properties
and solutions of the ruin probability based on the equations. For example, let φ(u) be the
ruin probability in the perturbed compound Poisson process without interest force or in the
risk process (1.1), i.e. φ(u) = Pr{u + Ut < 0 for some t ≥ 0}. Using a heuristic argument,
Dufresne and Gerber (1991) derived an integrodifferential equation (their Equation (2.1)) for
φ(u) under the assumption that φ(u) is twice continuously differentiable. The same argument
and assumption were used in Gerber and Landry (1998), and references therein, in another
study of ruin in the risk process (1.1). However, these references did not explain under what
conditions φ(u) is twice continuously differentiable.

For the ruin probability ψ(u) in the general risk process (1.3), Paulsen and Gjessing (1997)
derived, in their Theorem 2.1, the integrodifferential equation for ψ(u) by using Itô’s formula
under the assumption that ψ(u) is twice continuously differentiable with a bounded first
derivative. Again, Paulsen and Gjessing (1997) did not discuss under what conditions ψ(u) is
twice continuously differentiable.

Theoretically, it is necessary to discuss the differentiability of the ruin probability when
one derives integrodifferential or differential equations for it. Such a discussion for the ruin
probability in the compound Poisson risk process can be found in Grandell (1991), who used
renewal and differential arguments. Furthermore, Wang and Wu (2001) and Cai (2004) have
studied the differentiability of the ruin probability ψ(u) in the risk process (1.3) when λR = 0.
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They first used a renewal argument to derive the integral equations for ψ(u), and then gave
the conditions under which ψ(u) is twice, or more times, continuously differentiable. Their
conditions involve the differentiability of the density function of the claim size Y1 and relation-
ships between the parameters λ, δ, and σ . Unfortunately, neither the methods of Wang and Wu
(2001) and Cai (2004) nor those of Grandell (1991) apply to the differentiability of the ruin
probability in (1.3) in general cases.

In this paper, we first use the technique of stochastic control and the result of Hipp and
Plum (2003) to prove that the ruin probability ψ(u) in the risk process (1.3) is always twice
continuously differentiable, provided that the claim size Y1 has a continuous density function,
and to give the integrodifferential equation for ψ(u). We then discuss ruin probabilities in
the perturbed compound Poisson risk process with constant interest force in detail. In this
case, we derive integrodifferential equations for the ruin probability ψ(u) using the Hamilton–
Jacobi–Bellman (HJB) equation and the ruin probabilities ψs(u) and ψd(u) using a differential
argument and the Itô formula. When claim sizes are exponentially distributed, explicit solutions
of these ruin probabilities are given. Numerical examples are given to illustrate these results
and the effects of diffusion volatility and interest force on the ruin probabilities.

2. The HJB equation and differentiability of the ruin probability

In this section, using stochastic control techniques and the result of Hipp and Plum (2003),
we prove that the ruin probability ψ(u) in the risk process (1.3) is always twice continuously
differentiable provided that the claim sizes have a continuous density function.

We first describe the ideas of the proof. It is well known in stochastic control theory that, in
many cases, a value function is not smooth enough to satisfy the HJB equation in the classical
or usual sense. A weak formulation of the solution to the HJB equation has been used in the
literature. A commonly used weak formulation is called the viscosity solution, proposed by
Crandall and Lions (1983). For more detailed discussions of viscosity solutions, see Crandall
et al. (1992) and Fleming and Soner (1993). Here, by following the paper of Hipp and Plum
(2003), we first show that the survival probability in the risk process (1.3) satisfies the HJB
equation in a weak formulation sense. It is well known that, as in Hipp and Plum (2003), the
HJB equation has a unique solution. Thus, the solution must be the survival probability in
our problem. We then use the result in Hipp and Plum (2003), which states that the solution
to the corresponding HJB equation is twice continuously differentiable. Therefore, the ruin
probability, as a function of the initial surplus, is twice continuously differentiable.

We then give the detailed arguments of the proof. In doing so, we describe the risk model
(1.3) in terms of stochastic differential equations, as follows. The dynamics of the surplus
process Xt in (1.3) can be expressed as

dXt = (c + δtXt ) dt + σ dWt − dSt , X0 = u,

dδt = δ dt + σR dWR,t + dSR,t , δ0 = δ0.
(2.1)

Instead of considering the original problem, we first consider the following problem. We
assume that an insurance company pays dividends continuously at a rate of α(Xα(t)) at time t .
Suppose that the dynamics of the surplus process Xα(t) is given by

dXα(t) = (c + δtXα(t)− α(Xα(t))) dt + σ dWt − dSt , Xα(0) = u,

dδt = δ dt + σR dWR,t + dSR,t , δ0 = δ0.
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Assume that Y1 andX1 have finite expectations and continuous distributions. We know that
the surplus process Xα(t) has the same distribution as X̂α(t), where the surplus process X̂α(t)
is given by

dX̂α(t) = (c + δt X̂α(t)− α(X̂α(t))) dt +
√
σ 2 + σ 2

RX̂
2
α(t) dBt − dSt + X̂α(t

−) dSR,t ,

X̂α(0) = u; (2.2)

cf. Equation (2.5) of Paulsen and Gjessing (1997). Here {Bt , t ≥ 0} is a standard Brownian
motion independent of the compound Poisson processes {St , t ≥ 0} and {SR,t , t ≥ 0}.

