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Abstract

In this paper, we study ruin in a perturbed compound Poisson risk process under stochastic
interest force and constant interest force. By using the technique of stochastic control, we
show that the ruin probability in the perturbed risk model is always twice continuously
differentiable provided that claim sizes have continuous density functions. In the
perturbed risk model, ruin may be caused by a claim or by oscillation. We decompose
the ruin probability into the sum of two ruin probabilities; one is the probability that ruin
is caused by a claim and the other is the probability that ruin is caused by oscillation.
Integrodifferential equations for these ruin probabilities are derived when the interest
force is constant. When the claim sizes are exponentially distributed, explicit solutions
of the ruin probabilities are derived from the integrodifferential equations. Numerical
examples are given to illustrate the effects of diffusion volatility and interest force on the
ruin probabilities.
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1. Introduction
Let
N@)
U=ct—Y YitoW,=ct—S +oW, t>0, (1.1)
k=1
be a compound Poisson risk process perturbed by a diffusion or a jump diffusion process, where
¢ > 0 is the rate of premium; {Y;, k = 1, 2, ...} is a sequence of independent and identically
distributed nonnegative random variables, denoting claim sizes; {N(¢), ¢t > 0} is a Poisson
process with rate A > 0, representing the number of claims up to time ¢; {W;, + > 0} is a
standard Brownian motion; o > 0 is a constant, representing the diffusion volatility parameter;
and S; = ,1:’:([1) Yy is the compound Poisson process. In addition, {Yx, k = 1,2,...},
{N(t), t = 0}, and {W;, ¢t > 0} are independent. As pointed out in Dufresne and Gerber
(1991), the perturbed compound Poisson risk process adds an uncertainty to premium income
or an additional uncertainty to aggregate claims.
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Assume that the surplus Uy is invested continuously at a constant interest force § > 0 and let
X, denote the surplus at time ¢ under the constant interest force § with an initial surplus u > 0;
thus,

t
X, :e‘”<u+/ e—‘“dus), r>0, Xo = u. (1.2)
0

More generally, if the surplus U, is invested continuously at a stochastic interest force and
the deterministic function 8¢ in (1.2) is another jump diffusion process 6, with

Nr (1)
8 =8t +or W + Y In(1 + X;) = 8 + or Wrs + Sk
i=1
or, equivalently, the deterministic function e’ in (1.2) is replaced by a stochastic process e’
given by
Nr (1)
65[ — eat+”RWR‘1 1_[ (1 + Xi)v
i=1
then the surplus at time ¢ under the stochastic interest force §, with an initial surplus u > 0 is
given by

t
Xt=68’<u+/e_3SdUS>, t>0, Xo = u. (1.3)
0

Here or is a constant; {Wr ;, t > 0} is a standard Brownian motion; {Nr (t), ¢t > 0} is a Poisson
process with rate AR > 0, {X;, i = 1,2,...} is a sequence of independent and identically
distributed random variables such that 1 + X; > O foralli = 1,2,...; {Wr,, t = 0},
{Nr(@), t > 0}, and {X;, i = 1,2, ...} are independent; and Sg ; = > "8 In(1 4 X;) is a
compound Poisson process. Furthermore, the process {3;, t > 0} is assumed to be independent
of the process {U;, t > 0} and, by convention, Z?:l =0and H?:l =1.

The risk process (1.3) has been studied by Paulsen and Gjessing (1997) and expressed in the
form of their Equation (2.4). The risk process (1.2) is a special case of the risk process (1.3)
when or = 0 and AR = 0.

Denote the ruin time of the risk process (1.3) by T,i.e. T = inf{t: X; < 0} or T = oo if
X; > 0 for all + > 0. Define the ruin probability with an initial surplus u > 0 by

Y(u) =Pr{T <oo| Xo=u}=Pr{X; <Oforsomet >0 | Xog=uj.

In this perturbed risk model, ruin may occur in two different situations. In one situation,
ruin is caused by a claim and, in the other, ruin is caused by oscillation. We let

T — inf{t: X, <0, X5, >0, 0<h <t},
*7 o ifX,>O0forallz >0,

i.e. Ty is the time at which ruin is caused by a claim. Furthermore, we let

70 — inf{t: X, =0, X5, >0, 0<h <t},
1T Vo ifX,>0foralls >0,

https://doi.org/10.1239/aap/1127483749 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1127483749

The perturbed compound Poisson risk process 821

i.e. Tq is the time at which ruin is caused by oscillation. Then T = min{7, Tyg}. Moreover, we
denote the ruin probabilities in the two situations by

Vs(u) = Pr{Ty < oo | Xo = u}

and
Ya(u) = Pr{Ty < oo | Xo = u},

respectively.
It is obvious that the ruin probability ¥ () can be decomposed as follows:

V() = Ys () + Yau), u=0. (1.4)

In addition, it follows from the oscillating nature of the sample paths of X, that

Ya(0) =y (0)=1 and 5(0) =0. 1.5

See Dufresne and Gerber (1991) for a detailed discussion of (1.4) and (1.5) in the perturbed
compound Poisson risk process (1.1).

