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Abstract
P-value functions are modern statistical tools that unify effect estimation and hypothesis testing and can provide
alternative point and interval estimates compared to standard meta-analysis methods, using any of the many
p-value combination procedures available (Xie et al., 2011, JASA). We provide a systematic comparison of
different combination procedures, both from a theoretical perspective and through simulation. We show that
many prominent p-value combination methods (e.g. Fisher’s method) are not invariant to the orientation of the
underlying one-sided p-values. Only Edgington’s method, a lesser-known combination method based on the sum
of p-values, is orientation-invariant and still provides confidence intervals not restricted to be symmetric around
the point estimate. Adjustments for heterogeneity can also be made and results from a simulation study indicate
that Edgington’s method can compete with more standard meta-analytic methods.

Highlights
What is already known

• P-value functions unify hypothesis testing and parameter estimation, and are therefore particularly useful
for quantitative reporting of statistical analyses.

• P-value combination methods provide a general framework to perform meta-analysis.

What is new

• P-value functions of different p-value combination methods are compared.
• Edgington’s method has attractive properties:

– Results do not depend on the orientation of the underlying one-sided p-values.
– Confidence intervals are not restricted to be symmetric.

• A simulation study is performed without and with adjustments for heterogeneity. Comparisons with
standard meta-analysis (fixed effect and DerSimonian–Laird random effects) and the Hartung–Knapp–
Sidik–Jonkman method are described.
– The point estimate based on Edgington’s method is essentially unbiased for the mean of a normal study

effects distribution
– Coverage of Edgington’s method is comparable or better than standard meta-analysis, with only slightly

wider confidence intervals
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2 Held et al.

– Confidence intervals based on the Hartung–Knapp–Sidik–Jonkman method have better coverage, but are
also substantially wider

Potential impact for RSM readers

• Edgington’s combination method based on the sum of p-values may complement standard meta-analysis
because of its ability to reflect data asymmetry, its orientation-invariance, and its good operating character-
istics.

• The usage of p-value function methods for meta-analysis is faciliated through development of the R package
confMeta.

1. Introduction

A pervasive challenge in all areas of research is the assessment of evidence from multiple studies.
Standard meta-analysis aims to synthesize effect estimates from several studies into an overall effect
estimate, typically a weighted average of the study-specific effect estimates, combined with an
appropriate confidence interval. Inverse variance weights can be motivated as efficient choices under
homogeneity or heterogeneity between studies1 via either exchangeability or random sampling of
study effects.2 The DerSimonian–Laird (DL)3 approach to random effects meta-analysis incorporates a
measure of heterogeneity into the weights, but does not incorporate uncertainty in the variance estimate
when making inference on the mean of the random effects distribution. This form of weights gives an
estimate that is consistent for the mean of the distribution of study effects,4,5 a natural target of inference
where a symmetric (usually normal) distribution can be assumed.

There has been much progress in proposing alternative confidence intervals for meta-analysis.
The Hartung–Knapp6,7 and Sidik–Jonkman8 approach takes into account the uncertainty in estimating
heterogeneity and tends to produce wider confidence intervals, in particular if the number of studies is
small. The approach by Henmi and Copas9 combines the fixed effect (FE) point estimate with a standard
error from the random effects model, in order to obtain confidence intervals less prone to publication
bias. However, all these intervals are of a simple additive form with limits

point estimate ± additive factor, (1)

so symmetric around the point estimate. This may be reasonable if the number of studies is large or if
there is good reason to assume that the true effect estimates follow a symmetric (normal) distribution
around their mean, but confidence intervals not restricted to be symmetric around the point estimate
may be more suitable if this is not the case. Non-symmetric confidence intervals can show improved
performance in other applications, for example the “square-and-add” Wilson score interval for the
risk difference is non-symmetric and performs better than symmetric confidence intervals.10,11 Also
the nonparametric confidence interval for the median survival time is non-symmetric and performs
better than alternativ parametric and symmetric confidence intervals.12 Other prominent examples for
non-symmetric confidence intervals are nonparametric bootstrap confidence intervals based on the
percentile method,13,14 deterministic bootstrap intervals for odds ratios, risk differences and relative
risks,11 and confidence intervals for a population median or the difference of two population medians.15

In this article we compare meta-analytic methods based on the combined p-value function16,17

or equivalently confidence curve18 and confidence distribution.19,20 Related meta-analytic approaches
based on p-value functions have been proposed in Singh et al.21 They showed that p-value combination
based meta-analysis—approaches that combine p-values of individual studies, such as Fisher’s
method—can be unified with standard model-based meta-analysis under a common framework using
p-value functions. This framework has subsequently been extended22–24 and different methods have
been recently compared for rare event meta-analysis.25 Yang et al.26 consider p-value combination
methods for rare events based on Fisher’s exact test and note in an application to simulated data that
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“the p-value function based on the exact test preserves the skewness” of the original data. This statement
suggests that a desired property of meta-analytic confidence interval is to reflect data asymmetry.
However, the authors did not investigate this feature any further. A related proposal in the meta-analytic
literature is the “drapery plot.”27 This visualization, an alternative to the standard forest plot, shows the
p-value functions of individual studies and of their pooled effect, providing the reader with a wealth of
information as p-values, point estimates, and confidence intervals (at any level) can be easily read off.

We apply these ideas in our article and provide a systematic comparison of different types of p-value
combination procedures28,29 for meta-analysis. Theory and simulation studies are used to compare the
different confidence intervals and point estimates in terms of coverage, bias, width, and skewness.
The results indicate that four of the five p-value combination methods considered have undesirable
properties, only Edgington’s method30,31 based on the sum of p-values can compete with more standard
meta-analytic methods.

2. Methodology

Suppose results from k studies are to be synthesized and let 𝜃𝑖 denote the effect estimate of the true
parameter 𝜃𝑖 from the ith study, 𝑖 = 1, . . . , 𝑘 , and 𝜎𝑖 the corresponding standard error. As in standard
meta-analysis we assume that the 𝜃𝑖’s are independent and follow a normal distribution with unknown
mean 𝜃𝑖 and known variance 𝜎2

𝑖 (the squared standard error). Additional adjustments for heterogeneity
will be discussed in Section 2.3.

