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Abstract

Some extensions of the basic formalism of stream processing functions are useful to specify
complex structures such as operating systems. In this paper we give the foundations of higher
order stream processing functions. These are functions which send and accept not only
messages representing atomic data, but also complex elements such as functions. Some special
notations are introduced for the specification and manipulation of such functions. A
representation of time is outlined, which enables us to model time dependent behaviour.
Finally, we demonstrate how characteristic operating system structures can be modelled by
timed higher order stream processing functions.

Capsule review

The authors propose modelling communicating systems by higher-order functions on streams,
where a stream is either a finite or infinite sequence of information. Elements of streams are not
restricted to atomic data but can be functions from streams to streams. After giving a number
of useful operations on streams, they go on to outline a method for representing time in such
a way that models at different granularities can be constructed. The authors also give sufficient
conditions to enable one to translate between models at different time scales. Finally, the timed
higher-order stream processing functions are illustrated by modelling certain operating system
structures.

1 Introduction

In computer science, formal techniques show their full strength when applied to
complex system structures. This is because such structures often exhibit peculiar
characteristics due to technical and application dependent reasons. For instance,
when specifying operating systems, concepts like time, resources, individual processes
and their scheduling have to be modelled explicitly. Moreover, programs and
processes occur both as data to be handled and as algorithms to be executed.

Higher order agents are communicating entities that do not only exchange atomic
data, but also send and receive agents. A number of suggestions have been made to
incorporate the passing of processes as messages into the well-known calculi of
communicating systems such as CSP and CCS (Astesiano and Reggio, 1987; Hansen
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and Chao-Chen, 1990; Milner et al, 1989; Nielson, 1989; Thomsen, 1989). We prefer
to follow the concept of functional system models as outlined in Broy (1988), and
extend this approach to 'higher order messages'. Higher order functions are also a
common concept in functional programming.

Higher order functions can be used to specify communicating agents succinctly,
and they provide appropriate models for particular system structures which can
be found, for instance, in operating systems. Operating systems show typical
characteristics of distributed systems because both consist of several processes, which
act in parallel and are coordinated by the exchange of messages. An operating system
receives not only first order messages (like signals, data, etc.), but also programs to
be executed. This can be modelled by higher order stream processing functions. Since
an operating system often exhibits time dependent behaviour, the formalism used
must be powerful enough to express timing aspects.

Modelling operating system structures by stream processing functions is certainly
not a new idea. See Kahn (1974) for an early example, which anticipates many of the
later developments. In the world of functional programming, the advent of lazy
evaluators (Friedman and Wise, 1976; Henderson and Morris, 1976) made stream
processing and interaction possible. The functional implementation of operating
systems is described in Karlsson (1981), Henderson (1982), Jones (1984) and Stoye
(1986). The work of Jones and Sinclair (1989) contains an overview of these and other
approaches.

We acknowledge that full scale operating systems have already been implemented
in functional programming languages (Turner, 1990). In this paper, however, we are
rather interested in the specification of structures that typically appear in operating
systems or other distributed interactive systems. We start by outlining the basic
theory of higher order streams and higher order stream processing functions. Then we
introduce auxiliary notations to manipulate and specify such functions. Next we deal
with the functional modelling of time. Based on the introduced notions we give some
small examples of how to model characteristic operating system structures.

2 Streams and stream processing functions

Let M be a set with a partial order E. We assume 1 $M and write M1 for M U {!}.
Note that 1 represents a pseudo value standing for 'no actual value'. The order E
on M is extended to an order on M1 by denning for all meM:

A stream over M is denoted by Mw. It consists of the finite sequences M* and the
infinite sequences Af°°, which can be understood as mappings from the natural
numbers N to M:

Ma = M*UMco.

We use a few fundamental notations and functions, which are given in Fig. 1. Here,
the law ±:s = < > should especially be noted. For example, the stream <1> can be
written as 1: <> and also as 1: _L : 5 for arbitrary finite or infinite streams s. Note that
this is a property of the function _: _, which is a constructor in the sense of functional
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Fig. 1. Fundamental notation and functions.
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last.x = X
last.(m) — m
last.(m : x) = last, x) = m

- © - : : g>(M) -> A/™-) A/u

5©(m . x) = S©x

concatenation of two streams (infix notation)

for m G M

first element of a stream
for m G M1 (this implies /W.< > = X for m = X)

rest of a stream without first element

for m G M

last element of a finite non-empty stream
if x = ( > v #x = °°
f o r m e A/
for 7M G A/, if x -8- <) A #x < oo

filter operator (infix notation)
for me S1 (this implies S©<) = <) for m = X)
f o r m e M \ 5

Fig. 2. Standard functions on streams.

programming only with respect to elements from M, and not with respect to _L. The
special element 1 must not appear in a stream. This is the reason why we need both
finite and infinite streams.

The set Ma is partially ordered by the refined prefix order £ ; which is defined by
the following axiom for all x,yeMa:

With these definitions, Mm forms a domain, i.e. a complete partially ordered set with
least element < >, provided that ML with the order s forms a domain.