As before, we define the ruin probability associated with the risk process (2.2) as

ψα(u) = Pr{X̂α(t) < 0 for some t ≥ 0 | X̂α(0) = u}.
The objective of the insurance company is to minimize the ruin probability ψα(u) by choosing
the optimal dividend strategy. This is a stochastic control problem. Let Rα(u) = 1 − ψα(u)

be the survival probability corresponding to dividend policy α. Then, by the dynamic program-
ming principle, the value function Rα(u) satisfies the following HJB equation, where a prime
denotes differentiation:

sup
α

{λE[Rα(u− Y1)− Rα(u)] + λR E[Rα(u(1 +X1))− Rα(u)]
+ (c + δu− α(u))R′

α(u)+ 1
2 (σ

2 + u2σ 2
R)R

′′
α(u)} = 0. (2.3)

It is obvious that the optimal dividend policy is for the insurance company to pay no dividends,
or to set α = 0. By the verification theorem, the HJB equation (2.3) becomes

λE[R0(u− Y1)− R0(u)] + λR E[R0(u(1 +X1))− R0(u)]
+ (c + δu)R′

0(u)+ 1
2 (σ

2 + u2σ 2
R)R

′′
0 (u) = 0. (2.4)

As mentioned earlier, it is well known that (2.4) has a unique continuous solution. Furthermore,
R0(u) is the survival probability of the surplus process X̂0(t) = X̂(t) given by

dX̂(t) = (c + δt X̂(t)) dt +
√
σ 2 + σ 2

RX̂
2(t) dBt − dSt + X̂(t−) dSR,t ,

X̂(0) = u.

Again, X̂(t) and Xt in (2.1) have the same distribution and, therefore, R0(u) and ψ0(u) are
respectively the survival and ruin probabilities for model (2.1). Hence, R0(u) = R(u) and
ψ0(u) = ψ(u).

We have the following result, similar to Theorem 5 of Hipp and Plum (2003), showing that
R(u) = 1 − ψ(u) is twice continuously differentiable.

Theorem 2.1. Assume that the claim size Y1 has a continuous density f (y). Then (2.4) has a
unique solution R(u) that is nonnegative, nondecreasing, concave with R(∞) = 1, continuous
on [0,∞), and twice continuously differentiable on (0,∞).

Proof. Equation (2.4) has a form similar to Equation (10) of Hipp and Plum (2003), and
the proof of Theorem 5 of Hipp and Plum (2003) applies to it. We thus omit the proof of
Theorem 2.1, and refer the reader to Hipp and Plum (2003) for details.
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Remark 2.1. Paulsen and Gjessing (1997) assumed that ψ(u) is twice continuously differen-
tiable in order to use Itô’s formula to obtain the integrodifferential equation satisfied by ψ(u).
Here, using the result of Hipp and Plum (2003), we prove thatψ(u) is always twice continuously
differentiable provided that the claim sizes have continuous density functions. This result also
greatly relaxes the conditions of Wang and Wu (2001) and Cai (2004) on differentiability of the
ruin probability ψ(u).

3. Integrodifferential equations for ruin probabilities

In this section, we study the risk processXt given in (1.2) and consider ruin in the perturbed
compound Poisson risk process under constant interest force. We first give the integro-
differential equation forψ(u) using the HJB equation (2.4) directly and then, using a differential
argument and Itô’s formula, we derive integrodifferential equations for ψs(u) and ψd(u). The
differential argument is a common method used in ruin theory; see Grandell (1991) for the
method used in the compound Poisson risk process and Dufresne and Gerber (1991) for the
method used in the perturbed compound Poisson risk process.

Throughout the paper, we denote the distribution function of Y1 by F , with F(0) = 0, and
the tail of a distribution function B by B(x) = 1 − B(x).