Let

𝑍𝑖 =
𝜃𝑖 − 𝜇

𝜎𝑖
(2)

denote the z-statistic for the null hypothesis 𝐻0𝑖: 𝜃𝑖 = 𝜇, 𝑖 = 1, . . . , 𝑘 . We can then derive the
corresponding one-sided p-values based on the cumulative standard normal distribution function Φ(·):

⇀
𝑝𝑖 = 1 −Φ(𝑍𝑖) and ↼

𝑝𝑖 = Φ(𝑍𝑖) (3)

for the alternatives 𝐻1𝑖: 𝜃𝑖 > 𝜇 (“greater”) and 𝐻1𝑖: 𝜃𝑖 < 𝜇 (“less”), respectively. Note that ⇀
𝑝𝑖 is

monotonically increasing and ↼
𝑝𝑖 is monotonically decreasing in 𝜇.

2.1. P-value combination methods

In what follows we denote with ⇀
𝑝• a combined p-value based on study-specific one-sided p-values

⇀
𝑝1, . . . ,

⇀
𝑝𝑘 for the alternative “greater” and likewise with ↼

𝑝• for the alternative “less.” The subscript
“•” is a placeholder for a p-value combination method, abbreviated by the first letter of the last name
of the inventor, where we consider the methods listed in Table 1:

• Edgington’s method,30

• Fisher’s method,32

• Pearson’s method,33

• Wilkinson’s method,34 and
• Tippett’s method.35

The combined p-values ⇀
𝑝• and ↼

𝑝• will inherit the monotonicity property from the ⇀
𝑝𝑖’s and ↼

𝑝𝑖’s,
respectively: ⇀

𝑝• is monotonically increasing and ↼
𝑝• is monotonically decreasing in 𝜇 for any of the

combination methods listed in Table 1.
The p-value from Edgington’s method is based on a transformation of the sum of the p-values

𝑠 with the cumulative distribution function of the Irwin–Hall distribution.36,37 For large k it can be
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4 Held et al.

Table 1. Some methods for combining one-sided p-values 𝑝1, . . . , 𝑝𝑘 from
kstudies into a combined p-value𝑝• (in alphabetic order).

Method Combined p-value

Edgington 𝑝𝐸 = 1
𝑘!
∑ �𝑠�

𝑗=0(−1) 𝑗
(𝑘
𝑗

)
(𝑠 − 𝑗)𝑘 with 𝑠 =

∑𝑘
𝑖=1 𝑝𝑖

Fisher 𝑝𝐹 = Pr(𝜒2
2𝑘 > 𝑓 ) with 𝑓 = −2

∑𝑘
𝑖=1 log(𝑝𝑖)

Pearson 𝑝𝑃 = Pr(𝜒2
2𝑘 ≤ 𝑔) with 𝑔 = −2

∑𝑘
𝑖=1 log(1 − 𝑝𝑖)

Tippett 𝑝𝑇 = 1 − (1 − min{𝑝1, . . . , 𝑝𝑘 })𝑘

Wilkinson 𝑝𝑊 = max{𝑝1, . . . , 𝑝𝑘 }𝑘

Note: The floor function �𝑠� denotes the greatest integer less than or equal to s. A chi-squared random
variable with k degrees of freedom is denoted as 𝜒2

𝑘 .

approximated based on a central limit theorem argument31:

𝑝𝐸 ≈ Φ(
√

12 𝑘 (𝑠/𝑘 − 1/2)). (4)

For 𝑘 = 12, this approximation is considered already “fairly good.”38 In fact, the “sum of 12 uniforms”
method was once a popular way to generate samples from a normal distribution. In order to mitigate
overflow problems of the Irwin–Hall distribution for large k, we therefore use the normal approximation
(4) if 𝑘 ≥ 12.

Tippett’s method is based on the smallest p-value. There is a generalization of Tippett’s method
based on the rth smallest p-value.28,34 For 𝑟 = 𝑘 the largest p-value is hence used and we obtain the
method denoted here as Wilkinson’s method. Another commonly used p-value combination method is
Stouffer’s method based on the sum of inverse normal transformed p-values.39 A weighted version
exists,29 which is equivalent to FE and random effects meta-analysis, if the weights are suitably
chosen.40 FE and random effects meta-analysis will be included in our example (Section 2.2) and in the
simulation study described in Section 3.

Suppose we combine one-sided p-values ⇀
𝑝1, . . . ,

⇀
𝑝𝑘 for the alternative “greater” into a combined

p-value function ⇀
𝑝•(𝜇). The standard point estimate is the median estimate �̂� 41, defined as the root of

the equation

⇀
𝑝•( �̂�) = 0.5. (5)

The Irwin–Hall distribution has median 𝑘/2, therefore the median estimate �̂�𝐸 of Edgington’s method is
the value of 𝜇 where the mean 𝑠/𝑘 of the study-specific one-sided p-values is 0.5. There are even closed-
form solutions for the median estimate based on Tippett’s and Wilkinson’s method, see Appendix A.

In order to obtain a two-sided 1−𝛼 confidence interval [𝜇𝑙 , 𝜇𝑢] for 𝜇 based on a p-value combination
method ⇀

𝑝•, we have to find the roots 𝜇𝑙 and 𝜇𝑢 of the two equations

⇀
𝑝•(𝜇𝑙) = 𝛼/2 and ⇀

𝑝•(𝜇𝑢) = 1 − 𝛼/2. (6)

While in the case of Tippett’s and Wilkinson’s methods there are closed-form solutions for the roots in
(5) and (6) as shown in Appendix A, in general they have to be computed using numerical root-finding
algorithms. Equivalently we can find the two roots 𝜇𝑙 and 𝜇𝑢 of the single equation

2 min
{
⇀
𝑝•(𝜇), 1 − ⇀

𝑝•(𝜇)
}
= 𝛼 (7)

to obtain the 1−𝛼 confidence interval, while maximization of the function on the left side of (7) gives the
median estimate �̂�. Note that the confidence intervals [𝜇𝑙 , 𝜇𝑢] is not necessarily symmetric around the
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median estimate. The left-hand side of (7) has been coined the centrality function22 and is also known
as the confidence curve. Berrar42 has proposed to use the area under the confidence curve (AUCC) as
a summary measure of precision. We note that Schweder and Hjort43 define the confidence curve as 1
minus the left-hand side of (7), in which case AUCC is no longer a useful summary measure.