We write M-> N to denote the set of all functions from a set M to a set N, and we
write M-»N to denote the set of continuous functions between two domains Mand
N. Both arrow operators associate to the right. The set M-»N is a domain if we use
a partial order E, such that for all/,g eM-»N:

Fig. 2 presents a collection of well-known functions on streams, which we will use
frequently. The application of a function / to an argument x is denoted by f.x.
Function application associates to the left, so thatf.g.x stands for (f.g).x. Function
application has a higher binding power than all other infix operators, therefore
f.x-H-g.y means {f.x)-Vr(g.y). With the exception of last and _©_, the functions
defined so far are continuous, and therefore also monotonic, with respect to the order

1-2
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^ on Mx and Ma, respectively. Concatenation is continuous in its second argument
only.

We have seen two domain constructing operations, namely _m and _ -»_, which
may be applied repeatedly. Let M and N be domains. A stream processing function is
an element of M-*> N, such that J" has been used at least once in the construction of
both M and N. For a higher order stream processing function we have the additional
requirement that _-»_ has been used at least once in the construction of either M or
TV, or both.

As an example of a higher order stream processing function, consider the function
/, which takes a stream of stream processing functions and concatenates their initial
outputs, i.e. their respective first outputs for the empty input stream:

Similar to typed and untyped ^.-calculus, we distinguish between non-reflexive and
reflexive function domains. A non-reflexive function domain is a domain of the form
M-»N that has been built by finitely many applications of domain constructing
operations. The messages of a function from such a domain always have a strictly
smaller order of type than the function itself. This is not so for functions from
reflexive domains. As an example, consider the reflexive function domain FUN, which
is defined as the least solution of the following equation. Note that we used a third
domain constructing operation here, _ U _, which is similar to set union:

FUN = (M U FUN)a -» (M U FUN)m.

FUN denotes the set of those stream processing functions which take and produce
streams that may contain elements from a basic message set M and functions from
FUN. For instance, the function / defined above is an element of FUN. Moreover,
reflexive domains open the possibility of self-application. The use of reflexive
domains, however, increases the complexity of the semantic model. We will restrict
ourselves to non-reflexive function domains for the rest of this paper since these seem
to be sufficient for all practical applications.

3 Operations on stream processing functions

In this section we introduce a number of useful operations on functions. We start by
describing how functions can generally be defined. Then we introduce notations to
specify stream processing functions. Finally, we treat the class of those stream
processing functions which operate on labelled streams.

3.1 General operations on functions

We view a function/as a mathematical object for which the two sets DOMAIN.f
(the domain of / ) and RANGE./ (the range of/) are defined, such that for every
me DOMAIN./ the function application f.m yields an element of RANGE.f Note
that here we use the word ' domain' in a different sense than in the last section.
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The simplest possible function is the unique empty function v described by:

Another simple function which we may find useful is the mapping from a singleton
set into another one. For all a and b, the function a^-b is defined as follows:

(at+b).a = b.

Let M and N be arbitrary sets. For the rest of this section we will assume that a
function / from M to N is given

fy.M^N.

Two functions with disjoint domains can be joined 'in parallel'. Let/ ':: M'->N' such
that M n M' = 0 (or, more liberally, such that/, m = / ' . m for all m e M n AT). Then
we write/U/' to denote the70m of / and / '

(fUf').m=f.m for meM,

(f\Jf').m=f'.m for meM'.

Another operation which combines two functions is functional (sequential)
composition: given a function g, where RANGE./= DOMAIN.g

g::N-+R.

Then we write f;g for the functional (sequential) composition of/and g

f;g::M^R,

(f;g).m = g.(f.m).

Note the order of application. Functional composition is associative.
Given a set M' £ M, we write f\M. to denote the restriction o f / t o M', i.e. the

function which has domain M' and, within this domain, behaves like/

f\M.::M'-*N,

(f\M).m =f.m for meM'.

Up to now we have seen three operations on functions, namely join, functional
composition, and restriction. These operations take one or more functions and
construct another function as a result. Here we consider it essential that the domain
and range of the resulting function only depend on the domains and ranges of the
argument functions, and not on their graphs.

We now present an example of an operation which changes only the graph of a
function but leaves its domain and range invariant. Let meM,neN. Then the
function resulting from a pointwise change of/is defined by

(f[m i-»-«]). x = f. x if x 4= m,

( / [ ] ) . w = n.
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Note that we could also have denned f[m t-> «] in terms of the operators given so far

3.2 Operations on simple stream processing functions

The operations introduced in the last section applied to all kinds of functions. Now,
we treat concepts tailored to stream processing functions.

Consider arbitrary domains M1 and N-1, and let / be a continuous stream
processing function

f::M°>-»N<°.

For all m e Mx the function f 4,m ( ' / after m') behaves like / after consuming
element m

(f<$m).x=f.(m:x).

For all neN^ the function n <^/('« then/') outputs n and then behaves like/

n4f::Ma-»Na,

(n 4f).x = n:f.x.

As a further overloading, s <^/will be denned for all streams ssNa. Note that in this
case the function _ <̂  _ is not monotonic in its first argument

With these operations we can specify a number of well-known functions in a
convenient way:

• The mtf/?-function, which performs pointwise application of a function to the
elements of a stream. The middle line of the declaration below can be read: 'The
function map./, after taking in a message m, outputs / . m and then behaves like
map .f again.'

map:: (M -> M) -> Ma -* AT

map.f 4,m=f.m <£map.f for meM

map./ -̂  J_ = 1 <? map./

• A simple interactive store, which always records the last data item received. The
special symbol ? denotes a query operation.

f::D^(DU{?}T^Dm

f.d<?=d<f.d

f.d<d'=f.d' for d'eD

f.d<l=

A non-deterministic interactive system is specified as a set of deterministic systems,
i.e. as a predicate on stream processing functions. Every choice of a function that
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fulfils this predicate represents a possible behaviour of the system. The well-known
merge anomaly (Brock and Ackermann, 1981), which arises if non-deterministic
systems are specified by predicates on their input and output histories, is avoided in
our approach. This has been shown in Broy (1988).