Given that ruin has occurred, the probability that it is due to a claim is given by
Pr{T; < oo | T < o0} = ¥s(u)/¥(u) and the probability that it is due to oscillation is
given by Pr{Ty < oo | T < oo} = Yrg(u) /¥ (u).

Ruin in the perturbed compound Poisson process has been studied extensively in the liter-
ature; see, for example, Dufresne and Gerber (1991), Gerber and Landry (1998), Paulsen and
Gjessing (1997), Yang and Zhang (2001), and references therein. Recently, ruin under interest
force has attracted increasing attention in the risk theory literature. For instance, ruin in the
compound Poisson risk process under constant interest force has been studied in Asmussen
(2000), Cai and Dickson (2002), Paulsen and Gjessing (1997), Sundt and Teugels (1995), and
references therein.

In the study of ruin probability, a commonly used method is to first derive integrodifferential
or differential equations satisfied by the ruin probability and then to discuss the properties
and solutions of the ruin probability based on the equations. For example, let ¢ (u) be the
ruin probability in the perturbed compound Poisson process without interest force or in the
risk process (1.1), i.e. ¢p(u) = Pr{u + U; < 0 for some ¢ > 0}. Using a heuristic argument,
Dufresne and Gerber (1991) derived an integrodifferential equation (their Equation (2.1)) for
¢ (1) under the assumption that ¢ (1) is twice continuously differentiable. The same argument
and assumption were used in Gerber and Landry (1998), and references therein, in another
study of ruin in the risk process (1.1). However, these references did not explain under what
conditions ¢ (u) is twice continuously differentiable.

For the ruin probability ¥ (#) in the general risk process (1.3), Paulsen and Gjessing (1997)
derived, in their Theorem 2.1, the integrodifferential equation for ¥ (#) by using Itd’s formula
under the assumption that ¥ (u) is twice continuously differentiable with a bounded first
derivative. Again, Paulsen and Gjessing (1997) did not discuss under what conditions v () is
twice continuously differentiable.

Theoretically, it is necessary to discuss the differentiability of the ruin probability when
one derives integrodifferential or differential equations for it. Such a discussion for the ruin
probability in the compound Poisson risk process can be found in Grandell (1991), who used
renewal and differential arguments. Furthermore, Wang and Wu (2001) and Cai (2004) have
studied the differentiability of the ruin probability v («) in the risk process (1.3) when Agr = 0.
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They first used a renewal argument to derive the integral equations for v (x), and then gave
the conditions under which v (u) is twice, or more times, continuously differentiable. Their
conditions involve the differentiability of the density function of the claim size Y; and relation-
ships between the parameters A, §, and . Unfortunately, neither the methods of Wang and Wu
(2001) and Cai (2004) nor those of Grandell (1991) apply to the differentiability of the ruin
probability in (1.3) in general cases.

In this paper, we first use the technique of stochastic control and the result of Hipp and
Plum (2003) to prove that the ruin probability v (1) in the risk process (1.3) is always twice
continuously differentiable, provided that the claim size Y has a continuous density function,
and to give the integrodifferential equation for {(#). We then discuss ruin probabilities in
the perturbed compound Poisson risk process with constant interest force in detail. In this
case, we derive integrodifferential equations for the ruin probability v («) using the Hamilton—
Jacobi—Bellman (HJB) equation and the ruin probabilities ¥ () and ¥q(«) using a differential
argument and the It6 formula. When claim sizes are exponentially distributed, explicit solutions
of these ruin probabilities are given. Numerical examples are given to illustrate these results
and the effects of diffusion volatility and interest force on the ruin probabilities.

2. The HJB equation and differentiability of the ruin probability

In this section, using stochastic control techniques and the result of Hipp and Plum (2003),
we prove that the ruin probability v («) in the risk process (1.3) is always twice continuously
differentiable provided that the claim sizes have a continuous density function.

We first describe the ideas of the proof. It is well known in stochastic control theory that, in
many cases, a value function is not smooth enough to satisfy the HIB equation in the classical
or usual sense. A weak formulation of the solution to the HIB equation has been used in the
literature. A commonly used weak formulation is called the viscosity solution, proposed by
Crandall and Lions (1983). For more detailed discussions of viscosity solutions, see Crandall
et al. (1992) and Fleming and Soner (1993). Here, by following the paper of Hipp and Plum
(2003), we first show that the survival probability in the risk process (1.3) satisfies the HIB
equation in a weak formulation sense. It is well known that, as in Hipp and Plum (2003), the
HJB equation has a unique solution. Thus, the solution must be the survival probability in
our problem. We then use the result in Hipp and Plum (2003), which states that the solution
to the corresponding HIB equation is twice continuously differentiable. Therefore, the ruin
probability, as a function of the initial surplus, is twice continuously differentiable.