Theorem 3.1. (Integrodifferential equation forψ(u).) Assume thatF has a continuous density
function. Then, for any u > 0, ψ(u) satisfies the integrodifferential equation

1
2σ

2ψ ′′(u)+ (δu+ c)ψ ′(u)+ λF(u) = λψ(u)− λ

∫ u

0
ψ(u− y) dF(y) (3.1)

with the following boundary conditions:

ψ(∞) = 0, ψ(0) = 1, 1
2σ

2ψ ′′(0+)+ cψ ′(0+) = 0. (3.2)

Proof. Let λR = 0 and σR = 0 and note that R0(u) = 1 − ψ0(u) = 1 − ψ(u) in the HJB
equation (2.4). We then have

λψ(u)− λE[ψ(u− Y1)] = (c + δu)ψ ′(u)+ 1
2σ

2ψ ′′(u). (3.3)

Furthermore,

E[ψ(u− Y1)] =
∫ ∞

0
ψ(u− y) dF(y)

=
∫ u

0
ψ(u− y) dF(y)+

∫ ∞

u

ψ(u− y) dF(y)

=
∫ u

0
ψ(u− y) dF(y)+ F(u),

which, together with (3.3), implies (3.1).
In addition, the boundary condition ψ(∞) = 0 follows from ψ(u) ≤ φ(u) and φ(∞) = 0,

the boundary condition ψ(0) = 1 follows from (1.5), and the last boundary condition follows
from letting u ↓ 0 in (3.1).

We point out that (3.1) can also be derived using Theorem 2.1 of Paulsen and Gjessing
(1997). However, their theorem holds under the assumption that ψ(u) is twice continuously
differentiable and has a bounded first derivative.
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Furthermore, we point out that the arguments in Section 2 for the differentiability ofψ(u) do
not apply to ψs(u) and ψd(u) and, hence, that HJB equations similar to (2.4) are not available
for ψs(u) and ψd(u). The reason is that, to use the stochastic control method, we must have a
system of stochastic differential equations for ψ(u): the corresponding systems of stochastic
differential equations for ψs(u) and ψd(u) are unknown. In other words, we cannot separate
the system of stochastic differential equations for ψ(u) into two parts.

However, using a differential argument and Itô’s formula, we can derive integrodifferential
equations for ψs(u) and ψd(u) under the assumption that both ψs(u) and ψd(u) are twice
continuously differentiable. We conjecture that ψs(u) and ψd(u) are twice continuously
differentiable provided that F has a continuous density function, as we did for ψ(u).

Theorem 3.2. (Integrodifferential equation for ψs(u).) Assume that ψs(u) is twice continu-
ously differentiable. Then, for any u > 0, ψs(u) satisfies the integrodifferential equation

1
2σ

2ψ ′′
s (u)+ (δu+ c)ψ ′

s(u)+ λF(u) = λψs(u)− λ

∫ u

0
ψs(u− y) dF(y) (3.4)

with the following boundary conditions:

ψs(∞) = 0, ψs(0) = 0, 1
2σ

2ψ ′′
s (0

+)+ cψ ′
s(0

+) = −λ. (3.5)

Proof. Let

h(t) = ueδt + c

∫ t

0
eδs ds + σ

∫ t

0
eδs dWs − u. (3.6)

Consider the risk process Xt , defined by (1.2), in an infinitesimal time interval (0, t]. Since
N(t) is a Poisson process, there are three possible cases.

(i) There are no claims in (0, t] and, thus,

Xt = ueδt + c

∫ t

0
eδs ds + σ

∫ t

0
eδs dWs = u+ h(t).

(ii) There is exactly one claim in (0, t], with claim amount y, and

(a) y < u+ h(t), i.e. ruin does not occur and, thus,

Xt = ueδt + c

∫ t

0
eδs ds + σ

∫ t

0
eδs dWs − y = u+ h(t)− y;

(b) y > u+ h(t), i.e. ruin occurs due to the claim; or

(c) y = u+h(t), i.e. ruin occurs due to oscillation (the probability that this case occurs
is 0).

(iii) There is more than one claim in (0, t].
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Thus, considering cases (i), (ii), and (iii) and noticing that, in case (ii)(b), ψs(u+h(t)−y) = 1
if y > u+ h(t), we have

ψs(u) = (1 − λt)E[ψs(u+ h(t))] + λt E

[∫ u+h(t)

0
ψs(u+ h(t)− y) dF(y)

]

+ λt E

[∫ ∞

u+h(t)
ψs(u+ h(t)− y) dF(y)

]
+ o(t)

= (1 − λt)E[ψs(u+ h(t))] + λt E

[∫ u+h(t)

0
ψs(u+ h(t)− y) dF(y)

]
+ λt E[F(u+ h(t))] + o(t)

or, equivalently,

λt E[ψs(u+ h(t))] = E[ψs(u+ h(t))] − ψs(u)+ λt E

[∫ u+h(t)

0
ψs(u+ h(t)− y) dF(y)

]
+ λt E[F(u+ h(t))] + o(t). (3.7)

If we let Y (t) = u+ h(y) then (3.6) implies that

dY (t) = (uδ + c)eδt dt + σeδt dWt, Y (0) = u.