The notations presented above are useful in expressing specifications. Consider, for
example, a system that inserts an arbitrary but finite number of special elements / into
a stream. This system can be characterized by the most liberal predicate which fulfils
the following equation. Note that this equation has a uniquely defined weakest
solution. One can read the specification as follows: 'A function represents a possible
behaviour of the system if it takes an input m, then outputs some elements J, then
outputs m, and then represents another possible behaviour of the system.'

P:: (AP -»(M u {v}f) -> B,

P.f=3n€N,g:P.gA(imeM1:f4m = •/" 4 m 4 g).

3.3 Operations on labelled stream processing functions

Often it is convenient to consider stream processing functions with labelled input and
output streams. The labels can be understood as channel or port names. Let M1- be
a domain, which is assumed to be fixed for the rest of this section. Then a labelled
stream processing function is an element of the domain

where / and O are two arbitrary and not necessarily disjoint sets of labels for the input
and output streams, respectively. Since the arrow associates to the right we also write
(/^•M0>)-»O^M<0 for the above domain. Let / be a labelled stream processing
function. We write

IN.f for/,

OUT.f for O.

Moreover, we use the ternary operators _ <̂  _?_ and _!_ 4 _, which are defined as
follows for all input labels ielN.f output labels oeOUT.f and data items m e M 1

f4 Urn is the function defined by {f 4 Hm).s = f.(s[i^-(m:s.i)]),

o\m 4f is the function defined by (o\m 4f).s = (f.s)[o^(m:f.s.o)].

These simple operations on labelled stream processing functions considerably
support the process of writing specifications. For example, an agent zip which zips
two streams together can be defined as follows:

zip::{{x,y}^M<°)^{r}^M°,

zip 4 xlm 4 yim' = r\m 4, r\m' 4 zip.

Note that an expression like f4 xlm 4 yim' does not impose any order on the
processing of messages which arrive at different input ports. For any labelled function
/with {x,y} £ IN.f and x 4= y, we have

f4 xlm 4 yim' =f4 yim' 4 xlm.
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Proof
Let se (IN./-»• Ma) be an arbitrary input channel state and {x,y} s IN.f with x 4= y.
We calculate

ylm').s

= (f< x"m.

= f.((s[x»(
= (f<$y7m'

).(s[y^(m':s.y).
m':s.y)])[x»(m
m':s.y)])[x^(m
m:s.x)])\y^(m'
<! xlm).s

1)
• ( of i»1 .̂ (yyt/ ' i

:s.x)])

• s.y)])

[definition of _ « _ ? _ ]
s.y)]).x)]) [definition of _ <̂  _?_]

[since x 4= y]

[since x + y]

[calculation.above reversed]

Therefore the above theorem holds by extensionality. •

Again, non-deterministic behaviour can be expressed by giving a predicate on
deterministic labelled stream processing functions. Consider, for instance, the
predicate MERGE, which characterizes the set of deterministic merge functions.
MERGE is the weakest predicate that fulfils the following equation

MERGE:: (({*, y] -+ Mm) -»{r} -> M<°) -> B,

MERGE./=3g:MERGE.g A ( V m e M y : f < xlm = r\m < g V ' / < ylm = r\m < g).

As an example of a function which fulfils the predicate MERGE, consider the
function zip defined above.

A basic operation on labelled stream processing functions is the renaming of port
labels. Let /be a labelled stream processing function. For ielN.f and i'^IN.fv/e
define [i'/i]f as the function which acts like/, but with input label i renamed to z"

U {f}) ̂  M») - OUT./+ M°,

We use a symmetric notation to rename output labels, where oeOUT.f and
o'$OUT.f

f[o'/o]:: (IN ./-> MM) ̂ > ((O UT.f\{o}) U {o'}) -> Mffl,
(/[o'/o]).x = (/.x)|0 l /T A(o} U (o'^f.x.o).

Again, let / be a labelled stream processing function, and choose / ' c IN .f and
O' £ OUT.f. We assume that the result of/does not depend on any input channel
from IN .f\I', i.e. that/ .* =f.y if only x\r = y\r. Then/lo. is the restriction of/ to
input ports from / ' and output ports from O'

/ | /
o . : : ( / ' ^Ar)-»0 '^M<°,

W\o)-x = {f.x')\0, where x'::IN./-+ M" such that x'\r = x.

Port names are not only helpful for the specification of individual agents, they can
also be used to describe the connections in a whole network. For functions with port
names, a uniform composition operator _ || _ (called ' connect') can be defined. Our
intuitive view of this operation is that ports with identical names should be connected.
We require that there are not two output ports with the same name. Input ports which
are connected to an output port can no longer be influenced by messages arriving
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from the environment. Assume that two labelled stream processing functions/and g
are given, such that OUT.ff) OUT.g = 0. We write IN for IN.fU IN.g, and OUT
for OUT.fU OUT.g. Then/||g is denned as the least solution of the equations

f\\g:\ (/JV-> M") ^OUT^ M°>,
W\\g)-x=f.(x'\IN f)[Jg.(x'\,Ng) where x' = x\tNXOUT\J((f\\g).x)\INn0UT.