We then give the detailed arguments of the proof. In doing so, we describe the risk model
(1.3) in terms of stochastic differential equations, as follows. The dynamics of the surplus
process X, in (1.3) can be expressed as

dX; = (c + 8: X;)dt + o dW; — dS;, Xo = u,

2.1
dé; =8dt + or dWr ;s + dSr.s» 8o = do.

Instead of considering the original problem, we first consider the following problem. We
assume that an insurance company pays dividends continuously at a rate of «(Xy(¢)) at time ¢.
Suppose that the dynamics of the surplus process X, (¢) is given by

dXo () = (c + 8 Xo (1) — a(Xy (1)) dt + 0 dW; — dS;, Xo(0) = u,
dé; =8dt + or dWRr; + dSr, 8o = do.
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Assume that Y| and X have finite expectations and continuous distributions. We know that
the surplus process X, (¢) has the same distribution as X, (¢), where the surplus process X (¢)
is given by

dXo (1) = (c + 8 Xo (1) — a(Xo (1)) dt + /02 + 02 X2(1)dB, — dS, + Xo(t7) dSR s
Xa(0) = u; 2.2)
cf. Equation (2.5) of Paulsen and Gjessing (1997). Here {B;, t > 0} is a standard Brownian

motion independent of the compound Poisson processes {S;, t > 0} and {Sr;, t > 0}.
As before, we define the ruin probability associated with the risk process (2.2) as

Vo (u) = Pr{Xq (1) < 0 for some r > 0 | X(0) = u}.

The objective of the insurance company is to minimize the ruin probability ¥, (1) by choosing
the optimal dividend strategy. This is a stochastic control problem. Let Ry (1) = 1 — vy (1)
be the survival probability corresponding to dividend policy . Then, by the dynamic program-
ming principle, the value function R, (1) satisfies the following HIB equation, where a prime
denotes differentiation:

Sup{AE[Ry(u — Y1) — Ry(u)] + AR B[Ry (u(1 + X1)) — Ry (u)]
+ (¢ + 8u — a(W) R, () + 1(0? + u?oR) Rl (u)} = 0. (2.3)

Itis obvious that the optimal dividend policy is for the insurance company to pay no dividends,
or to set @ = 0. By the verification theorem, the HIB equation (2.3) becomes

AE[Ro(u — Y1) — Ro(u)] + AR E[Ro(u(1 + X1)) — Ro(u)]
+ (¢ + 8u)RY(u) + 1 (o* + u?oR) R (u) = 0. (2.4)

As mentioned earlier, it is well known that (2.4) has a unigue contiguous solution. Furthermore,
Ry (u) is the survival probability of the surplus process Xo(#) = X (¢) given by

dX(t) = (c + 8 X (1) dt + /02 + a3 X2(t) dB, — dS, + X (t7) dSr .1,
X(0) = u.

Again, X () and X; in (2.1) have the same distribution and, therefore, Ro(u) and ¥o(u) are
respectively the survival and ruin probabilities for model (2.1). Hence, Ry(u#) = R(u) and
Vo(u) = ¥ (u).

We have the following result, similar to Theorem 5 of Hipp and Plum (2003), showing that
R(u) =1 — ¥ (u) is twice continuously differentiable.

Theorem 2.1. Assume that the claim size Y1 has a continuous density f(y). Then (2.4) has a
unique solution R(u) that is nonnegative, nondecreasing, concave with R(0o) = 1, continuous
on [0, 00), and twice continuously differentiable on (0, 00).

Proof. Equation (2.4) has a form similar to Equation (10) of Hipp and Plum (2003), and
the proof of Theorem 5 of Hipp and Plum (2003) applies to it. We thus omit the proof of
Theorem 2.1, and refer the reader to Hipp and Plum (2003) for details.
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Remark 2.1. Paulsen and Gjessing (1997) assumed that v (1) is twice continuously differen-
tiable in order to use Itd’s formula to obtain the integrodifferential equation satisfied by v (u).
Here, using the result of Hipp and Plum (2003), we prove that v (1) is always twice continuously
differentiable provided that the claim sizes have continuous density functions. This result also
greatly relaxes the conditions of Wang and Wu (2001) and Cai (2004) on differentiability of the
ruin probability ¥ (u).

3. Integrodifferential equations for ruin probabilities

In this section, we study the risk process X; given in (1.2) and consider ruin in the perturbed
compound Poisson risk process under constant interest force. We first give the integro-
differential equation for v (1) using the HJB equation (2.4) directly and then, using a differential
argument and Itd’s formula, we derive integrodifferential equations for vs(u) and ¥q(u). The
differential argument is a common method used in ruin theory; see Grandell (1991) for the
method used in the compound Poisson risk process and Dufresne and Gerber (1991) for the
method used in the perturbed compound Poisson risk process.