By Itô’s formula, we have

dψs(u+ h(t)) = dψs(Y (t))

= ((uδ + c)eδtψ ′
s(Y (t))+ 1

2σ
2e2δtψ ′′

s (Y (t))) dt + σeδtψ ′
s(Y (t)) dWt

or, equivalently,

ψs(u+ h(t)) = ψs(Y (t))

= ψs(u)+
∫ t

0
((uδ + c)eδxψ ′

s(Y (x))+ 1
2σ

2e2δxψ ′′
s (Y (x))) dx

+
∫ t

0
σeδxψ ′

s(Y (x)) dWx,

which implies that

E[ψs(u+ h(t))]
= ψs(u)+

∫ t

0
((uδ + c)eδx E[ψ ′

s(Y (x))] + 1
2σ

2e2δx E[ψ ′′
s (Y (x))]) dx. (3.8)

Therefore, by dividing by t on both sides of (3.7), letting t → 0, and using (3.8), we obtain

λψs(u) = (δu+ c)ψ ′
s(u)+ 1

2σ
2ψ ′′

s (u)+ λ

∫ u

0
ψs(u− y) dF(y)+ λF(u),

which implies (3.4).
In addition, the boundary conditionψs(∞) = 0 follows fromψs(u) ≤ ψ(u) andψ(∞) = 0,

the boundary condition ψs(0) = 0 follows from (1.5), and the last boundary condition follows
from letting u ↓ 0 in (3.4).
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We note that ψ(u) and ψs(u) satisfy the same second-order integrodifferential equations,
but have different boundary conditions.

Theorem 3.3. (Integrodifferential equation for ψd(u).) Assume that ψd(u) is twice continu-
ously differentiable. Then, for any u > 0, ψd(u) satisfies the integrodifferential equation

1
2σ

2ψ ′′
d (u)+ (δu+ c)ψ ′

d(u) = λψd(u)− λ

∫ u

0
ψd(u− y) dF(y) (3.9)

with the following boundary conditions:

ψd(∞) = 0, ψd(0) = 1, 1
2σ

2ψ ′′
d (0

+)+ cψ ′
d(0

+) = λ. (3.10)

Proof. Consider cases (i), (ii), and (iii) in the proof of Theorem 3.2 and notice that, in
case (ii)(b), ψd(u+ h(t)− y) = 0 if y > u+ h(t). We see that

ψd(u) = (1 − λt)E[ψd(u+ h(t))] + λt E

[∫ u+h(t)

0
ψd(u+ h(t)− y) dF(y)

]

+ λt E

[∫ ∞

u+h(t)
ψd(u+ h(t)− y) dF(y)

]
+ o(t)

= (1 − λt)E[ψd(u+ h(t))] + λt E

[∫ u+h(t)

0
ψd(u+ h(t)− y) dF(y)

]
+ o(t),

which implies (3.9) by the same arguments as for (3.1).
In addition, the boundary conditionψd(∞) = 0 follows fromψd(u) ≤ ψ(u) andψ(∞) = 0,

the boundary condition ψd(0) = 1 follows from (1.5), and the last boundary condition follows
from letting u ↓ 0 in (3.9).

We remark that the integrodifferential equations (3.1), (3.4), and (3.9) satisfy relation (1.4),
as do the boundary conditions (3.2), (3.5), and (3.10).

4. Ruin with exponential claim sizes

Paulsen and Gjessing (1997) derived explicit solutions of ψ(u) when claim sizes are expo-
nentially distributed. In this section, we derive explicit expressions for ψs(u) and ψd(u) when
claim sizes are exponentially distributed. We first derive the third-order differential equations
satisfied by the ruin probabilities.

Corollary 4.1. Under the conditions of Theorems 3.1, 3.2, and 3.3, if F is an exponential
distribution with a density function f (x) = βe−βx , x > 0, β > 0, then, for any u > 0, ψ(u),
ψs(u), and ψd(u) satisfy the third-order differential equations⎧⎪⎪⎨

⎪⎪⎩
1
2σ

2ψ ′′′(u)+ (δu+ c + 1
2βσ

2)ψ ′′(u)+ (β(δu+ c)− λ+ δ)ψ ′(u) = 0,
1
2σ

2ψ ′′′
s (u)+ (δu+ c + 1

2βσ
2)ψ ′′

s (u)+ (β(δu+ c)− λ+ δ)ψ ′
s(u) = 0,

1
2σ

2ψ ′′′
d (u)+ (δu+ c + 1

2βσ
2)ψ ′′

d (u)+ (β(δu+ c)− λ+ δ)ψ ′
d(u) = 0,

(4.1)

with the following boundary conditions:

ψ(∞) = 0, ψ(0) = 1, 1
2σ

2ψ ′′(0+)+ cψ ′(0+) = 0,

ψs(∞) = 0, ψs(0) = 0, 1
2σ

2ψ ′′
s (0

+)+ cψ ′
s(0

+) = −λ, (4.2)