Let us consider a few special cases to obtain a clearer understanding of the connect
operator. First we assume that/and g are independent and feedback free, i.e. that all
four sets IN.f, IN.g, OUT.f, and OUT.g are pairwise disjoint. Then/||g is simply
the parallel composition of / and g, which can be expressed by a non-recursive
eo.ua tion

(f\\g)-x=f.(x\IN,J)Ug.(x\INg).
Next we consider the case that (some of) the output channels of/ are connected to
g, but that there are no feedback loops. Let IN.f, IN.g, OUT.f, and OUT.g be
pairwise disjoint, with the exception that OUT.f ft IN.g =i= 0. Then/|| g can be seen
as the sequential composition of the agents/and g. Again, a non-recursive equation,
which is derived from the definition of _ || _ by unfolding, is sufficient to express this

W\\g)-X = / (x\IN.f) Vg.((f.(x\IN f))\lN.gn0UT fU4lN.g\OVT /)•

If we furthermore require OUT.f= IN.g, then we even obtain

if\\g)\'0
Nvlg=f;g-

Finally, the special case of a simple (one-channel) feedback loop is treated. Let
IN.f[\0UT.f= 0, and take ielN.f, oeOUT.f. We write f[i+-o] to denote the
agent obtained from / b y connecting output port o to input port i. The definition of
f[i<-o] uses the empty function v as a dummy argument for the binary connect
operator

v f[i :: ((IN.f\{i\) -+ Ma)-» OUT.f^ Ma,

As an alternative, f[i*-o] can also be described as the least function which fulfils the
following system of equations

(J[i^o]).x = y where y =/.(* U (i^y.o)).

An example of a network of labelled stream processing functions will be given in
section 5.

4 Timed stream processing functions

The modelling of time in an interactive system requires a number of design decisions
on the particular aspects which should be expressed in the model. Our approach is
very simple, but it is nevertheless powerful enough to support the description of a
number of interesting time dependent interactive systems.

4.1 Basic definitions

In our model we assume a global discrete time, where in every time interval at most
one message can be sent or received. This may be understood as a restriction of the
maximum data transfer speed of the channels. Each element of a timed stream
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represents the (single) communication event on a channel during one time interval. If
the rth element is a message meM, then m has been sent onto the channel during the
rth time interval. If the rth element is the special symbol J (called 'tick'), then no
proper message has been sent. We require J$M and write MJ for M\) {•/}. A timed
stream is an element of {MJ)a, for which we write M\ Such a stream represents the
(finite or infinite) timed history of the communication on some channel.

For the rest of this section we will assume that the partial order ^ on MJ is the
identity relation, i.e. that there are not two elements in MJ which are non-equal but
comparable. This implies that (MJ)L is a flat domain, and that the refined prefix order
E on Mx actually is the 'standard' prefix relation.

Since our model reflects a global notion of time we require that the output history
is fixed for a time interval of length n as soon as the input history is known for this
interval. Hence a timed stream processing function is a continuous function/which
operates on timed streams and has the time progress property

We call / a synchronous function if in every time interval the output for exactly this
interval is determined, i.e. if input and output always have the same length

MxeMz:ff.x = #x.

Similarly,/is called an output delayed function if at least a bit of its future behaviour
is known in advance for all finite input streams

VxeMx:#f.x>#xV#f.x = oo.

Our intuitive understanding is that output delayed functions model systems which
have a certain delay or propagation time.

The above concepts will also be applied to timed labelled stream processing
functions. For this class of functions, the time progress property has the following
form. Note that infinite output must be produced by a timed function / with
IN .f = 0. This is an immediate consequence of the definition below if we state that
min 0 = oo

Vxe(iN.f->M*),oeOUT.f:f.x.o^ min{#x.i\ieIN.f}.

A timed labelled stream processing function is synchronous if each output stream has
exactly the length of the shortest input stream

Vxe(IN.f^Mz),oeOUT.f:#f.x.o = min{#x. i\ieIN.f}.

Finally, a timed labelled stream processing function is output delayed if each output
stream is strictly longer than the shortest input stream, or infinite

Vxe(IN.f^-MT),oeOUT.f:#f.x.o> mm{#x.i\ieIN.f}v#f.x.o = oo.

When specifying timed systems, we have to be careful to establish the time progress
property. For instance, the standard function tl is not a timed function since it
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decreases the length of its input stream. A timed version of tl would replace the input
stream's first element with a time tick. Our intuitive understanding is that the timed
function ttl is idle during the first time interval, and from then on copies its input to
the output channel

M/::AT-»M\

ttl = J< tl.

Sometimes we want to write a specification in which some output is produced step by
step. Then the following operations 3 (for ' initial') and 5R (for ' remainder') can be
employed

3 . / = hd. ( / .<» ,

W-/ = / ; / / .

Note that 3./<? 9?. /=/for all output delayed stream processing functions/. See
section 5 for an example of the use of these operations.

