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Abstract
In the past few decades, substantial work has been directed towards the design of aircraft structures that max-
imise fuel efficiency, improve performance and curtail emissions. Aeroelastic optimisation offers an effective way
to devise lightweight and fuel efficient structures, with structural stability constraints often driving the design.
To date, the aeroelastic optimisation community has relied mostly on linear buckling predictions for the eval-
uation of structural stability constraints, mainly because of their conservativeness, computational efficiency and
simplicity of implementation. This approach typically leads to overly conservative buckling margins, and this over-
conservativeness places a glass ceiling over the load carrying capacity of wing structures, consequently restricting
the exploration of regions within the design space where considerable weight savings could be achieved.

By contrast to previous works that predominantly rely on linear buckling constraints, the present paper intro-
duces a method to incorporate nonlinear structural stability analysis into aeroelastic optimisations of wingbox-like
structures. The method relies on the evaluation of the positive-definiteness of the tangent stiffness matrix, which
is an indicator of structural stability. The sign of the stiffness eigenvalues is monitored while tracing the load-
displacement equilibrium paths by means of the arc-length method, thus pinpointing the onset of instability. The
proposed constraint is tested in a proof of concept structural optimisation of an idealised version of the CRM wing-
box. This optimisation shows a 10.9% reduction in mass with respect to a baseline design that is optimal with a
linear buckling approach, promising great potential for application to more realistic aeroelastic optimisations.

Nomenclature
ARwb CRM wingbox aspect ratio
bwb CRM wingbox span
DOF(s) degree(s) of freedom
FE finite element
g constraint function
h CRM-like Box Beam height
hfront CRM wingbox front spar height
hrear CRM wingbox rear spar height
hs stiffener height
H� hessian matrix of total potential energy
k spring stiffness
KT tangent stiffness matrix
KS Kreisselmeier–Steinhauser aggregated constraint function
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l rod length; CRM-like Box Beam length
m mass
P applied load
Pc critical buckling load of 1-DOF system
Pdesign design load for optimisation
Pend applied load at the end of the nonlinear analysis
PSOL105 linear buckling load predicted by SOL 105
Swb CRM wingbox planform area
t wall thickness
tmin, tmax thickness bounds for optimisation
u displacement vector
uz, n displacement along z-axis evaluated at node n
uz, tip displacement along z-axis evaluated at the centre of the tip section
U internal strain energy
Vwb CRM wingbox volume
w CRM-like Box Beam width
wwb CRM wingbox width
W external work done by conservative loads

Greek symbol
α0 initial rod inclination
β twice rod rotation from initial configuration
δ rod displacement
�s arc-length
λ eigenvalue of tangent stiffness matrix
μ scalar loading parameter
� total potential energy
ρ Kreisselmeier–Steinhauser aggregation factor
σk von Mises stress of the k-th element
σmax yield strength
θ rod rotation angle of 1-DOF system
θ0 initial angle of asymmetry of 1-DOF system
θx average rotation of shell element about x-axis

1.0 Introduction
In 2021, the Air Transport Action Group set the goal for global civil aviation operations to achieve net-
zero carbon emission by 20501. This goal is in line with the Paris Agreement, which aims to limit global
warming to 1.5◦C and constitutes an ambitious challenge for the aviation sector.

Arising from these pressing environmental requirements, the objective of flying net-zero has fur-
ther stimulated the everlasting quest for fuel-efficient aircraft designs. On a conceptual level, the well
known Breguet Range equation indicates that fewer emissions will result from lighter aircraft, better
aerodynamics and more efficient engines [1]. In the last decades, the pursuit of lightweight structures
has been supported by the development of aeroelastic optimisation tools, which usually search for min-
imum weight or minimum fuel burn configurations by navigating design spaces whose bounds are
defined by structural and aeroelastic constraints. Having initially been developed for metallic struc-
tures, the advancement of these tools has been further stimulated by the advent of composite materials
and the variety of design opportunities that they offer owing to their extensive elastic tailoring capa-
bilities and their superior specific strength and stiffness properties in comparison to their metallic
counterparts.

1https://aviationbenefits.org/flynetzero/, accessed October 2024.
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A critical aspect of aeroelastic optimisation is the consideration of static structural stability. This
aspect has traditionally been enforced by means of linear buckling constraints, which are typically
active for the optimised structure. The literature reveals several approaches to implementing these
constraints.