ψd(∞) = 0, ψd(0) = 1, 1
2σ

2ψ ′′
d (0

+)+ cψ ′
d(0

+) = λ. (4.3)
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Proof. When F is exponential, (3.9) can be re-expressed as

λψd(u)− (δu+ c)ψ ′
d(u)− 1

2σ
2ψ ′′

d (u) = λ

∫ u

0
ψd(u− y) dF(y)

= λβe−βu
∫ u

0
eβyψd(y) dy. (4.4)

Taking derivatives with respect to u on both sides of (4.4), we obtain

λψ ′
d(u)− δψ ′

d(u)− (δu+ c)ψ ′′
d (u)− 1

2σ
2ψ ′′

d (u)

= −β
[
λβe−βu

∫ u

0
eβyψd(y) dy

]
+ λβψd(u),

which, together with (4.4), gives

(λ− δ)ψ ′
d(u)− (δu+ c)ψ ′′

d (u)− 1
2σ

2ψ ′′
d (u)

= −β[λψd(u)− (δu+ c)ψ ′
d(u)− 1

2σ
2ψ ′′

d (u)] + λβψd(u),

implying that the equation for ψd(u) in (4.1) holds.
The boundary conditions forψd(u) follow from (3.10). The third-order differential equations

for ψ(u) and ψs(u) can be derived similarly.

We note that, when the claim sizes are exponentially distributed, the three ruin probabilities
ψ(u), ψs(u), and ψd(u) satisfy the same third-order differential equation, but have different
boundary conditions. The third-order differential equations in Corollary 4.1, together with the
boundary conditions, enable us to obtain explicit solutions for the ruin probabilities. To do so,
we recall some results about the confluent hypergeometric function and Kummer’s confluent
hypergeometric equation.

Assume that y ≡ y(x) is twice differentiable. The following second-order differential
equation is called Kummer’s confluent hypergeometric equation:

x
d2y

dx2 + (b − x)
dy

dx
− ay = 0. (4.5)

If y1 and y2 are any two linearly independent solutions then the general solution of (4.5) is
given by

y(x) = Ay1(x)+ By2(x),

where A and B are arbitrary coefficients that may depend on a and b but not on x, and can be
determined from the boundary conditions satisfied by y(x).

Denote the confluent hypergeometric function by M(a, b; x), i.e.

M(a, b; x) =
∞∑
n=0

(a)n

(b)n

(
xn

n!
)
,

where (a)n = a(a + 1) · · · (a + n− 1) for n = 1, 2, . . . , and (a)0 = 1.
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M(a, b; x) is the simplest solution of Kummer’s confluent hypergeometric equation (4.5)
and is absolutely convergent for all real or complex values of a, b, and x, excluding b =
0,−1,−2, . . . . Moreover, it is known that the confluent hypergeometric function satisfies

d

dx
M(a, b; x) = a

b
M(a + 1, b + 1; x); (4.6)

see Seaborn (1991) or Slater (1960) for details.
The third-order differential equations in Corollary 4.1 can be reduced to the form of

Kummer’s confluent hypergeometric equation using suitable function transformations. We
employ the same transforms used for ψ(u) in Paulsen and Gjessing (1997), since ψs(u) and
ψd(u) satisfy the same third-order differential equation as does ψ(u). To do so, let u = z− α

and ψ ′
s(u) = e−βzg(z), where

α = c

δ
− βσ 2

2δ
.

Then the equation for ψs(u) in (4.1) becomes

1
2σ

2g′′(z)+ δzg′(z)+ (δ − λ)g(z) = 0. (4.7)

Furthermore, let z2 = −(σ 2/δ)x and g(z) = h(x). Then (4.7) becomes the following Kummer
confluent hypergeometric equation, with a = 1

2 − 1
2λ/δ and b = 1

2 :

xh′′(x)+
(

1

2
− x

)
h′(x)−

(
1

2
− λ

2δ

)
h(x) = 0. (4.8)

Thus, by Equation (1.3.3) of Slater (1960),

y1(x) = exU(b − a, b; −x) = exU

(
λ

2δ
,

1

2
; −x

)

is a solution of (4.8), where U(a, b; x) is the second form of the confluent hypergeometric
function. Furthermore, by Equation (1.2.17) of Slater (1960),

y0(x) = x1−bexM(1 − a, 2 − b; −x) = √
xexM

(
1

2
+ λ

2δ
,

3

2
; −x

)

is a solution of (4.8) and y0 is linearly independent of y1.
It is easy to see that if y0 ≡ y0(x) is a solution of (4.8), then so is