4.2 Connecting timed functions

Shifting our attention from single functions to networks composed of functions, we
now investigate the various composition operations. It is easy to see that sequential
composition of synchronous and output delayed functions yields functions of the
same respective class. Parallel composition preserves both the time progress and the
output delay property, but not synchronicity, in general. The feedback of an output
delayed function is output delayed again. This is an important observation, since it
guarantees that a whole network of functions is output delayed if only the component
functions are. Hence output delayed networks can easily be specified in a modular
way.

On the other hand, the standard feedback operator applied to a synchronous
function yields as result a function which does never produce any output, so that
it certainly does not fulfil the time progress property. This problem can be remedied
by using explicitly 'delayed' operators. For example, consider an alternative feedback
operator which 'initializes' the feedback loop with a time tick. We define /[/•«- o]
for IN.f(\OUT.f= 0, ielN.f, oeOUT.f as the least function which solves the
following equations

f[i to]:: ((IN .f\{i}) ̂  AT) -» O UT.f^ M\

(f[ito]).x = y where y =f.(x U (i»(J:y.o))).

Let the function g be defined by g.y =f.(x[) (ih+(J:y.o))). The delayed feedback
operator has some interesting properties

(1) f[i<-o] is synchronous for any synchronous function/.
(2) f[ito] is output delayed for any output delayed function/.
(3) f[ito] is timed (has the time progress property) for any timed function/.
(4) The function g has a unique fixed point for any synchronous function /.
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Proof of (1)
Let y' be an arbitrary fixed point of g. For all o'eOUT.fwe calculate

#y'. o' = #(/. {x U (i>-> (/ : / . o)))). o' [definition of g]
= min {#(x U (iH> (y :_>/. o))). i' \ i' eIN.f} [f is synchronous]

= min ({#x. i' \ i' e IN ./\{*}} U {1 + # / . o}) [range splitting]
= min {#x. i' \ i' e IN.f\{i}} [see below].

The last step is valid because the assumption 1 + #y'.o < min{#x.i'\i'eIN.f\{i}}
leads to a contradiction: let o' = o. Then #y ' .0=1 + #y'. o by the first three steps of
the calculation above and the assumption. This implies \ + #y'.o = oo, which is a
contradiction because oo can not be strictly smaller than any value from the range of
min. Thus we have shown that all output streams have the same length as the shortest
input stream, which implies (1) by the definition of synchronicity. Note that we took
y to be any fixed point of g, not necessarily the least one. This will be important in
the proof of (4). •

Proof of (2) and (3)
Analog to the above. •

Proof of (4)
Note that the functions used in the definition of g are continuous, hence a least fixed
point y exists. By the proof of (1) we know that #y .o' = #y'. o' for all fixed points y'
of g and all o'eOUT.f. If we had y + y' then y and y' would not be comparable,
so that y could not be the least fixed point. Hence y — y' must hold. It should be
noted that proposition (4) is only valid because we assumed that (MJ)L is a flat
domain. •

A property corresponding to (4) does not hold for output delayed functions (and
therefore neither for general timed functions). Consider, as a counterexample, the
output delayed function / defined as follows:

if # J C . / < 2 A # J C . I ' = 0,

/ . x = (o i-> (7: x. 0) otherwise.

Now we have that ( / [ J ' - « - O ] ) . 0 " ^ < » =(o!-></», but the infinite channel state
(oH>-<y,y,y,...» is a fixed point of g, too.

The general connect operator _ || _ can also be redefined to insert explicit time
ticks both into sequential composition and feedback. It depends on the physical
characteristics of the modelled system whether or not the insertion of a time tick
between two sequentially composed functions is appropriate. Such an operator,
however, does not maintain synchronicity, i.e. it will generally turn synchronous
functions into non-synchronous ones.

The exclusive use of output delayed functions seems to be a convenient way to
avoid these specially defined operators. If the time scale is chosen fine enough, the
causality between input and output is modelled appropriately, and more information
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is maintained. On the other hand, one could argue that the use of output delayed
functions introduces unnecessary details (namely, explicit delay times) into a
specification. This is a valid point. We will investigate how one can abstract from
detailed timing information in the next section.

There is another problem that arises when composing timed stream processing
functions: our basic assumption was that every element of a timed stream represented
a certain fixed time interval. However, it is well possible that two timed functions have
been designed to work with 'different speeds', i.e. on different time scales. (Note that
this does not necessarily mean that the length of an interval is given in, say,
microseconds). It is obvious that we can not just connect these functions without first
converting them to a uniform time scale.

We will first tackle the problem of adapting single streams to different time scales.
A timed stream is easily converted to a finer time scale by inserting a certain number
of ticks before each element. For every ieN, the function expand.i performs this
scaling by a factor of /+ 1

expand:: N -> MT -» M\

expand. i4Lm = Ji<^m4, expand, i.

The converse operation is a bit more complicated: for every time interval represented
by / + 1 elements on the finer time scale, any one message which occurred during this
interval should be produced, if at least one such message exists. We make an arbitrary
decision by defining that compress takes the first proper message from every time
interval, or delivers a time tick if no such message occurred in a complete interval

compress:: N -»• MT -» MT

compress.i.x = <> if #x ^ / A M © * = <>

compress.i.x = (hd.(M©x)} if #x < / / \ M © x 4= < >

compress.i.((m0,...,mty-H-x) = hd.((M©<w0,...,w(»-H- <7»:compress.i.x.