The most straightforward approach involves global finite element analysis, where eigenvalue calcula-
tions are performed on a full wing model [2–7], returning buckling load multipliers (eigenvalues) and the
corresponding buckling modes (eigenvectors). Elastic stability is understood to be lost at the load level
corresponding to the applied load times the lowest multiplier. This method offers a balance between
ease of implementation and the ability to capture overall structural stability, including interactions
between different parts of the wing structure. However, it may not capture localised buckling phe-
nomena as accurately as panel-level analyses and can be computationally expensive for highly detailed
models.

To address these limitations, researchers have developed global-local eigenvalue calculation
approaches, where separate global and local finite element models are considered [8–10]. This tech-
nique combines the computational efficiency of panel-level analyses with the comprehensive structural
representation of global models. It allows for a more nuanced treatment of buckling phenomena,
capturing both localised panel instabilities and overall wing buckling modes, making it particularly
useful for unconventional configurations like truss-braced wings or wings with curvilinear structural
members.

For even more focused and computationally efficient analysis, some researchers employ eigenvalue
calculations only on panel-level finite element models [11–16]. This approach concentrates on individual
skin panels, typically defined as areas bordered by adjacent ribs, spars and stringers. It allows for parallel
computation of buckling modes across multiple panels, making it well-suited for large-scale optimisation
problems involving numerous design variables and constraints.

To further reduce computational demands, panel-level Rayleigh-Ritz analysis has also been utilised
[17–19]. This method analyses individual wing panels using the principle of minimum potential energy,
representing the out-of-plane displacement with assumed mode shapes, and formulating buckling once
again as an eigenvalue problem. It offers an improved computational speed, avoiding the use of a finite
element model, making it particularly suitable for preliminary design stages and optimisation studies
involving variable stiffness panels.

Finally, the most computationally efficient approach is panel-level analytical analysis [20–25]. This
method employs closed-form analytical or semi-empirical formulas to calculate critical buckling loads
for individual wing panels. It often utilises a smeared-stiffener model, where the effects of discrete
stiffeners are averaged over the panel area. This simplified approach is well-suited for large-scale
aerostructural optimisation problems where the largest part of the computational budget is employed
to increase the fidelity of other disciplines such as the calculation of the aerodynamic loads via RANS.

While these approaches offer varying levels of computational efficiency and detail, they all rely on
the linearisation of the structural response around the undeformed configuration and consequently on
the assumption that the response to loading is perfectly linear before the loss of stability. The use of
these methods in low-fidelity preliminary aircraft design has thus far been considered to be conserva-
tive, because stiffener-reinforced panels buckle super-critically. In other words, their post-buckling is
stable and the structure retains load-carrying capacity beyond the predicted stability limit. However,
simplicity and conservativeness come at the cost of over-constraining the design space and conse-
quently over-designing the structure because, in practice, it could carry more load. In fact, in the more
advanced design stages, aerospace structures are indeed sized to carry loads beyond their linear buckling
point [26].

In this paper, we hypothesise that, in current aeroelastic optimisations targeting aircraft structures,
linear buckling analyses place an artificial limit on the load that the structure is sized for, which we refer
as the glass ceiling of linear buckling. The resulting constraints prevent optimisers from exploring the
part of the design space beyond this threshold, ultimately leading to designs that are heavier than nec-
essary. In addition, the current trend towards more sustainable designs seeing the development of more
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slender, higher aspect ratio, and lighter wing structures, where nonlinear effects are more prominent,
calls into question the validity of the assumed linearity pre-buckling.

At the same time, the incorporation of postbuckling effects in aeroelastic optimisation frameworks
remains an open challenge. Although numerous studies have explored the optimisation of stiffened pan-
els considering postbuckling constraints, very few have extended this approach to wingbox structures.
The limited research on wingbox-level postbuckling optimisation has focused primarily on simpli-
fied models or specific components, lacking integration with comprehensive aeroelastic analysis. For
instance, Qu et al. [27] developed a multilevel optimisation framework for a composite aircraft wing,
achieving significant mass reduction but using simplified loading conditions. Liguori et al. [28] focused
only on a representative wingbox section using variable angle tow (VAT) composites, demonstrating
improvements in buckling and postbuckling performance. Liang and Yin [29] introduced nonlinear
buckling analysis for a Blended Wing Body configuration, but only as a post-optimisation step. To
date, no aeroelastic optimisation framework has been developed that fully incorporates postbuckling
constraints at the wingbox level while considering the complex interactions between aerodynamics,
structural behaviour, and overall aircraft performance. Addressing this gap could unlock significant
potential for weight reduction and improved structural efficiency in aircraft design.