We may also use ↼
𝑝•(𝜇) (based on the one-sided p-values ↼

𝑝1, . . . ,
↼
𝑝𝑘 for the alternative “less”) rather

than ⇀
𝑝•(𝜇) to compute a point estimate with two-sided confidence interval. Ideally this should lead to

the same results, but this is only the case for Edgington’s method. The other combination methods will
generally lead to different results depending on whether the input p-values are oriented “greater” or
“less” due to the following relationships between combined p-value and input p-value orientation:

⇀
𝑝𝐸 = 1 − ↼

𝑝𝐸 , (8)
⇀
𝑝𝐹 = 1 − ↼

𝑝𝑃 , (9)
⇀
𝑝𝑃 = 1 − ↼

𝑝𝐹 , (10)
⇀
𝑝𝑇 = 1 − ↼

𝑝𝑊 , (11)
⇀
𝑝𝑊 = 1 − ↼

𝑝𝑇 , (12)

see Appendix B for a proof. For example, equation (9) implies that the combined p-value function
based on Fisher’s method and one-sided p-values for the alternative “greater” is 1 minus the combined
p-value function based on Pearson’s method and one-sided p-values for the alternative “less.” However,
in practice the ultimate goal is to compute a point estimate with two-sided confidence interval, so the
direction of the alternative of the underlying one-sided p-values shouldn’t matter. But this is only the
case for Edgington’s method due to property (8).

In principle, we may also use two-sided p-values in any of the combination methods listed in
Table 1, to circumvent the lack of orientation-invariance of Tippett’s, Wilkinson’s, Fisher’s, and
Pearson’s method, but this comes with new problems. Specifically, the combined p-value function of
Fisher’s, Pearson’s, and Edgington’s method based on two-sided p-values may then no longer peak at
1, which means that confidence intervals on certain confidence levels may be empty sets. In contrast,
the combined p-value functions of Tippett’s and Wilkinson’s method will peak at 1, but will have
several modes at the study-specific point estimates. This may lead to confidence sets consisting of non-
overlapping intervals, which are hard to interpret and not useful in applications.

2.2. Example: Association between corticosteroids and mortality in COVID-19 hospitalized patients

We will illustrate the different methods using a meta-analysis combining information from 𝑛 = 7
randomized controlled clinical trials investigating the association between corticosteroids and mortality
in hospitalized patients with COVID-19,44 see Table 2. We will use one-sided p-values for the
alternative “less” as negative log odds ratios indicate treatment benefit, the results for the alternative
“greater” follow from (8) to (12).

Figure 1 shows that the distribution of the study effect estimates is right-skewed. Such skewness
can be quantified using Fisher’s weighted skewness coefficient45 of the meta-analyzed effect estimates,
defined as

𝛾 =

{∑𝑘
𝑖=1 𝑤𝑖 (𝜃𝑖 − 𝜃)3} √∑𝑘

𝑖=1 𝑤𝑖{∑𝑘
𝑖=1 𝑤𝑖 (𝜃𝑖 − 𝜃)2

}3/2 with 𝜃 =

∑𝑘
𝑖=1 𝜃𝑖𝑤𝑖∑𝑘
𝑖=1 𝑤𝑖

and 𝑤𝑖 =
1
𝜎2
𝑖

. (13)

In this example, we obtain 𝛾 = 3.72, the positive sign reflecting a right-skewed distribution.
The results from an inverse variance-weighted FE analysis are reproduced in Figure 1 on the log

odds ratio scale. This was also the prespecified primary analysis in the protocol registered and made
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Table 2. Data from 𝑘 = 7 randomized controlled clinical trials investigating the association
between corticosteroids and mortality in hospitalized patients with COVID-19.44

Deaths / Patients

Study Name Steroids No steroids OR Lower CI Upper CI

1 DEXA-COVID 19 2 / 7 2 / 12 2.00 0.21 18.69
2 CoDEX 69 / 128 76 / 128 0.80 0.49 1.31
3 RECOVERY 95 / 324 283 / 683 0.59 0.44 0.78
4 CAPE COVID 11 / 75 20 / 73 0.46 0.20 1.04
5 COVID STEROID 6 / 15 2 / 14 4.00 0.65 24.66
6 REMAP-CAP 26 / 105 29 / 92 0.71 0.38 1.33
7 Steroids-SARI 13 / 24 13 / 23 0.91 0.29 2.87

publicly available on the PROSPERO database prior to data analysis or receipt of outcome data. Note
that the knot point of the p-value function for Wilkinson’s method shown in the drapery plot in Figure 1
is not an artefact, but caused by its definition based on the maximum of the different p-values, compare
Table 1.

Results based on the different methods are shown in Table 3. The point estimates from the different
p-value combination methods are all closer to zero than the combined effect estimate from the FE,
DL and Hartung–Knapp–Sidik–Jonkman (HKSJ) random effects methods, respectively. The 95%
confidence intervals also differ substantially. Wilkinson’s method even gives a positive point estimate
and has the widest confidence interval. Wilkinson’s method also gives the largest values of the two-
sided p-value 𝑝•(0) for the null hypothesis of no effect, while Tippett’s method has the smallest estimate
and the smallest p-value among all five p-value combination methods.

To assess the skewness of the different confidence intervals, we computed the skewness coefficient46

𝛽 =
upper + lower − 2 estimate

upper − lower
(14)

based on the (median) estimate and the upper and lower interval limits. Note that |𝛽 | ≤ 1 with
positive sign for a right-skewed interval and negative sign for a left-skewed one. The coefficient is zero
for symmetric confidence intervals, as here for the FE, DL and HKSJ random effects methods. The
penultimate column in Table 3 reveals that three of the different p-value combination methods (Fisher,
Tippett, Wilkinson) return a left-skewed confidence interval with negative skewness coefficient 𝛽,
although the study effect estimates are right-skewed. Only Edgington’s and Pearson’s methods preserve
the skewness of the data and return a positive coefficient 𝛽.