The following proposition can easily be proved by induction on the structure of x:

V / € N, x £ Mz: (expand. i; compress .i).x = x. (*)

It is clear that compressing a stream, i.e. adapting it to a coarser time scale, may cause
many data elements to be lost if there is not enough 'time' between the individual
messages. A sufficient (and more than necessary) condition that compressing a stream
by a factor of/'+ 1 will not lose any messages is that the minimal space between two
messages is at least /. We define the function minspace such that for a timed stream
xeMx, minspace. x is the shortest interval of ticks between two messages in x

minspace:: Mz -+N U {oo},

minspace.x = min{ieN \3ye(MJ)*,m, w'eM:j>-H-<m>4f /(-H-<m'> ^ 3c}.

In the definition above we used the refined prefix order c just as a convenient
substitute for the standard prefix relation. No data will be lost by compressing a
sufficiently sparse stream

V;e M, xeM*: minspace. x ^ /=> M © compress .i.x = M©x.

Having defined how streams are converted between different time scales, it is now
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14 M. Broy and C. Dendorfer

easy to state operations which perform the corresponding adjustment on functions.
Here, the operator _f_ (read 'scale up by') adapts a function to an environment
which works on a finer time scale, and _ j _ (read ' scale down by') is the converse
operation

/ f / = compress .i;f; expand, i,
f[ i — expand. i;f; compress. i.

With the up- and downscaling operations we may combine timed functions which are
based on different time scales by speeding them up or slowing them down in an
appropriate way. As an immediate consequence of (•), we obtain the proposition

VieN,xeMx:(fU)li=f- (**)

Note that the converse of (*•), namely (f\,i)\i = / , does not hold in general. This
problem will be addressed again in the next section.

Obviously, both the upscaling and the downscaling operations preserve the time
progress property. Moreover, an output delayed function remains output delayed
under upscaling, and a synchronous function remains synchronous under down-
scaling. Note that upscaling in general does not preserve synchronicity, and
downscaling does not preserve the output delay property.

4.3 Time scale conversion as a means of abstraction

An important feature of a good specification formalism is that it allows us to view a
system at different levels of abstraction. One method of abstraction is to convert the
behaviour of a timed function to a coarser time scale. Hence the downscaling
operator _ \ _ can also be seen as an abstraction operator.

When applying the abstraction operator to some function / , we have to be careful
that no essential information is lost. In the following we will state conditions on / ,
which ensure tha t / i s a proper candidate for time abstraction.

Remember that compress. i only takes the first message from an interval of length
i+1, and discards subsequent messages. Since we do not want to lose any messages,
the first informal requirement is

(1) If supplied with a sufficiently sparse input stream, / produces a sufficiently
sparse result stream.

Now assume that the abstracted version of/receives some message m as an input. On
the finer time scale, we really should consider all of the i+ 1 intervals (of length i + 1)
which contain / ticks and the message m, thereby obtaining a possibly non-deter-
ministic abstraction. However, our deterministic downscaling operator just selects
one of these /+ 1 intervals, namely the one which starts with m. Thus we would again
lose information if this arbitrary selection actually had any effect observable in the
coarser time modelling or, in other words

(2) If the input stream is sufficiently sparse, then the behaviour of/ as seen on the
coarser time scale, only depends on those properties of the input which can also
be observed on the coarser time scale.

We start to formalize these requirements by defining an equivalence relation ~(
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(called ' /'-space equivalence ')• Two streams x, y e Mx are /-space equivalent iff they are
equal on a time scale which is coarser by a factor of /+1

x ~ty = compress.i.x = compress A.y.

A function/is called i-stable iff the following formal translation of the requirements
(1) and (2) holds for all streams x,yeM*

minspace. x ^ i=> minspace . (/. x) ^ / A (1)
(minspace. x ^ i A minspace .y ^ / A x ~,y) =>/. x ~tf.y. (2)

It is easy to see that, in the context of time abstraction,/does indeed always receive
sufficiently sparse input streams due to the properties of expand. Thus, for an /-stable
function /, the downscaling f[ i can be understood as a proper deterministic time
abstraction.

The notions introduced in this section to support time abstraction can also be used
to express converse versions of last section's propositions (*) and (**). Let/be an
/-stable function. Then, for all xeMT and ieN, these implications hold

minspace. x > i=>(compress.i;expand.i).x ~ , x ,

minspace. x ^ / =>((/!/)f /). x ~(f.x.

The possibility of switching back and forth between different time scales is vital both
for the composition of timed functions and for the abstraction of lower level details.
As we already mentioned in the last section, downscaling/abstraction need not
preserve the output delay property, so that the already mentioned problems with
feedback arise again. It is an interesting open question to find an abstraction method
which guarantees that abstracted functions maintain the time progress property even
under feedback.

4.4 The stability of functions

In the last two sections we saw that agents operating at different (but constant) speeds
could easily be connected, and we introduced the notion of stability to denote a
function which showed a similar reaction to a whole class of possible input streams.
We will now merge the two concepts to characterize agents that are 'well-behaved'
even for changing input speeds, if only certain timing constraints are met.