To transcend this limitation and break through the glass ceiling of linear buckling, this work proposes
a paradigm shift in approaching structural stability within aeroelastic optimisation. Instead of framing
the problem in terms of buckling and postbuckling – a binary concept predicated on a predicted insta-
bility point – this work advocates for a more nuanced approach based on the continuous monitoring of
structural equilibrium stability through the positive-definiteness of the tangent stiffness matrix. A novel
nonlinear structural stability constraint is formulated based on this approach and it is tested in a sim-
ple structural optimisation problem: a stringer-reinforced box beam abstracted from NASA’s Common
Research Model [30] (CRM).

The remainder of the paper is organised as follows. In Section 2, a brief overview of the theory behind
nonlinear structural stability is given by means of three different canonical examples. Successively, a
more complex problem is tackled in Section 3, where a straight box beam abstraction of the CRM
wingbox is presented and its nonlinear response under a bending load is studied. Finally, the box beam
is optimised in Section 4, employing the proposed nonlinear structural stability constraint, and the
optimisation results are discussed with a focus on the effect of such constraint.

The results presented in this paper are reproducible by means of a jupyter notebook available in an
open-source Github repository2, where more resources about the ongoing research efforts on the topic
can also be found.

2.0 Nonlinear structural stability of canonical examples
This section illustrates the fundamental concepts of the continuous monitoring of structural stability,
which underlies the proposed optimisation constraint. Three 1-DOF (degree of freedom) systems are
considered to show the difference with the traditional approach by explaining three canonical behaviours
that can be encountered in the nonlinear analysis of structures: the supercritical pitchfork bifurcation,
the broken supercritical pitchfork and the limit point bifurcation. It should be noted that we consider the
systems purely from a structural stability perspective and we intentionally neglect any considerations of
strength. Here, we report the results for each system, while the full mathematical derivations are given
in the Appendix.

2.1 Supercritical pitchfork bifurcation
For the first canonical example, we consider the perfectly symmetric 1-DOF system shown in Fig. 1,
made of two initially collinear rods connected with a rotational spring and subjected to a compressive
load.

2https://github.com/fmamitrotta/nonlinear-structural-stability-notebooks, accessed October 2024.
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Figure 1. Undeformed and deformed state of two initially collinear rods under axial compressive load.

To obtain the full nonlinear response of this system in terms of the applied load, P, and the only
degree of freedom, θ , we need to look at the total potential energy, �, which is given by the difference
between the internal strain energy, U, and the external work, W, done by conservative loads [31], such
that

�(θ , P) = U(θ) − W(θ , P) . (1)

The equilibria of the system correspond to the points where the potential energy has a stationary
value, or in other words where its first derivative with respect to the degree of freedom is zero, in the
form of

∂�

∂θ
= 0. (2)

The stability of each equilibrium point depends on the second derivative of the potential energy, thus

∂2�

∂θ 2

⎧⎪⎨
⎪⎩

> 0 stable equilibrium

= 0 neutral equilibrium

< 0 unstable equilibrium.

(3)

The equilibrium equations of the system, as derived in the Appendix, are{
θ = 0

P = Pc
θ

sin θ

(4)

where Pc = 2k/l is the critical buckling load. For θ = 0, the equilibrium is stable for P < Pc and unstable
for P > Pc, while for P = Pcθ/sin θ the equilibrium is always stable.

The results are plotted in the load-displacement diagram shown in Fig. 2, depicting a supercritical
pitchfork bifurcation. The supercritical pitchfork bifurcation is characterised by four equilibrium paths: a
stable zero-displacement path for P < Pc, an unstable zero-displacement path for P > Pc and two stable
nonzero-displacement paths for P > Pc. The point where these four equilibrium paths meet is called
bifurcation point and is characterised by a neutral equilibrium.

The supercritical pitchfork bifurcation is the classic response where it is possible to identify a discrete
critical point dividing the response itself into a pre-buckling and a post-buckling region. The linear
buckling analysis correctly predicts the presence of a critical point at P = Pc, corroborating this division
of the response.

However, the linear analysis cannot predict the two nonzero-displacement stable paths for P > Pc.
Consequently, in the linear approach, the predicted buckling load is taken as the limit load for the
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Figure 2. Supercritical pitchfork bifurcation of the two initially collinear rods.

Figure 3. Undeformed and deformed state of two rods at an initial angle θ0 under axial compressive
load.

structure. This means that the linear approach places a glass ceiling on the sizing load of the struc-
ture, whereas, in reality, stable configurations are achievable beyond this threshold. However, these
configurations remain unexplored without the insights provided by nonlinear analysis.