Throughout the paper, we denote the distribution function of ¥; by F, with F(0) = 0, and
the tail of a distribution function B by B(x) = 1 — B(x).

Theorem 3.1. (Integrodifferential equation for v (u).) Assume that F has a continuous density
function. Then, for any u > 0, (1) satisfies the integrodifferential equation

102y () + u + )Y () + AF () = Apr(u) — A /0 Yw—y)dF(y) (3.1

with the following boundary conditions:
Y(0) =0, (O =1, 129" (0% + ey’ (0T) = 0. (3.2)

Proof. Let AR = 0 and or = 0 and note that Rg(u) = 1 — Y¥o(u) = 1 — Y (u) in the HIB
equation (2.4). We then have

M () = AE[Y (e — YD)] = (c + 8uw)¥ () + 379" (w), (3.3)

Furthermore,
B[ (u — Y1)] =/0 Y — ) dF(y)
:/0 1/f<u—y>dF<y)+f Vi — y) dF ()

=/0 i —y)dF () + Fw),

which, together with (3.3), implies (3.1).

In addition, the boundary condition ¥ (c0) = 0 follows from (1) < ¢ (u) and ¢ (c0) = 0,
the boundary condition 1 (0) = 1 follows from (1.5), and the last boundary condition follows
from letting # | 0 in (3.1).

We point out that (3.1) can also be derived using Theorem 2.1 of Paulsen and Gjessing
(1997). However, their theorem holds under the assumption that ¢ (u) is twice continuously
differentiable and has a bounded first derivative.

https://doi.org/10.1239/aap/1127483749 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1127483749

The perturbed compound Poisson risk process 825

Furthermore, we point out that the arguments in Section 2 for the differentiability of ¥ («) do
not apply to ¥ («) and ¥q(u) and, hence, that HIB equations similar to (2.4) are not available
for vys(u) and ¥4 (u). The reason is that, to use the stochastic control method, we must have a
system of stochastic differential equations for ¥r(u): the corresponding systems of stochastic
differential equations for 1s(«) and ¥4(u) are unknown. In other words, we cannot separate
the system of stochastic differential equations for v (1) into two parts.

However, using a differential argument and It6’s formula, we can derive integrodifferential
equations for ¥s(u) and ¥q(x) under the assumption that both vs(u) and ¥q(u) are twice
continuously differentiable. We conjecture that ¥s(u) and ¥4(u) are twice continuously
differentiable provided that F has a continuous density function, as we did for ¥ ().

Theorem 3.2. (Integrodifferential equation for s(u).) Assume that s(u) is twice continu-
ously differentiable. Then, for any u > 0, Vs(u) satisfies the integrodifferential equation

Loyl () + Su + )Y (u) + AF () = AMprs(u) — A /0 Ys(u — y)dF(y) (3.4)

with the following boundary conditions:

Ys(00) =0, Ys(0) =0, 3o Y (0T) +cy((0T) = —. (3.5)
Proof. Let
t t
h(t) = ue + c/ % ds + o/ e’ dWy — u. (3.6)
0 0

Consider the risk process X, defined by (1.2), in an infinitesimal time interval (0, ¢]. Since
N () is a Poisson process, there are three possible cases.

(i) There are no claims in (0, ¢] and, thus,

t t
X; = ue’ +C/ e¥ ds +0/ ¥ AW, = u + h(1).
0 0

(i) There is exactly one claim in (0, ¢], with claim amount y, and
(@) y <u+ h(t), i.e. ruin does not occur and, thus,

t t
X, =ue‘”+c/ e‘ssds~|—a/ AW, —y =u + h(t) — y;
0 0
(b) y > u + h(t), i.e. ruin occurs due to the claim; or

(¢) y = u-+h(t),i.e.ruin occurs due to oscillation (the probability that this case occurs
is 0).

(>iii) There is more than one claim in (0, 7].
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Thus, considering cases (i), (ii), and (iii) and noticing that, in case (ii)(b), ¥s(u +h(t) —y) = 1
if y > u + h(t), we have

u+h(r)
Vo) = (1 — A ELWs(u + h(0)] + At E[ /O Vol + h(t) — ) dF(y)}

+AtE[f ws(u+h(t)—y)dF(y)} +o(1)

+h(t)
u+h(t)
= (1 = A0 E[Ys(u + h(1)] + At E[/ Ys(u+h() —y) dF(y)}
0
+ M E[F(u 4 h(1)] + o(t)

or, equivalently,

M E[Ys(u + ()] = E[ysu + h(@)] — ¥s(u) + At E[/Oﬁhm VYs(u +h(t) —y) dF(y)}
+ A E[F(u + h(t))] + o(t). (3.7)
If we let Y (1) = u + h(y) then (3.6) implies that
dY (1) = s + c)e¥ dr + oe¥ dW,, Y(0) = u.
By Ito’s formula, we have

dyrs(u + h(t)) = dys(Y (1)
= (s + ) YUY (1)) + 12X Y (Y (1)) dt + ae® Y [(Y (1)) dW,

or, equivalently,
Ys(u + h()) = Ys(Y (1))
t
= s (u) + / (8 + )™ Y(Y (x)) + 2o%e® y! (¥ (x))) dx
0

t
+ / o™ YUY (x)) AWy,
0
which implies that
E[Y(u + h(1))]

t
= Ys(u) + / (8 + )™ E[Y[(Y (x)] + $o?e®* E[y! (Y (x))]) dx. (3.8)
0

Therefore, by dividing by ¢ on both sides of (3.7), letting + — 0, and using (3.8), we obtain