Consider, for example, an agent receiving keyboard input from a human operator.
This agent will normally just echo its input. However, there should be some idle time
after each arriving message to mask key bounces. Also a special timeout message mt

should be sent to, say, a screen saver if no proper input has arrived for some time. The
function/. 1 defined below represents such an agent with an idle time of one unit and
a timeout threshold of nine units

f.n <§7 =
f.n^J = mt<f.(n+\) if « = 9

. 1 forweM, ifw+1
for meM, if n = 1

= ! <§/.«
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16 M. Broy and C. Dendorfer

What does it mean that a function behaves 'similarly' for two input streams? The first
requirement (1) is that there are the same (proper) messages in both result streams.
However, this is not enough because we want to distinguish, for instance, a function
that immediately outputs a message from a function which outputs the same message
only as a reaction to some input. Therefore, the two input streams will be partitioned
into time intervals, such that every time interval (except the first one) starts with a
message, and from then on contains ticks only. We state as a second requirement (2)
that the same messages are produced during corresponding time intervals. Given a
function/, two streams x j e M 1 are f-equivalent (written x ~fy) iff the two conditions
are satisfied

A (1)

V x' ,y' e{MJ)*,m,rri e M:{#{M ©x') = #{M ©y') A

' = M©f.y'. (2)

We want to describe functions that show a similar reaction to input streams which
have at least a spacing of i and at most a spacing of k. Here, i may be seen as the
minimum required distance between two messages, and k as the maximum allowed
distance. The auxiliary function maxspace returns the maximum number of
consecutive ticks in a finite stream

maxspace:: {MJ)* -»• N,

maxspace. x = max {ie M 13 y e (MJ)*:y -H- •/* ^ x}.

A function/is called /, k-stable for natural numbers i and k iff all finite streams which
carry the same messages and fulfil the timing requirements are /-equivalent, i.e. iff the
following implication holds for all x,ye(MJ)*. Here we assume that m is an arbitrary
element of M. The use of m is merely a coding trick to ensure that minspace will also
consider initial and trailing sequences of ticks

(M© x = M©y A minspace. «w> 4f x -H- <w» > / A maxspace. x < k A
minspace. «w> -H-y -H- <w» > i A maxspace .y ^ k) => x ~{y.

Note that we defined i, ̂ -stability using only finite streams to avoid some technical
problems. This is sufficient as long as we restrict ourselves to continuous functions
since such a function is '/, oo-stable' iff it is /, ^-stable for all keM. There are some
obvious consequences of the above definition

(1) Every function is i,/-stable for all ieM.
(2) An i, /ostable function is also i', ik'-stable for i ̂  i' and k' ^ k.

We can characterize a function/by giving its stability regions, i.e. a partition of the
natural numbers such that/is i, ^-stable (for i ̂  k) iff / and k are in the same stability
region. For example, the (single) stability region of the identity function is M. The
keyboard input agent / . 1 defined above has the three stability regions {0}, {1,..., 8}
and {9,...}, corresponding to its three kinds of behaviour (deletion of input during
idle time, normal operation, timeout). If we changed the agent such that repeated
timeouts were produced, we would get extra stability regions representing those input
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streams for which one, two, three, etc., timeouts occur after every keyboard input. So
the concept of stability allows us to investigate the time dependent properties of a
function.

5 Modelling operating system structures

The modelling of operating system structures is a real test for a specification method.
This is because many ' low level' concepts like time and shared resources have to be
described. As a first example, we give the definition of a simple processor. This is an
interactive system that takes a stream consisting of processes (modelled by functions)
and input data. An arriving data element is fed into the current process, and one
element of output is produced. An arriving new task replaces the current one. We will
now define a function/, which represents such a multiplexing processor. Note that we
expect/'s first argument and all incoming functions to be output delayed, otherwise
/ may just deliver a partial result

/ : : (AT -» AT) -+ ((AT -» AT) U MJf -» M\

f.g<d=Z.g<f.{%.g<d) for deM',

f.g<$h = J <f.h for heMx-»M\

The arrival of a new task can be viewed as an interrupt. When this happens, both the
old process and any pending outputs are lost. Since this is not a desirable behaviour,
we will enhance our simple processor with a waiting queue for tasks. A newly arriving
process is just added to the queue. Upon termination of the current task the next
waiting process is started.

We will model the termination of a process by a predicate finished on tasks, which
is true iff a task is completed

finished:: (AT -» AT) -> IB.

For instance, we could require that every task sent a special message mc after
completing its job, and define

finished, g = 3 . ^ = mc.

Then a processor with a queue of tasks is described by the function /, where

/ : : (AT -» AT)* -+ ((AT -» AT) U M0° -•> M\

f-(g-<})=f-<l if finished. g,

f.(g:q)<d=3.g4M(9l.g<td):q) for deM', if --finished, g,

for heMz-»M\

for deMJ,

Up to this point we have restricted our attention to stream processing functions that
were small enough to be defined and understood without a descriptive formal
specification of their behaviour. We will now show how a function can be specified
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by a predicate on its input and output streams. Such a descriptive specification is
useful because it allows us to talk about the behaviour of an agent without
anticipating its implementation. Thus we separate the two concerns of what an agent
should do versus how this is achieved.

Again we consider a multiplexing processing unit, which is now separated into the
processor proper and a scheduler. For simplicity, we assume that a set T of tasks is
given, which carry all input and output data with them, so that there is no need for
additional data items. We require that (TJ)L is a flat domain. Furthermore, a
predicate finished is needed, which tells us whether or not a task is completely
evaluated

finished r.T^B.