2.2 Broken supercritical pitchfork
The second canonical example is obtained by introducing an asymmetry into the previous 1-DOF system,
given by an initial angle, θ0, as shown in Fig. 3. The idea behind this second example is that, in reality,
perfectly symmetric structural systems do not exist in aircraft, either because of their intrinsic geometry
or for the applied load.

Following the derivations in the Appendix, the equilibrium equation for the system is

P = Pc

θ − θ0

sin θ
(5)

and the equilibrium is stable for (θ − θ0) /tan θ < 1 and unstable for (θ − θ0) /tan θ > 1.
The equilibrium paths of the system are plotted in Fig. 4 for different values of θ0. In the figure

it is possible to observe a broken supercritical pitchfork, where the load-displacement diagram of the
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Figure 4. Broken supercritical pitchfork of the two rods at an initial angle θ0.

structure is made of two disconnected paths. One path is connected to the ground state and is completely
stable; we refer to this as the natural path. The other path cannot be reached from the ground state and
is partly stable and partly unstable; we refer to it as the complementary path. It can also be observed that
the two paths are further separated as the initial angle increases.

It is important to notice that the introduction of the asymmetry into the system is responsible for the
emergence of the broken supercritical pitchfork. A supercritical pitchfork bifurcation is only possible
with a perfectly symmetric system; in such a system, the symmetry leads to the existence of at least
one bifurcation point on the load-displacement diagram, where the equilibrium is neutral. When the
symmetry of the problem is broken, the system maintains stability as it is loaded from its ground state
and no critical point is encountered. Consequently, it is no longer possible to discretely identify a pre-
and post-buckling response.

2.3 Limit point bifurcation
The third canonical example is given by the 1-DOF system shown in Fig. 5, comprising two inclined
rods tied by an elastic support while subjected to transverse loading.

The equilibrium equation of the system is given by

P = 4kl(sin θ − cos α0 tan θ) (6)

and the equilibrium is stable when
(
cos α0 − cos3 θ

)
/cos θ > 0, and unstable or neutrally stable

otherwise.
The load-displacement diagram of the system is plotted in Fig. 6, in terms of nondimensional applied

load P/kl against the angle travelled by the inclined rods, α0 − θ , for an initial inclination of α0 = 30
degrees. Proceeding left to right, the diagram shows: a stable path originating from the ground state of
the structure; a load limit point with neutral equilibrium in correspondence of the local maximum of
the applied load; an unstable path where the applied load decreases with the angle travelled by the rods;
another load limit point with neutral equilibrium at the local minimum of the applied load; and, finally,
another stable path where the applied load increases again.

This type of response is called limit point bifurcation and it results in a snapping behaviour. When
the system is loaded from its ground state and the applied load exceeds the first load limit point, the
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Figure 5. Undeformed and deformed state of two inclined rods with elastic support under transverse
load.

Figure 6. Limit point bifurcation of the two inclined rods under transverse load.

structure snaps across the equilibrium manifold, traversing the region of instability, to land onto the
first stable equilibrium point corresponding to the applied load. In practice, this means that the initially
upwards inclined rods suddenly snap to assume a downwards inclination. This behaviour occurs because
the structure needs to ‘jump’ to the other stable equilibrium path to find an equilibrium point with an
applied load larger than that corresponding to the first limit point.

As a consequence of the above discussion, the first load limit point represents a discrete critical point
that could be used to divide the response into a pre- and a post-snap region. However, contrary to the case
of the supercritical pitchfork bifurcation, the presence of a snapping behaviour implies a discontinuity
in the real structural response, meaning that the transition to the post-snap state does not happen in a
quasi-static manner. It should also be noted that an accurate determination of the limit points can only
be obtained with a continuous monitoring of the stability of the nonlinear equilibrium.

In the context of Finite Element (FE) analysis, the nonlinear equilibrium equations are often solved
under load control. This is also the case in aeroelastic optimisation frameworks featuring nonlinear struc-
tural analysis [25, 32]. With this approach, a load value is imposed at every consecutive increment of the
nonlinear analysis and held constant during Newton-Raphson iterations until convergence is achieved.
Upon convergence, the analysis moves on to the next load increment. However, this method has issues
with limit point bifurcations, because it cannot follow the unstable segment of the equilibrium path
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Figure 7. Non-convergence of the load control method across a limit point bifurcation.