Mg (u) = (Su + )Y w) + Jo 2y () + A /0 Ys(u — y) dF (y) + AF (u),

which implies (3.4).

In addition, the boundary condition ys(c0) = 0 follows from s (u) < ¥ () and ¢ (c0) = 0,
the boundary condition ¥4(0) = 0 follows from (1.5), and the last boundary condition follows
from letting # | 0 in (3.4).
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We note that ¥ («) and y5(u) satisfy the same second-order integrodifferential equations,
but have different boundary conditions.

Theorem 3.3. (Integrodifferential equation for ¥q(u).) Assume that ¥q(u) is twice continu-
ously differentiable. Then, for any u > 0, Y¥q(u) satisfies the integrodifferential equation

u
3075 () + Gu+ )Yu) = Mpa(u) — k/o Ya(u —y)dF(y) (3.9)
with the following boundary conditions:

Ya(00) =0,  Ya@) =1, 3o Y{O0") +cyy(0") = 1. (3.10)

Proof. Consider cases (i), (ii), and (iii) in the proof of Theorem 3.2 and notice that, in
case (ii)(b), Ya(u + h(t) —y) =0if y > u + h(t). We see that

u+h(r)
Va@u) = (I — A1) E[a(u + h(1))] +ME[/O Va(u + h(t) — y) dF(y)}

+ MEI:/ Ya(u + h(t) —y) dF(y)] +o(t)

+h(t)
u+h(r)
=1 —A)E[ya(u + h@))] + 1t E[/O Ya(u + h(t) —y) dF(y)] +o(1),

which implies (3.9) by the same arguments as for (3.1).

In addition, the boundary condition ¥4 (co) = 0 follows from ¥4 (#) < (1) and ¥ (oc0) = 0,
the boundary condition y/4(0) = 1 follows from (1.5), and the last boundary condition follows
from letting # | 0 in (3.9).

We remark that the integrodifferential equations (3.1), (3.4), and (3.9) satisfy relation (1.4),
as do the boundary conditions (3.2), (3.5), and (3.10).
4. Ruin with exponential claim sizes

Paulsen and Gjessing (1997) derived explicit solutions of ¥ () when claim sizes are expo-
nentially distributed. In this section, we derive explicit expressions for s (u) and ¥q(#) when
claim sizes are exponentially distributed. We first derive the third-order differential equations
satisfied by the ruin probabilities.

Corollary 4.1. Under the conditions of Theorems 3.1, 3.2, and 3.3, if F is an exponential
distribution with a density function f(x) = Be™P*, x > 0,8 > 0, then, for any u > 0, ¥ (u),
Ys(u), and q(u) satisfy the third-order differential equations

L2y ) + Su + ¢ + L)Y () + (BBu +¢) — 1+ &Y' () = 0,
Loyl () + Bu+ ¢ + By () + (BSu + ) — » + )y (u) =0, 4.1)
302y () + Bu + ¢ + 3BV () + (BGu + ¢) — A+ ) Yjw) =0,

with the following boundary conditions:

¥ (o0) =0, YyO) =1,  30°Y"(07) +cy'(0%) =0,

Ys(00) =0,  Ys(0) =0,  Fo Y[(0F) +cy{(0") = -2, (4.2)
Ya(00) =0,  Ya) =1,  36°Y{O0F) +cyj(0") = . (4.3)
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Proof. When F is exponential, (3.9) can be re-expressed as

u
Mpa(u) — Bu+ )Yiw) — 3079 ) = /O Ya(u — y)dF(y)
u
= Ape P f e Ya(y) dy. (4.4)
0
Taking derivatives with respect to # on both sides of (4.4), we obtain

M) = 89 () — (Su+ )W @) — 30 ()
=B [weﬂ” /O e Ya(y) dy] + 1B Ya ),

which, together with (4.4), gives

(A — O Yiw) — Bu + )Y ) — Loyl (u)
= —BIAVa() — Su + )Yiw) — 2P ()] + ABYaw),

implying that the equation for 14 () in (4.1) holds.
The boundary conditions for ¥4 («) follow from (3.10). The third-order differential equations
for v (1) and ¥(u) can be derived similarly.