√−1y0 =: iy0. Hence,

y2 ≡ y2(x) = iy0(x) = √−xexM

(
1

2
+ λ

2δ
,

3

2
; −x

)

is also a solution of (4.8) linearly independent of y1, since y1 and y0 are linearly independent.
Therefore, the general solution to (4.8) is given by

h(x) = Asy1(x)+ Bsy2(x)

= Ase
xU

(
λ

2δ
,

1

2
; −x

)
+ Bs

√−xexM

(
1

2
+ λ

2δ
,

3

2
; −x

)
,

where As and Bs are arbitrary constants.
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Thus,

g(z) = h(x) = Ase
−δz2/σ 2

U

(
λ

2δ
,

1

2
; δz

2

σ 2

)

+ Bs

√
δz

σ
e−δz2/σ 2

M

(
1

2
+ λ

2δ
,

3

2
; δz

2

σ 2

)
,

which gives

ψ ′
s(u) = e−βzg(z) = Ase

−β(u+α) exp

{
−δ(u+ α)2

σ 2

}
U

(
λ

2δ
,

1

2
; δ(u+ α)2

σ 2

)

+ Bse
−β(u+α)

√
δ(u+ α)

σ
exp

{
−δ(u+ α)2

σ 2

}

×M

(
1

2
+ λ

2δ
,

3

2
; δ(u+ α)2

σ 2

)
= A∗

sh1(u)+ B∗
s h2(u),

where A∗
s = Ase−βα and B∗

s = Bs
√
δe−βα/σ are arbitrary constants,

h1(u) = exp

{
−

(
βu+ δ(u+ α)2

σ 2

)}
U

(
λ

2δ
,

1

2
; δ(u+ α)2

σ 2

)
, (4.9)

and

h2(u) = (u+ α) exp

{
−

(
βu+ δ(u+ α)2

σ 2

)}
M

(
1

2
+ λ

2δ
,

3

2
; δ(u+ α)2

σ 2

)
. (4.10)

Hence,

ψs(u) = −
∫ ∞

u

ψ ′
s(y) dy = −A∗

sH1(u)− B∗
sH2(u), (4.11)

where

H1(u) =
∫ ∞

u

h1(y) dy, H2(u) =
∫ ∞

u

h2(y) dy,

and the constants A∗
s and B∗

s can be determined from the boundary conditions satisfied by
ψs(u).

To determine the coefficients A∗
s and B∗

s , note that H ′
1(u) = −h1(u) and H ′

2(u) = −h2(u)

and, hence, H ′′
1 (u) = −h′

1(u) and H ′′
2 (u) = −h′

2(u). Furthermore, from (4.6), (4.9), (4.10),
and

d

dx
U(a, b; x) = −aU(a + 1, b + 1; x),

we obtain

h′
1(0) = −

(
β + 2δα

σ 2

)
e−δα2/σ 2

U

(
λ

2δ
,

1

2
; δα

2

σ 2

)

− λα

σ 2 e−δα2/σ 2
U

(
1 + λ

2δ
,

3

2
; δα

2

σ 2

)

https://doi.org/10.1239/aap/1127483749 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1127483749


The perturbed compound Poisson risk process 831

and

h′
2(0) = e−δα2/σ 2

M

(
1

2
+ λ

2δ
,

3

2
; δα

2

σ 2

)

− α

(
β + 2δα

σ 2

)
e−δα2/σ 2

M

(
1

2
+ λ

2δ
,

3

2
; δα

2

σ 2

)

+ 2α2(δ + λ)

3σ 2 e−δα2/σ 2
M

(
3

2
+ λ

2δ
,

5

2
; δα

2

σ 2

)
.

Thus,

H ′′
1 (0) = −h′

1(0) =
[(
β + 2δα

σ 2

)
U

(
λ

2δ
,

1

2
; δα

2

σ 2

)
+ λα

σ 2U

(
1 + λ

2δ
,

3

2
; δα

2

σ 2

)]
e−δα2/σ 2

and

H ′′
2 (0) = −h′

2(0) =
[
α

(
β + 2δα

σ 2

)
− 1

]
M

(
1

2
+ λ

2δ
,

3

2
; δα

2

σ 2

)
e−δα2/σ 2

− 2α2(δ + λ)

3σ 2 M

(
3

2
+ λ

2δ
,

5

2
; δα

2

σ 2

)
e−δα2/σ 2

.

Moreover,

H ′
1(0) = −h1(0) = −e−δα2/σ 2

U

(
λ

2δ
,

1

2
; δα

2

σ 2

)
and

H ′
2(0) = −h2(0) = −αe−δα2/σ 2

M

(
1

2
+ λ

2δ
,

3

2
; δα

2

σ 2

)
.