We also calculated the AUCC42 for the different p-value combination methods, see the third last
column in Table 3. As the confidence interval width, AUCC is a measure of precision but has the
advantage that it does not depend on the level of the confidence interval. In this application AUCC
correlates strongly with the width of the 95% CI with a correlation of 0.999. As a measure of skewness
of the confidence curve we propose to compute the AUCC below and above the point estimate �̂�, so
that AUCCbelow + AUCCabove = AUCC. The proposed measure of skewness is the

AUCC ratio =
AUCCupper − AUCClower

AUCC
,

which is restricted to the interval [−1, 1], just as the skewness coefficient (14). Table 3 shows that in
this application the AUCC ratio has the same sign as the skewness coefficient (14) for all five p-value
combination methods, with correlation 0.997.
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Figure 1. Drapery plot (top) and forest plot (bottom) from several combination methods with 95%
confidence intervals for a meta-analysis of 𝑘 = 7 randomized controlled clinical trials investigating the
association between corticosteroids and mortality in hospitalized patients with COVID-19.44

Two of the studies in this example (study 1 “DEXA-COVID 19” and 5 “COVID STEROID”) have
large confidence intervals due to a small number of events, where the normality assumption in (3)
may be questionable. To avoid assuming normality, we can also define p-value functions based on
exact one-sided p-values from Fisher’s exact test, where we employ the mid-p correction, originally
proposed by Lancaster.47 This ensures that the p-values for “greater” and “less” still sum up to 1,
although the distribution of the test statistic is discrete. Edgington’s method is hence still orientation-
invariant, whereas the other methods are not.
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Table 3. Comparison of different p-value combination methods (with alternative “less”) investigating the association
between corticosteroids and mortality in hospitalized patients with COVID-19.

Estimate Lower CI Upper CI p-value CI width AUCC CI skewness AUCC ratio

Edgington −0.27 −0.53 0.18 0.18 0.71 0.28 0.26 0.17
Fisher −0.31 −0.54 −0.10 0.003 0.43 0.17 −0.03 −0.02
Pearson −0.20 −0.58 0.49 0.47 1.07 0.42 0.30 0.19
Tippett −0.34 −0.69 −0.15 0.002 0.55 0.19 −0.27 −0.18
Wilkinson 0.17 −0.90 1.17 0.77 2.08 0.89 −0.03 −0.05

Fixed effect −0.42 −0.63 −0.20 0.0001 0.43 0.00
DL random effects −0.42 −0.63 −0.20 0.0001 0.43 0.00
HKSJ random effects −0.42 −0.71 −0.13 0.013 0.58 0.00
Note: Shown are estimates of the log odds ratio and their 95% CIs and compared with the fixed effect, DerSimonian–Laird (DL) and Hartung–Knapp–Sidik–Jonkman (HKSJ)
random effects approach for meta-analysis of 𝑘 = 7 randomized controlled clinical trials. The random effects approach is based on the REML estimate of 𝜏2, which is so close
to zero that its results are indistinguishable from the fixed effect method. The p-value shown is two-sided for the standard null hypothesis 𝜇 = 0 of no effect and calculated
based on the left-hand side of (7) (with ↼

𝑝• rather than ⇀
𝑝•) for the different p-value combination methods.
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Figure 2. Combined p-value functions with 95% confidence intervals based on exact p-values with
mid- p correction for meta-analysis of 𝑘 = 7 randomized controlled clinical trials investigating the
association between corticosteroids and mortality in hospitalized patients with COVID-19.44

Note: Shown are also the normal approximation p-value functions based on the z-statistics (2) for comparison.

Figure 2 shows the corresponding p-value functions based on the exact p-values (solid black
lines) along with the normal approximation p-value functions based on the z-statistics (2) for
comparison (dashed green lines). We see that for most combination methods both curves are virtually
identical, producing almost identical point estimates, p-values, and confidence intervals. Slightly larger
differences can only be seen for Wilkinson’s method. This suggests that the p-value function based on
the z-statistics provides a good approximation to the one based exact p-values, despite small counts for
some of the studies.

2.3. Accounting for heterogeneity

We consider the case of additive heterogeneity, where heterogeneity is quantified based on Cochran’s
Q-statistic48

𝑄 =
𝑘∑
𝑖=1

𝑤𝑖 (𝜃𝑖 − 𝜃𝑤 )2 (15)

with weights 𝑤𝑖 = 1/𝜎2
𝑖 equal to the inverse squared standard errors 𝜎𝑖 and the standard meta-analytical

point estimate 𝜃𝑤 , the weighted average of the study-specific estimates 𝜃𝑖 with weights 𝑤𝑖 . The
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Q-statistic (15) depends on 𝜃𝑤 , but can also be written as a weighted sum of squared paired differences,

𝑄 =

∑
𝑖< 𝑗

𝑤𝑖𝑤 𝑗 (𝜃𝑖 − 𝜃 𝑗 )2

𝑘∑
𝑖=1

𝑤𝑖

,

where 𝜃𝑤 no longer appears. For example, if there are only 𝑘 = 2 studies we obtain

𝑄 =
𝜎−2

1 𝜎−2
2 (𝜃1 − 𝜃2)2

𝜎−2
1 + 𝜎−2

2
=

(𝜃1 − 𝜃2)2

𝜎2
1 + 𝜎2

2
,

the standard test statistic to assess the evidence for conflict between two study-specific effect estimates
𝜃1 and 𝜃2. A popular measure of heterogeneity is Higgins’

𝐼2 = max {𝑄 − (𝑘 − 1), 0} /𝑄,

the proportion of the variance of the study-specific effect estimates that is attributable to study
heterogeneity. Higgins’ 𝐼2 is used in our simulation study to specify the amount of heterogeneity.