We note that, when the claim sizes are exponentially distributed, the three ruin probabilities
¥ (u), ¥s(u), and q(u) satisfy the same third-order differential equation, but have different
boundary conditions. The third-order differential equations in Corollary 4.1, together with the
boundary conditions, enable us to obtain explicit solutions for the ruin probabilities. To do so,
we recall some results about the confluent hypergeometric function and Kummer’s confluent
hypergeometric equation.

Assume that y = y(x) is twice differentiable. The following second-order differential
equation is called Kummer’s confluent hypergeometric equation:

d?y dy
i b —x)— — =0. 4.5
X2 + (b —x) oY 4.5)

If y; and y, are any two linearly independent solutions then the general solution of (4.5) is
given by
y(x) = Ay1(x) + Byz(x),

where A and B are arbitrary coefficients that may depend on a and b but not on x, and can be
determined from the boundary conditions satisfied by y(x).

Denote the confluent hypergeometric function by M (a, b; x), i.e.
(.¢]

oo =E0(5),

n=0

where (a), =aa+1)---(a+n—1)forn=1,2,...,and (a)g = 1.
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M (a, b; x) is the simplest solution of Kummer’s confluent hypergeometric equation (4.5)
and is absolutely convergent for all real or complex values of a, b, and x, excluding b =

0, —1, =2, .... Moreover, it is known that the confluent hypergeometric function satisfies
d a
—M(a,b;x) =M@+ 1,b+1;x); (4.6)
dx b

see Seaborn (1991) or Slater (1960) for details.

The third-order differential equations in Corollary 4.1 can be reduced to the form of
Kummer’s confluent hypergeometric equation using suitable function transformations. We
employ the same transforms used for ¥ («#) in Paulsen and Gjessing (1997), since y¥5(u) and
¥4 (u) satisfy the same third-order differential equation as does ¥ (u#). To do so, letu =z — «
and Y(u) = e Pig(z), where

_c Bo?
) 28
Then the equation for ¥5(u) in (4.1) becomes
028" (2) +828'(2) + (8 — Mg(z) = 0. (4.7)
Furthermore, let z2 = —(02 /8)x and g(z) = h(x) Then (4.7) becomes the following Kummer
confluent hypergeometric equation, witha = 5 — —A /8 and b =
W+ (5 —x )W — (2= 2 ) =0 48)
xh” (x > X X 2~ 75 x) =0. .

Thus, by Equation (1.3.3) of Slater (1960),

Lol
yix) =e*U(b —a,b; —x) =¢" U<25 2 x>

is a solution of (4.8), where U (a, b; x) is the second form of the confluent hypergeometric
function. Furthermore, by Equation (1.2.17) of Slater (1960),

A3
yo(x) =x'""Pe*M(1 —a,2 — b; —x) = feM( % x)

is a solution of (4.8) and yy is linearly independent of y;.
It is easy to see that if yg = yp(x) is a solution of (4.8), then so is /—1yg =: iyp. Hence,

1 A3
= =1 = — XM — —, =, —
y2 = y2(x) =iyo(x) = ~/—xe (2 + 25" 5 x)

is also a solution of (4.8) linearly independent of yj, since y; and yq are linearly independent.
Therefore, the general solution to (4.8) is given by

h(x) = Asy1(x) + Bsy2(x)

Y 1 A3
= Ase” U<25 2 X)-I—Bs\/—xexM(E—i-—,—;—x)’

where Ag and By are arbitrary constants.
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Thus,

A1 872
g(2) = h(x) = Ae /U (‘ : )

252 o2
Voz sa2 (1 A 3 872
B__Z/UM_ _’_;_ 9
T (2+25202>

which gives

2 2
Vi) = e Fig(z) = Age POt exp{_M}U< r L M)

o? 2872 o?
2
e ) exp {_é(u +a) }
o

+ Bge 3

o
Y EREA LGy
2282 o2
= Alh1(u) + B ha(u),

where A* = A;e P and B* = Byv/8eP% /o are arbitrary constants,
s s y

() = exp{—(ﬂu n 5(”0#)2)}0(;—3 > ‘S(“G#)z> (49)
and
hg(u)=(u+a)exp{—<,8u+8(ua#)2)}M<%+2%,%;(S(ua;;l)Z) (4.10)
Hence,
b = = [ W) dy = —ATH ) — B o), @.11)
where '

H1<u>=/ 7 (y) dy, Hz(u)=/ ha(y) dy,

u

and the constants A¥ and B{ can be determined from the boundary conditions satisfied by
s (u).