The different priority levels of tasks are modelled by a total pre-order ^=, such that
for t,t' eT,t ?= t' holds iff t has at least the same priority level as t'. This pre-order is
extended onto TJ by defining t =̂ J and J % t for all t e T. This means that the special
message •/ has a strictly lower priority level than any task

The whole processing unit is a timed labelled stream processing function, which is
defined as a network of two other functions, namely the scheduler/and the processor
g (see Fig. 3)

unit:: ({new} -> JT) -»{result} -> T\

We will not describe the processor g in detail. Our intuition is that g is an output
delayed agent which accepts unfinished tasks, manipulates them in some way, and
produces either finished results or tasks that require some more processing

g:: ({process} -» T) -»{old} -> T\

Our aim is to give a descriptive specification of the scheduling function /

/ : : ({new, old} -> Tz) -»{result,process} -»• Tx.

The scheduler is a synchronous agent which receives tasks on its input channels,
stores the tasks if necessary, and sends the finished ones to the result channel and the
unfinished ones back to the processor. Tasks with higher priority levels are sent first.
The following list describes these requirements in a more exact, but still informal way.
The requirements (4) and (5) would have to be strengthened if non-synchronous
scheduler functions were permitted

(1) Only those tasks are produced as output which have been received as input.
(2) No finished tasks appear on the process channel.
(3) No unfinished tasks appear on the result channel.
(4) If there are pending finished tasks (i.e. finished tasks on the input channels

which have not been output so far), then the last output on the result channel
is a task which has at least the same priority level as these.

(5) If there are pending unfinished tasks, then the last output on the process
channel is a task which has at least the same priority level as these.
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new

oldf

Scheduler/ J
process Processor g

result

h
Fig. 3. A processing unit.

Note that a specification does not have to cover all possible input cases explicitly. For
example, when thinking about the scheduler, we find it convenient to restrict our
attention to finite input streams with equal length. We will later see that, as soon as
the scheduler's behaviour is fixed for these inputs, its behaviour for all input streams
is uniquely defined because of monotonicity and continuity (*).

A possible translation of the informal rules given above into a formal specification
is that a scheduler is a synchronous function / such that the following implication
holds for all xe({new,old}-* T*), and for all te T. Generally, we do not require that
there is only one function which meets a given specification. In fact, there exist many
scheduler functions because our specification does not restrict the order in which two
pending finished (or unfinished) tasks with the same priority level appear on the
output channels

#x. new = #x. old A #x. new < oo A #x. old < oo

#({t}©x.new) + #({?}©x.old) ^ #({/}©/.x.result) + #({t}©/.x.process) A (1)

finished.t =>{t}©/.x.process = <> A (2)

-^finished.t =>{/}©/.x.result = <> A (3)

(pending. t A finished. t) => last. (f. x. result) > t A (4)

(pending. t A ->finished. t) => last.(f.x.process) ^ t. (5)

Here we used pending. t as an abbreviation of the formula

#({i]©x.new) + #({t}©x.old) > #({t}©/.x.result) + *({t}©/.x.process).

Now the following formal version of proposition (*) will be shown: let/and g be two
scheduler functions such that #x'. new = #x'. old < oo implies f.x'=g.x' for all
input channel states x'. Then/= g.

Proof
Take an arbitrary input channel state x e ({new, old} -> Tz), and let

n = min {#x. new, #x. old}.

First we will consider the case n < oo. Let x' = (new^-y) U (old^-z) such that
y £ x.new, #y = n and z c x.old, #z = n.
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Note that #x'. new = #x'. old < oo, so/, x' = g. x' holds. It only remains to show that
/ .x' = f.x (and, symmetrically, g.x' = g.x)

#/. x'. new = n = %f.x. new [f is synchronous]

#/.x'.old = n = #f.x.old [/ is synchronous]

f.x' E/ .x [/is monotonic, and x' ^ x]

f.x' =f.x [from lines 1-3, since (TJ)L is a flat domain].

Thus we have shown f.x = g.x for all finite input channel states x. Since/and g are
continuous functions, their behaviour for the case n = oo only depends on their
behaviour for finite inputs. Hence/= g holds by extensionality. •

It is an interesting observation that, because of the explicit modelling of time, all
progress requirements have already been captured by rules for the finite computations,
together with continuity. Since liveness conditions on infinite behaviours are
notoriously hard to deal with, this is quite a positive effect.

These examples demonstrate that typical concepts of operating systems can be
modelled by higher order stream processing functions. Also, the proof techniques
developed for functional system specification can be applied.

6 Concluding remarks

Higher order stream processing functions are a powerful and flexible instrument for
the specification and modelling of all kinds of systems including operating systems.
In some cases, the explicit inclusion of time is not only necessary, but can even lead
to simpler specifications.

The functional treatment of operating system structures provides a solid foundation
for their specification, modelling, simulation, and verification. In a first case study,
the inter-process communication system of the Multiprocessor Multitasking Kernel
(MMK) developed at the Technische Universitat Munchen has been specified with
the techniques described in this paper (Dendorfer, 1991). Larger, more complex case
studies should be the next steps to obtain additional evidence about the practicability
of these techniques.
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