The z-statistic (2) can be modified to account for heterogeneity between study effects, represented
by the heterogeneity variance 𝜏2. The heterogeneity-adjusted z-statistic is

𝑍𝑖 =
𝜃𝑖 − 𝜇√
𝜎2
𝑖 + 𝜏2

, (16)

where 𝜏2 is a suitable estimate of 𝜏2. Many estimates of the heterogeneity variance 𝜏2 exist, we will use
the REML estimate in the following due to its good performance in simulation studies.49 Note that the
transformation (3) is used to compute p-values based on (16), which assumes normality of the random
effects distribution. We will comment on possible relaxations of this assumption in the discussion.

3. Simulation study

3.1. Design

We first describe the design of our simulation study, following the structured “ADEMP” approach for
reporting of simulation studies.50

3.1.1. Aims
The aim of the simulation study was to evaluate the estimation properties of p-value combination
methods for meta-analysis and to compare them with classical meta-analysis methods under different
numbers of studies with potentially different sample sizes and degrees of heterogeneity.

3.1.2. Data-generating mechanism
Our data-generating mechanism follows closely the simulation study of IntHout et al.51 Specifically,
in each simulation repetition, we simulated 𝑘 ∈ {3, 5, 10, 20, 50} true study effects (on standardized
mean difference scale) and corresponding effect estimates with standard errors. The mean true study
effect was set to 𝜃 = 0.2. The true study effect of study i was then simulated from a normal distribution
𝜃𝑖 ∼ N(𝜃, 𝜏2) with mean 𝜃 and heterogeneity variance 𝜏2.

Based on a true effect 𝜃𝑖 , the effect estimate 𝜃𝑖 of study i was simulated from a normal distribution

𝜃𝑖 ∼ N(𝜃𝑖 , 2/𝑛𝑖),
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Table 4. Factors considered in simulation study (var-
ied in fully-factorial way).

Factor Levels

Number of studies k 3, 5, 10, 20, 50
Number of large studies 0, 1, 2
Higgins’ 𝐼2 0.0, 0.3, 0.6, 0.9

where 𝑛𝑖 is the sample size per group and set to 𝑛𝑖 = 50 (small studies) or 𝑛𝑖 = 500 (large studies). We
considered scenarios with either 0, 1, or 2 large studies (and the rest as small studies). The variance of
the outcome variable of the studies is assumed to be 1. The squared standard error of 𝜃𝑖 was simulated
from a scaled chi-squared distribution

𝜎2
𝑖 ∼ 1

(𝑛𝑖 − 1)𝑛𝑖
𝜒2

2(𝑛𝑖−1) ,

which were then transformed to standard errors 𝜎𝑖 by taking the square root. The heterogeneity variance
𝜏2 of the study effect distribution was specified by Higgins’ 𝐼2. Specifically, we first computed the
within-study variance using

𝜖2 =
1
𝑘

𝑘∑
𝑖=1

2
𝑛𝑖
, (17)

from which we then computed the between-study heterogeneity variance

𝜏2 = 𝜖2 𝐼2

1 − 𝐼2 , (18)

where 𝐼2 = 𝜏2/(𝜖2 + 𝜏2) is Higgins’ relative heterogeneity.52 We considered scenarios with 𝐼2 = 0, 0.3,
0.6 or 0.9, representing a range from no heterogeneity up to high relative heterogeneity. All manipulated
factors are listed in Table 4 and were varied in a fully factorial manner, resulting in 5 (number of
studies) × 3 (number of large studies) × 4 (relative heterogeneity) = 60 simulation scenarios. Additional
simulation results based on a skew normal study effect distribution are described in the Supplementary
Material.

3.1.3. Targets of analysis
In meta-analysis, the parameter of interest is typically the mean true study effect, which coincides with
the median for a normal study effects distribution. The mean 𝜃 = 0.2 is therefore used to evaluate
coverage and bias of the point estimates of the different methods. In the supplementary material we
also use the median if the study effect distribution was assumed to be skew-normal.

3.1.4. Methods
Each set of simulated effect estimates and standard errors were analyzed using different methods, each
producing a point estimate and a 95% confidence interval for the true effect, namely:

1. Standard fixed and DL random effects meta-analysis3,53

2. HKSJ random effects meta-analysis7,8

and the five p-value combination methods listed in Table 1. All input p-values were one-
sided and oriented in positive effect direction (alternative “greater”). This setup exhausts all
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possible method/orientation combinations as Edgington’s method is orientation-invariant whereas
Fisher/Pearson and Wilkinson/Tippett are orientation mirrored as described in Section 2.

Section 3.3.1 gives results without adjustments for heterogeneity (using p-values derived from (2))
and compared with FE meta-analysis. In Section 3.3.2, adjustments have been made for potential
between-study heterogeneity as described in Section 2.3 and compared with random effects meta-
analysis (DL and HKSJ). The restricted maximum likelihood (REML) estimate of the heterogeneity
variance 𝜏2 was used, which is usually recommended as a default choice.49 The FE and random effects
meta-analysis methods were computed with the metagen function from the R package meta,54 while
the remaining p-value combination methods were computed with the confMeta R package.55

3.1.5. Performance measures
Our primary performance measure was coverage of the 95% confidence interval which we estimated by

Ĉov =
# 95% CI includes the true value 𝜃 = 0.2

𝑛sim

with Monte Carlo standard error (MCSE)

MCSEĈov =

√
Ĉov(1 − Ĉov)

𝑛sim
.

We conducted 𝑛sim = 20, 000 simulation repetitions. This ensures a maximum MCSE of 0.35%
(attained when the estimated coverage is 50%), which we consider as sufficiently small to detect
relevant differences. Our secondary performance measures were bias and 95% confidence interval
width, see Table 3 in Siepe et al.56 for definitions and MCSE formulas. To assess the skewness
properties of the different methods, we computed the skewness coefficient (14) for each 95% confidence
interval. We then evaluated the distribution (mean, median, minimum, maximum) of the skewness
coefficients for a given method and simulation scenario. To assess the relationship between confidence
interval skewness and data skewness, we also computed the Pearson correlation between the 95%
confidence interval skewness 𝛽 and Fisher’s weighted skewness coefficient (13) of the meta-analyzed
effect estimates with weights 𝑤𝑖 = 1/𝜎2

𝑖 and 𝑤𝑖 = 1/(𝜎2
𝑖 + 𝜏2) without and with heterogeneity

adjustment, respectively. Finally, to assess agreement between confidence interval skewness and data
skewness, we also computed Cohen’s 𝜅 of the sign of 𝛾 and the sign of 𝛽, using the function
cohen.kappa from the psych R package.57

3.2. Computational aspects

The simulation study was performed using R version 4.4.1 (2024-06-14) on a server running Debian
GNU/Linux. More information on the computational environment and code to reproduce the simulation
study are available at https://github.com/felix-hof/confMeta_simulation.