From (4.2) and (4.11), the last two boundary conditions for ψs(u) reduce to

A∗
sH1(0)+ B∗

sH2(0) = 0,
1
2σ

2(A∗
sH

′′
1 (0)+ B∗

sH
′′
2 (0))+ c(A∗

sH
′
1(0)+ B∗

sH
′
2(0)) = λ.

Thus, by solving the equations, we obtain

A∗
s = λH2(0)eδα

2/σ 2

D1
and B∗

s = −λH1(0)eδα
2/σ 2

D1
,

where

D1 = H1(0)
σ 2

2
M

(
1

2
+ λ

2δ
,

3

2
; δα

2

σ 2

)
+H1(0)

α2(δ + λ)

3
M

(
3

2
+ λ

2δ
,

5

2
; δα

2

σ 2

)

+H2(0)
λα

2
U

(
1 + λ

2δ
,

3

2
; δα

2

σ 2

)
.

Similarly, the ruin probability ψd(u) takes the form

ψd(u) = −
∫ ∞

u

ψ ′
d(y) dy = −AdH1(u)− BdH2(u), (4.12)
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where the constants Ad and Bd can be determined from the boundary conditions satisfied by
ψd(u). In doing so, by (4.3) and (4.12), the last two boundary conditions for ψd(u) reduce to

AdH1(0)+ BdH2(0) = −1,
1
2σ

2(AdH
′′
1 (0)+ BdH

′′
2 (0))+ c(AdH

′
1(0)+ BdH

′
2(0)) = −λ.

Thus, the coefficients Ad and Bd for ψd(u) are given by

Ad = 1

D1

(
−λH2(0)e

δα2/σ 2 − 1

2
σ 2M

(
1

2
+ λ

2δ
,

3

2
; δα

2

σ 2

)

− 1

3
α2(δ + λ)M

(
3

2
+ λ

2δ
,

5

2
; δα

2

σ 2

))

and

Bd = 1

D1

(
−1

2
λαU

(
1 + λ

2δ
,

3

2
; δα

2

σ 2

)
+ λH1(0)e

δα2/σ 2
)
.

To end the paper, we use numerical examples to illustrate applications of the explicit solutions
and the effects of the interest force δ and the diffusion volatility σ on the ruin probabilitiesψ(u),
ψs(u), and ψd(u).

Example 4.1. Assume that the claim sizes are exponentially distributed and that c = 103,
λ = 100, β = 1, and σ = 0.8. We calculate the values of ψ(u), ψs(u), and ψd(u), using the
formulae derived above, for δ = 0.105, 0.085, 0.065, 0.045, 0. When δ = 0, by Equations (6.4)
and (6.17) of Dufresne and Gerber (1991), we have

ψ(u) = c1e−r1u + c2e−r2u,
ψs(u) = cs

1e−r1u + cs
2e−r2u,

ψd(u) = cd
1e−r1u + cd

2e−r2u,

where

c1 = r1 − β

β

r2

r1 − r2
, c2 = r2 − β

β

r1

r2 − r1
,

cs
1 = c1 − cd

1, cs
2 = c2 − cd

2,

cd
1 = r1 − β

r1 − r2
, cd

2 = r2 − β

r2 − r1
,

and r1 and r2 are the solutions to the equation λ/(β − r)+ 1
2σ

2r = c.
In Tables 1–3 we present the values of these ruin probabilities for selected values of u. The

calculations were performed using MATHEMATICA®. From the tables, we see that the ruin
probabilitiesψ(u) andψd(u) decrease as u and δ increase and that the dependence ofψ(u) on δ
is strongest for small values of u. On the other hand, the behavior of ψs(u) differs from that of
both ψ(u) and ψd(u). For example, ψs(u) is not a decreasing function of u and δ.

Example 4.2. Assume that the claim sizes are exponentially distributed and that c = 103,
λ = 100, β = 1, and δ = 0.03. We calculate the values of ψ(u), ψs(u), and ψd(u), using
the formulae derived above, for σ = 1.2, 1.0, 0.8, 0.6, 0.4, and present the ruin probabilities
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Table 1: Effects of interest force on the ruin probability ψ(u).

ψ(u)

u δ = 0.105 δ = 0.085 δ = 0.065 δ = 0.045 δ = 0

0 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000
0.001 0.987 379 0.987 993 0.988 672 0.989 446 0.991 984
0.005 0.963 270 0.965 056 0.967 035 0.969 284 0.976 671
0.01 0.955 781 0.957 931 0.960 313 0.963 021 0.971 914
0.055 0.952 201 0.954 526 0.957 100 0.960 027 0.969 640
1 0.910 692 0.915 029 0.919 835 0.925 300 0.943 257
5 0.749 126 0.761 087 0.774 390 0.789 574 0.839 816

10 0.576 690 0.595 926 0.617 522 0.642 414 0.726 320
50 0.034 760 0.046 777 0.063 926 0.089 242 0.227 340

Table 2: Effects of interest force on the ruin probability ψs(u).