To determine the coefficients A¥ and B, note that H{ (u) = —hy(u) and Hj(u) = —h3(u)
and, hence, H{'(u) = —h/(u) and H}/(u) = —h/,(u). Furthermore, from (4.6), (4.9), (4.10),

and d
—U(a,b;x)=—aU@a+1,b+1; x),
dx
we obtain
280 02 (A1 8a?
") = — == 7801/0U_’_;_
1 (ﬁ+02>e 25°2 o2
A —50{2/0'2 A 3 8(12
_ = Ul1+=,=; —
o2° T2 52
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and
1 A 3 802
h/ 0) = _5()[2/0,2M 1 A5 S
20) =e 2T 2% 2 2
200\ a2, (1 X 3 8a?
_ - M|l=-+—, = —
a(ﬁ+ 2>e 2+252 o2
2028 + 2) e—d0?/0? g 3+i § ai
302 2 28" 2° o2
Thus,
28« A1 a2 ra A 3 a2 2, 2
HNO :_h/ 0 = 5 U _’_;_ _U 1 _,_;_ —da /0’
/(0) = =1, (0) Kﬁ+ﬂ) Qsztﬂ)+02<-+%2 ﬁ)}
and
28« 1 A 3 82 2, 2
H!(0) = —hh(0) = et IS V4 (Al IS
1(0) = —hj(0) P@+GJ ] Q+%2(ﬂ}
_ 226+, (3 %5 5& e—00?/0?
302 202872 :
Moreover, ,
A1 da
H{(0) = —h1(0) = —e /7"y [ 2~ 22
1(0) 1(0) e 353 o2
and

1 1 3 8a?
Hz’(()) =—h(0) = _ae—3a2/02M<5 + 55 5; ?)

From (4.2) and (4.11), the last two boundary conditions for vs(«#) reduce to
AZH\(0) + B Hy(0) =0,
102 (AXH{ (0) + B} H} (0)) + c(A H{(0) + B} H}(0)) = A.

Thus, by solving the equations, we obtain

A H>(0 6012/02 —AH: (0 50(2/(72
ATZL and BS*ZL’
s D; s Dy
where
o? (1 A 3 8a?

Di=HO)=M(z+2,2: 2 )+ H
1 1O —M{ 5+ 2. 5 02>+ 10—

A A 334
+m@§-(+ “)

28+ A A S
ot(+)M<3+ 5.0()

28" 2

Similarly, the ruin probability 14 (u) takes the form

mw=—/ i) dy = —AqHy () — BaHa (), @.12)
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where the constants Ag and By can be determined from the boundary conditions satisfied by
Yqa(u). In doing so, by (4.3) and (4.12), the last two boundary conditions for 4 () reduce to

AqgH1(0) + BaH>(0) = —1,
102(AqH{ (0) + BaHj (0)) + c(AqH{(0) + BaH}(0)) = —A.

Thus, the coefficients Aq and By for ¥/q(u«) are given by
1 2,02 1 1 A 3 8a?
Ai = — | =xH>(0 Sa”jo” _ 2M - — .=
d Dl( 2(0)e Mt e
1, 3 A 5 8a?
— -G+ M+ =, 2 —
3 G+ <2+ X )

and
1 A 3 Sa?

1 2, 2
Bi=—|—zraU( 1+ ==, > — ) + AH1(0)e®* /77 ).
d Dl( 2" <+25 2 02)+ 10)e )

To end the paper, we use numerical examples to illustrate applications of the explicit solutions
and the effects of the interest force § and the diffusion volatility o on the ruin probabilities ¥ (u),

Vs (u), and Yq ().

Example 4.1. Assume that the claim sizes are exponentially distributed and that ¢ = 103,
A =100, 8 =1, and o = 0.8. We calculate the values of v (u), ¥s(u), and {q(u), using the
formulae derived above, for § = 0.105, 0.085, 0.065, 0.045, 0. When § = 0, by Equations (6.4)
and (6.17) of Dufresne and Gerber (1991), we have

V() =cre”"" + ce™",
Ys(u) = cje™ " +czem ",

Ya(u) = e 4 e,

where
Cl_rl—ﬁ r Cz_rz—ﬂ ri
B ri—r’ B ra—r’
¢t =cp —cf, S =cy—cS,
cdzrl_'B Cdzrz—ﬂ
Yorn—n’ 2T

and rq and r; are the solutions to the equation A /(8 — r) + %ozr =c.

In Tables 1-3 we present the values of these ruin probabilities for selected values of u. The
calculations were performed using MATHEMATICA®. From the tables, we see that the ruin
probabilities ¥ (1) and ¥4 (#) decrease as u and § increase and that the dependence of ¥ (#) on §
is strongest for small values of u. On the other hand, the behavior of 1¢(u) differs from that of
both ¥ (u) and q(u). For example, 1/5() is not a decreasing function of # and §.

Example 4.2. Assume that the claim sizes are exponentially distributed and that ¢ = 103,
A =100, 8 = 1, and § = 0.03. We calculate the values of (1), ¥s(u), and ¥q(u), using
the formulae derived above, for o = 1.2, 1.0, 0.8, 0.6, 0.4, and present the ruin probabilities
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TaBLE 1: Effects of interest force on the ruin probability ¥ (u).