3.3. Results

We will now describe the results of the simulation study, first without adjustments for heterogeneity
(Section 3.3.1) and then with (Section 3.3.2). Without heterogeneity adjustments there were a few
cases where Pearson and Wilkinson CIs did not converge (lowest convergence rate 99.37% for Pearson
when 𝐼2 = 0.9 and 𝑘 = 50 studies with 2 large studies, see Table S2 in the Supplementary Material
for details), and method performance was then estimated based on the convergent repetitions only
(case-wise deletion). With heterogeneity adjustments, no non-convergent confidence intervals or point
estimates occurred.
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3.3.1. Without adjustments for heterogeneity
Coverage Figure 3 shows the empirical coverage of the different methods without adjustments for
heterogeneity. The coverage of all methods is at the nominal 95% level when data are generated under
effect homogeneity (𝐼2 = 0), as expected from theory. The coverage drops below the nominal level
for all methods under simulation with heterogeneity (𝐼2 > 0). However, the drop is the smallest for
Edgington’s method, which always remains above 75%, even for conditions with high heterogeneity
(𝐼2 = 0.9). In contrast, the coverage of all other methods (including FE meta-analysis) can drop to
values below 25%.

Bias Figure 4 shows the performance of the compared methods in terms of bias. We see that FE
meta-analysis and all p-value combination methods are essentially unbiased under effect homogeneity
(𝐼2 = 0). However, when there is heterogeneity (𝐼2 > 0), only FE meta-analysis and Edgington’s
method remain unbiased, while the remaining p-value combination methods show increasing bias with
increasing relative heterogeneity 𝐼2. The bias patterns of Fisher/Pearson and Wilkinson/Tippett are
mirrored around zero, because these methods’ are mirrored with respect to p-value orientation.

Confidence interval width Figure 5 shows the average width of the method’s 95% confidence
intervals. We see that the width of FE meta-analysis, Wilkinson’s, and Tippett’s methods remains
constant for different levels of relative heterogeneity 𝐼2. In contrast, Edgington’s, Fisher’s, and
Pearson’s confidence interval widths increase as 𝐼2 increases, adapting to greater heterogeneity. This
adaptation is most pronounced for Edgington’s method. A very similar pattern can be observed for the
AUCC, shown in Figure S1 in the Supplementary Material. Figure S4 in the Supplementary Material
shows the confidence interval width relative to the FE meta-analysis method. Fisher’s method tends
to have smaller width than all the other methods including FE meta-analysis, most pronounced for
large 𝐼2.

Confidence interval skewness Figure S5 in the Supplementary Material displays the median and the
range (min–max) of the CI skewness of the different methods. Both FE meta-analyis and Edgington
have median skewness of zero, which is desirable, as we simulate from a non-skewed normal
distribution. Whereas the skewness of fixed meta-analysis is always zero, Edgington method shows
considerable symmetric variation of the skewness coefficient around zero. This variation increases with
𝐼2 and decreases with the number of studies. The other methods often have a median skewness different
from zero and also show non-symmetry of the range around the median.

To investigate how well the skewness of the confidence interval captures the skewness of the data,
Figure S6 in the Supplementary Material displays the correlation of the skewness of the data and the
skewness of the confidence interval. There is always positive correlation for Edgington’s method, while
this is not the case for the other methods. Fisher’s and Pearson’s methods exhibit only sometimes a
negative correlation (for simulations with 𝐼2 = 0.9) whereas Wilkinson’s and Tippett’s methods have
negative correlations most of the time.

Figure 6 shows the Cohen’s 𝜅 agreement between the sign of the skewness of the confidence intervals
and the sign of the skewness of the data. FE meta-analysis is not shown because the confidence
intervals are always symmetric and thus always produce a skewness coefficient of zero. We can see
that Edgington’s method shows consistently high agreement with a decreasing trend with increasing
𝐼2. Agreement also decreases with increasing number of studies. This is to be expected as we simulate
from a normal study effect distribution with zero skewness. The distribution of the skewness of the
data will therefore more and more concentrate around zero with increasing number of studies. The
other methods have surprisingly poor performance, sometimes not better than what would be expected
by chance (𝜅 ≈ 0, Wilkinson and Tippett for no large study) and sometimes even worse (𝜅 < 0,
Wilkinson and Tippett with one or two large studies). This illustrates that only Edgington’s confidence
intervals are capable to reflect the skewness of the data. A very similar picture can be observed for
the agreement of the AUCC ratio with data skewness, as shown in Figure S3 in the Supplementary
Material, which suggests that the AUCC ratio as a measure of the skewness of a confidence curve is a
useful generalization of the confidence interval skewness at level 95%.
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Figure 3. Empirical coverage of the 95% confidence intervals based on 20,000 simulation repetitions.
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Figure 4. Empirical bias of the point estimates for the true effect based on 20,000 simulation repetitions.
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Figure 5. Mean width of 95% confidence intervals based on 20,000 simulation repetitions.
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Figure 6. Cohen’s 𝜅 sign agreement between 95% confidence interval skewness and data skewness based on 20,000 simulation repetitions.