ψs(u)

u δ = 0.105 δ = 0.085 δ = 0.065 δ = 0.045 δ = 0

0 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000
0.001 0.262 479 0.263 091 0.263 768 0.264 539 0.267 069
0.005 0.761 860 0.763 641 0.765 613 0.767 855 0.775 218
0.01 0.913 326 0.915 469 0.917 843 0.920 543 0.929 408
0.055 0.949 251 0.951 569 0.954 135 0.957 053 0.966 636
1 0.907 871 0.912 195 0.916 986 0.922 434 0.940 335
5 0.746 806 0.758 730 0.771 991 0.787 128 0.837 215

10 0.574 903 0.594 080 0.615 609 0.640 424 0.724 070
50 0.034 652 0.046 632 0.063 728 0.088 966 0.226 636

Table 3: Effects of interest force on the ruin probability ψd(u).

ψd(u)

u δ = 0.105 δ = 0.085 δ = 0.065 δ = 0.045 δ = 0

0 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000
0.001 0.724 900 0.724 902 0.724 904 0.724 907 0.724 915
0.005 0.201 410 0.201 415 0.201 422 0.201 429 0.201 453
0.01 0.042 455 0.042 462 0.042 470 0.042 478 0.042 506
0.055 0.002 950 0.002 957 0.002 965 0.002 974 0.003 004
1 0.002 821 0.002 834 0.002 849 0.002 866 0.002 922
5 0.002 320 0.002 357 0.002 399 0.002 446 0.002 601

10 0.001 787 0.001 846 0.001 913 0.001 990 0.002 250
50 0.000 108 0.000 145 0.000 198 0.000 276 0.000 704

for selected values of u in Tables 4–6. These calculations were also performed using MATH-
EMATICA.

From the tables, we see that the ruin probabilities ψ(u) and ψd(u) increase as σ increases
and that the dependence of ψ(u) on σ is strongest for small values of u, as in Example 4.1.
Furthermore, the behavior of ψs(u) again differs from that of both ψ(u) and ψd(u).
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Table 4: Effects of volatility on the ruin probability ψ(u).

ψ(u)

u σ = 1.2 σ = 1.0 σ = 0.8 σ = 0.6 σ = 0.4

0 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000
0.001 0.995 211 0.993 313 0.990 116 0.984 354 0.974 003
0.005 0.981 630 0.976 884 0.971 236 0.966 081 0.964 039
0.01 0.972 601 0.968 560 0.965 372 0.963 986 0.963 808
0.055 0.962 845 0.962 682 0.962 568 0.962 479 0.962 416
1 0.930 389 0.930 200 0.930 045 0.929 924 0.929 837
5 0.803 475 0.803 104 0.802 800 0.802 563 0.802 393

10 0.665 251 0.664 723 0.664 289 0.663 951 0.663 708
50 0.117 848 0.117 389 0.117 012 0.116 720 0.116 511

Table 5: Effects of volatility on the ruin probability ψs(u).

ψs(u)

u σ = 1.2 σ = 1.0 σ = 0.8 σ = 0.6 σ = 0.4

0 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000
0.001 0.128 448 0.179 399 0.265 207 0.419 898 0.697 769
0.005 0.491 507 0.618 604 0.769 801 0.907 567 0.961 699
0.01 0.730 629 0.838 269 0.922 886 0.959 069 0.963 057
0.055 0.955 419 0.957 999 0.959 586 0.960 800 0.961 669
1 0.923 929 0.925 706 0.927 164 0.928 302 0.929 115
5 0.797 896 0.799 224 0.800 313 0.801 162 0.801 770

10 0.660 632 0.661 511 0.662 231 0.662 793 0.663 193
50 0.117 030 0.116 821 0.116 650 0.116 516 0.116 421

Table 6: Effects of volatility on the ruin probability ψd(u).

ψd(u)

u σ = 1.2 σ = 1.0 σ = 0.8 σ = 0.6 σ = 0.4

0 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000
0.001 0.866 763 0.813 914 0.724 909 0.564 456 0.276 234
0.005 0.490 123 0.358 280 0.201 435 0.058 514 0.002 340
0.01 0.241 972 0.130 291 0.042 486 0.004 917 0.000 751
0.055 0.007 426 0.004 683 0.002 982 0.001 679 0.000 747
1 0.006 460 0.004 494 0.002 881 0.001 622 0.000 722
5 0.005 579 0.003 880 0.002 487 0.001 401 0.000 623

10 0.004 619 0.003 212 0.002 058 0.001 158 0.000 515
50 0.000 818 0.000 568 0.000 362 0.000 204 0.000 090
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In addition, Professor Guojing Wang recently informed us of his paper Wang (2001), in
which he considered a different approach to a similar problem.
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