¥ (u)
u §=0.105 &§=0.085 &8=0.065 &=0.045 §=0
0 1.000000  1.000000  1.000000  1.000000 1.000000
0.001 0.987379 0987993 0988672 0.989446 0.991984
0.005 0.963270 0.965056 0.967035 0.969284 0.976671
0.01 0.955781 0.957931 0960313 0.963021 0971914
0.055 0.952201 0954526 0.957100 0.960027 0.969 640
1 0.910692 0915029 0919835 0.925300 0.943257
5 0.749126 0.761087 0.774390 0.789574 0.839816
10 0.576690 0.595926 0.617522 0.642414 0.726320
50 0.034760 0.046777 0.063926 0.089242  0.227 340
TaBLE 2: Effects of interest force on the ruin probability v («).
Ys(u)
u §=0.105 &§=0.085 &8=0.065 &=0.045 §=0
0 0.000000  0.000000 0.000000  0.000000 0.000000
0.001 0.262479 0.263091 0.263768 0.264539  0.267069
0.005 0.761860 0.763641 0.765613  0.767855 0.775218
0.01 0913326 0915469 0917843 0.920543  0.929408
0.055 0.949251 0951569 0.954135 0.957053 0.966 636
1 0.907871 0912195 0916986 0.922434  0.940335
5 0.746806 0.758730 0.771991  0.787128 0.837215
10 0.574903 0.594080 0.615609 0.640424  0.724070
50 0.034652 0.046632 0.063728 0.088966 0.226 636
TaBLE 3: Effects of interest force on the ruin probability ¥4 (u).
Ya(u)
u §=0.105 6=0.085 &§=0.065 &=0.045 §=0
0 1.000000  1.000000  1.000000  1.000000 1.000000
0.001  0.724900 0.724902  0.724904  0.724907 0.724915
0.005 0.201410 0.201415 0.201422 0.201429 0.201453
0.01 0.042455 0.042462 0.042470 0.042478  0.042506
0.055 0.002950 0.002957 0.002965 0.002974  0.003 004
1 0.002821 0.002834 0.002849  0.002866 0.002922
5 0.002320 0.002357 0.002399 0.002446  0.002601
10 0.001787 0.001846 0.001913  0.001990 0.002250
50 0.000108 0.000145 0.000198 0.000276  0.000704

833

for selected values of u in Tables 4—6. These calculations were also performed using MATH-

EMATICA.

From the tables, we see that the ruin probabilities 1 («) and ¥q(u) increase as o increases
and that the dependence of ¥ (1) on o is strongest for small values of u, as in Example 4.1.

Furthermore, the behavior of ¥s(u) again differs from that of both ¥ (1) and ¥q(u).
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TaBLE 4: Effects of volatility on the ruin probability ¥ (u).

¥ (u)
u o=1.2 oc=1.0 o =0.8 o=0.6 =04
0 1.000000 1.000000 1.000000 1.000000 1.000000

0.001 0.995211 0.993313 0990116 0.984354 0.974003
0.005 0.981630 0976884 0971236 0.966081 0.964 039
0.01 0.972601 0968560 0.965372 0.963986 0.963 808
0.055 0.962845 0.962682 0.962568 0.962479 0.962416

1 0.930389 0.930200 0.930045 0.929924  0.929837
5 0.803475 0.803104 0.802800 0.802563 0.802393
10 0.665251 0.664723 0.664289 0.663951 0.663708
50 0.117848 0.117389 0.117012 0.116720 0.116511

TaBLE 5: Effects of volatility on the ruin probability s (u).

Ys(u)
u o=1.2 oc=1.0 o =0.8 o=0.6 =04
0 0.000000 0.000000 0.000000 0.000000 0.000000

0.001 0.128448 0.179399 0.265207 0.419898  0.697 769
0.005 0.491507 0.618604 0.769801 0.907567 0.961699
0.01 0.730629 0.838269 0.922886 0.959069 0.963 057
0.055 0.955419 0.957999 0.959586 0.960800 0.961 669

1 0.923929 0925706 0.927164 0.928302 0.929115
5 0.797896 0.799224 0.800313 0.801162 0.801770
10 0.660632 0.661511 0.662231 0.662793 0.663 193
50 0.117030 0.116821 0.116650 0.116516 0.116421

TaBLE 6: Effects of volatility on the ruin probability ¥4 (u).

Ya(u)
u o=12 o=1.0 o =0.8 o =06 o=04
0 1.000000 1.000000 1.000000 1.000000 1.000000

0.001 0.866763 0.813914 0.724909 0.564456 0.276234
0.005 0.490123 0.358280 0.201435 0.058514 0.002340
0.01 0.241972  0.130291 0.042486 0.004917 0.000751
0.055 0.007426 0.004683 0.002982 0.001679 0.000747

1 0.006460 0.004494 0.002881 0.001622 0.000722

5 0.005579 0.003880 0.002487 0.001401 0.000623

10 0.004619 0.003212 0.002058 0.001158 0.000515

50 0.000818 0.000568 0.000362 0.000204  0.000090
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