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. 27 Jul 2025 at 06:39:05, subject to the Cam

bridge Core term
s of use.

https://www.cambridge.org/core


18 Held et al.

3.3.2. With adjustments for heterogeneity
Coverage Figure 7 shows the empirical coverage of the different methods with heterogeneity adjust-
ment, which is, as expected, considerably better than without adjustments for heterogeneity (Figure 3).
We see that the DL random effects meta-analysis (leftmost panels) has either too high (for 𝐼2 = 0)
or too low (for 𝐼2 > 0) coverage for small numbers of studies, but seems to stabilize at the nominal
95% level as the number of studies increases. In contrast, for scenarios with no large studies (top
panels), the HKSJ method shows almost perfect nominal coverage over all numbers of studies, while
for scenarios with one or two large studies (middle and bottom panels), the coverage is slightly too low
for small numbers of studies, consistent with the results of IntHout et al. 51 Focusing now on the p-value
combination methods, we can see that Edgington’s method shows a qualitatively similar behavior to
DL random effects meta-analysis, but with somewhat better coverage in most conditions. The coverage
is in general not as good as with HKSJ, but close to the nominal level for a large number of studies.
In contrast, the coverage of Fisher, Pearson, Wilkinson, and Tippett methods does not stabilize at the
nominal 95% but increases above as the number of studies increases.

Bias Figure 8 shows the performance of the methods in terms of bias. We see that the DL and HKSJ
random-effects meta-analysis as well as Edgington’s methods are essentially unbiased, while Fisher’s,
Pearson’s, Wilkinson’s, and Tippett’s method have substantial bias in most conditions. The bias patterns
of Fisher/Pearson and Wilkinson/Tippett are mirrored around zero, because these methods’ are mirrored
with respect to p-value orientation.

Confidence interval width Figure 9 shows the average width of the method’s 95% confidence
intervals, which is now considerably larger than without adjustments for heterogeneity (Figure 5).
Edgington’s, Fisher’s, and Pearson’s methods all have somewhat wider confidence intervals than DL
random effects meta-analysis, while HKSJ has substantially wider intervals in conditions with a small
number of studies, as also noted by Weber et al. 58 All of these widths shrink and become narrower
as the number of studies increases. However, Wilkinson’s and Tippett’s methods seem to shrink much
more slowly and remain relatively wide even with larger numbers of studies. This is even better seen
in Figure S10 in the Supplementary Material, which shows confidence interval width relative to the DL
random effects meta-analysis method. We can see that the relative width of Wilkinson’s and Tippett’s
methods increases, while the HKSJ and to a lesser extent Edgington’s, Fisher’s, and Pearson’s method
remain constant or decrease with increasing number of studies. Interestingly, the figure also shows that
the HKSJ method can have narrower confidence intervals than the DL random effects meta-analysis,
which has been described as a potential shortcoming in the literature.59 In rare cases this may also
happen with Edgington’s method, but only if there are no large studies and small amounts of relative
heterogeneity.

Confidence interval skewness Figure 10 shows the Cohen’s 𝜅 agreement between the sign of the
skewness of the confidence intervals and the skewness of the data. The DL random effects meta-analysis
and HKSJ methods are not shown because their confidence intervals are always symmetric and thus
always produce a skewness coefficient of zero. We can see that Edgington’s method shows consistently
high agreement with a decreasing trend as the number of studies increases, while the agreement of the
other methods is not better than what would be expected by chance (𝜅 ≈ 0, Fisher and Pearson) and
sometimes even worse (𝜅 < 0, Wilkinson and Tippett). Figure S11 in the Supplementary Material shows
the median skewness of the confidence intervals and the corresponding min–max range, illustrating why
all but Edgington’s method often show exactly zero agreement: As the number of studies increases,
their confidence intervals tend to be skewed in only one direction. For ten or more studies, Pearson’s
method produced only confidence intervals with negative skewness, while confidence intervals based
on Fisher’s method were all positively skewed. Thus, the confidence interval cannot represent the
skewness type of the data, even though the confidence interval skewness tends to be correlated with the
data skewness (see Figure S12 in the Supplementary Material).
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Figure 7. Empirical coverage of the 95% confidence intervals based on 20,000 simulation repetitions.
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Figure 8. Empirical bias of the point estimates for the true effect based on 20,000 simulation repetitions.
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Figure 9. Mean width of 95% confidence intervals based on 20,000 simulation repetitions.
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Figure 10. Cohen’s 𝜅 sign agreement between 95% confidence interval skewness and data skewness based on 20,000 simulation repetitions.
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3.4. Summary of simulation results

Edgington’s method produced unbiased point estimates, its confidence intervals had comparable or
better coverage, and were only slightly wider than the confidence intervals from an FE and DL random
effects meta-analysis, respectively. In addition, it was the only method that could accurately represent
data skewness. The remaining p-value combination methods, Fisher/Pearson and, to a greater extent,
Wilkinson/Tippett, could not achieve satisfactory performance. Their point estimates were more biased,
their coverage for a large number of studies was too high after adjustments for heterogeneity, and their
confidence intervals could not reliably represent the skewness of the data.

The HKSJ method leads to known improvements in coverage compared to DL random effects meta-
analysis, although nominal coverage is still not guaranteed when a meta-analysis includes a few studies
that are much larger than the remaining ones.51 The improved coverage of the HKSJ method also comes
at the cost of substantially wider confidence intervals on average, in particular, if the number of studies
is small (see Figure S10 in the Supplementary Material).

4. Discussion and extensions

We have compared different p-value combination methods for meta-analysis theoretically and through
simulation. The p-value function approach based on Edgington combination method constitutes a
promising avenue for further research and applications. Its ability to reflect the skewness of the data
will be attractive to applied meta-analysts. The good simulation performance (compared to standard
FE and DL random effects meta-analysis, respectively) for a small number of studies suggests possible
applicability in health technology assessment, where a Bayesian approach has recently been proposed
as an alternative to the “overly conservative” HKSJ method.60 A possible extension of the method
provided is cumulative meta-analysis, where studies are added one at a time in a specific order, usually
time of publication.61 It would be interesting to compare the width of the confidence interval with the
length of the standard random effects confidence interval as studies accumulate.

Adjustments for heterogeneity have been made based on the standard additive approach. Alter-
natively multiplicative heterogeneity can be incorporated, where the squared standard errors 𝜎2

𝑖 are
multiplied with a factor 𝜙 > 0. Then we would use the adjusted z-statistic

𝑍𝑖 =
𝜃𝑖 − 𝜇√
𝜙 𝜎𝑖

,

where 𝜙 = max{𝑄/(𝑘 − 1), 1} is the appropriate overdispersion estimate.62,63 However, both additive
and multiplicative adjustments are based on a plug-in approach, which ignores the uncertainty of the
heterogeneity estimate 𝜏2 and 𝜙, respectively. An interesting alternative would be to profile-out the
heterogeneity parameter.24,25

Jackson and White64 raise concerns about the usual between-study normality assumption in meta-
analysis, but also note that this issue has not received sufficient attention. Baker and Jackson65,66

propose long-tailed, but still symmetric random effects distributions while Beath67 considers a mixture
of two normals model to accommodate for outliers. The two components have different variances
but the same means, so the resulting mixture distribution is still symmetric. Finally, Kontopantelis
et al.68 and Weber et al.58 compare existing (symmetric) meta-analytic interval estimates in a simulation
study with normal and skew normal random effects distributions. A possible area for future research
is therefore to assume a non-normal distribution of the random effects, for example a skew normal.
The heterogeneity variance could then be estimated based on a moment-based estimate (not assuming
normality) together with the skewness parameter. The resulting distribution of the z-value (16) is then
no longer normal and needs to be calculated through numerical integration and can then be used to
convert z-values to p-values.
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Figure 11. Confidence density based on Edgington’s combined p-value function and exact p-values
with mid- pcorrection for meta-analysis of 𝑘 = 7 randomized controlled clinical trials investigating the
association between corticosteroids and mortality in hospitalized patients with COVID-19.44

It would also be interesting to extend the approach to compute prediction intervals for future study
effects.2,69,70 This would involve numerical integration of a N(𝜇, 𝜏2) (or skew normal) distribution with
respect to the confidence density for 𝜇, which can be obtained from any (monotonically increasing) one-
sided p-value function (for alternative “greater”) through differentiation. For example, differentiation
of the underlying exact one-sided p-value function from Edgington’s method in Figure 2 gives the
confidence density shown in Figure 11. The confidence density is clearly skewed, which would then
also be the case for the corresponding prediction interval. We plan to consider this in future work.
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Appendix

A. Closed-form solution of Wilkinson’s and Tippett’s methods

Assuming p-values under normality of the form (3), fixing the combined p-values ⇀
𝑝𝑊 and ↼

𝑝𝑊 ,
respectively, of Wilkinson’s method from Table 1 to 𝛼 and solving for 𝜇, we obtain the following
closed-form solutions

�̂�𝑊 (𝛼) =
⎧⎪⎪⎨⎪⎪⎩

min
𝑖=1,...,𝑘

{
𝜃𝑖 + 𝜎𝑖 𝑧𝛼1/𝑛

}
for alternative = “greater”

max
𝑖=1,...,𝑘

{
𝜃𝑖 − 𝜎𝑖 𝑧𝛼1/𝑛

}
for alternative = “less”

with 𝑧𝑞 the 𝑞 × 100% quantile of the standard normal distribution. Plugging in 𝛼 = 0.5 produces the
median estimate, while 𝛼 = 0.025 and 𝛼 = 0.975 give the limits of a 95% confidence interval. A similar
approach applied to the combined p-value from Tippett’s method leads to

�̂�𝑇 (𝛼) =
⎧⎪⎪⎨⎪⎪⎩

max
𝑖=1,...,𝑘

{
𝜃𝑖 − 𝜎𝑖 𝑧 (1−𝛼)1/𝑛

}
for alternative = “ greater”

min
𝑖=1,...,𝑘

{
𝜃𝑖 + 𝜎𝑖 𝑧 (1−𝛼)1/𝑛

}
for alternative = “less.”

B. Relationships of p-value combination methods

B.1. Edgington’s method

Define

↼
𝑠 =

𝑘∑
𝑖=1

↼
𝑝𝑖 =

𝑘∑
𝑖=1

(1 − ⇀
𝑝𝑖) = 𝑘 −

𝑘∑
𝑖=1

⇀
𝑝𝑖 = 𝑘 − ⇀

𝑠 ,

so ⇀
𝑝𝐸 = Pr(I𝑘 ≤ ⇀

𝑠 ) = 1 − Pr(I𝑘 >
⇀
𝑠 ) where I𝑘 ∈ [0, 𝑘] is an Irwin–Hall random variable with

parameter k. Since the Irwin–Hall distribution is symmetric around its mean 𝑘/2, it holds that Pr(I𝑘 ≤
𝑠) = Pr(I𝑘 > 𝑘 − 𝑠) for any 𝑠 ∈ [0, 𝑘]. Hence, it follows that

⇀
𝑝𝐸 = Pr(I𝑘 ≤ ⇀

𝑠 )

= Pr(I𝑘 > 𝑘 − ⇀
𝑠 )

= Pr(I𝑘 >
↼
𝑠 )

= 1 − Pr(I𝑘 ≤ ↼
𝑠 )

= 1 − ↼
𝑝𝐸 .
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B.2. Fisher’s and Pearson’s methods

Define

⇀
𝑓 = −2

𝑘∑
𝑖=1

log(⇀𝑝𝑖) = −2
𝑘∑
𝑖=1

log(1 − ↼
𝑝𝑖) =

↼
𝑔 .

It follows that

⇀
𝑝𝐹 = Pr(𝜒2

2𝑘 >
⇀
𝑓 )

= Pr(𝜒2
2𝑘 >

↼
𝑔 )

= 1 − Pr(𝜒2
2𝑘 ≤ ↼

𝑔 )

= 1 − ↼
𝑝𝑃 .

Similarly we obtain ⇀
𝑝𝑃 = 1 − ↼

𝑝𝐹 .

B.3. Tippett’s and Wilkinson’s methods

We have
⇀
𝑝𝑇 = 1 − (1 − min{⇀𝑝1, . . . ,

⇀
𝑝𝑘 })𝑘

= 1 − (1 − min{1 − ↼
𝑝1, . . . , 1 − ↼

𝑝𝑘 })𝑘

= 1 − max{↼𝑝1, . . . ,
↼
𝑝𝑘 }𝑘

= 1 − ↼
𝑝𝑊

and similarly ⇀
𝑝𝑊 = 1 − ↼

𝑝𝑇 .
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