Figure 8. Convergence of the arc-length control method across a limit point bifurcation.

beyond the limit point, where the equilibrium load decreases. In fact, the solver might jump to the next
available equilibrium point for the new increment above the limit point, or it might not achieve conver-
gence at all [33], as illustrated in Fig. 7. In both cases load controlled increments cannot find unstable
equilibrium points, making it unsuitable for an aeroelastic optimisation framework that aims to evaluate
structural stability with nonlinear methods. Displacement control would have no issues tracing curves
with load limit points, but would equally be unable to converge past displacement limit points.

A popular alternative to load (or displacement) control is path-following with arc-length control,
which considers simultaneous variations of load and displacement variables. The basis of this method
consists in constraining the solution path to an arc-length �si, that is calculated via a norm of the
increment

(
�ui, �μi

)
, where u is the displacement vector, μ a scalar loading parameter, and i is the

increment number. The iterations are constrained to lie on the surface created by the arc, and they even-
tually converge at the intersection of the arc and the equilibrium path. In this way, arc-length methods
can successfully calculate the equilibrium path of a structure also in presence of instabilities like limit
point bifurcations [33], as illustrated in Fig. 8. Consequently, the arc-length method is chosen for the
application of the nonlinear structural stability constraint proposed in this paper, since it can successfully
follow unstable segments of an equilibrium path.
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Table 1. CRM-like Box Beam cross-
sectional and material properties. Material
properties from Ref. 35)

Parameter Value
Wall thickness 7.7mm
Density 2,780kg/m 3

Young’s modulus 73.1 × 109 Pa
Poisson’s ratio 0.3
Yield strength 420 × 106 Pa

Figure 9. Geometry and dimensions of the CRM-like Box Beam model.

3.0 Nonlinear structural stability of the CRM-like Box Beam
In this section, we evaluate the nonlinear structural stability of a reinforced box beam abstracted from the
CRM wingbox, that is referred to as the CRM-like Box Beam. This model is developed to obtain a sim-
plified wingbox structure that is still representative of the models employed in aeroelastic optimisations,
and that retains the essential features that influence the nonlinear structural stability behaviour.

To obtain a simple geometry, the CRM-like Box Beam is defined as a straight, untapered wingbox
with dimensions obtained as a geometric average of those of the CRM wingbox, based on the data
provided by Taylor and Hunsaker [34]. The geometry and dimensions of the model are shown in Fig. 9.
As it can be observed from the figure, the CRM-like Box Beam is internally reinforced by 19 equally
spaced ribs and by 2 equally spaced stiffeners for each skin. Table 1 summarises the cross-sectional and
material properties used for the numerical model. The initial structure has a constant wall thickness for
all structural parts equal to 1/100th of the wingbox height. For the full derivation of the CRM-like Box
Beam, the reader is referred to the Appendix.

To study the nonlinear structural stability of the CRM-like Box Beam under a bending deformation,
fixed boundary conditions are enforced at the root section and a concentrated load, P, is applied at
the centre of the tip section along the z-axis. The numerical model is implemented in MSC Nastran,
where all geometrical parts are discretised into CQUAD4 elements. These are four-node quadrilateral
shell elements with six degrees of freedom per node, employing the Mindlin-Reissner theory for their
formulation. Clamped boundary conditions are defined for all the nodes at the root (y = 0), and they are
implemented by means of a SPC1 Nastran card. The load is introduced at a fictitious node at the centre
of the tip section, which is connected to the nodes at the edge of the tip rib by means of an RBE3 Nastran
card. This card defines a multipoint constraint that specifies the motion at the reference grid point as the
weighted average of the motions at the set of connected grid points.
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Table 2. Results of the mesh convergence study in terms
of number of degrees of freedom, linear buckling loads
and percentage differences with respect to the load
obtained with the finest mesh

# DOFs PSOL105, N �%
24, 522 13, 359 +7.57
50, 442 12, 702 +2.29
85, 866 12, 517 +0.79
192, 354 12, 414 −0.03
359, 970 12, 404 −0.12
790, 674 12, 406 −0.10
1, 777, 794 12, 401 −0.14
3, 990, 282 12, 408 −0.08
8, 902, 986 12, 408 −0.09
19, 803, 858 12, 418 –

Figure 10. Critical buckling mode of the CRM-like Box Beam predicted by SOL 105.

A mesh convergence study is performed by running MSC Nastran linear buckling solution sequence,
SOL 105, with a concentrated unit load P = 1N for increasing mesh resolution and by monitoring the
predicted linear buckling load, PSOL105. The results are summarised in Table 2. The mesh is considered
to be converged when the difference of the linear buckling load with respect to that obtained with the
finest mesh is below 1%.

Figure 10 shows the critical buckling mode for the converged mesh, corresponding to a linear buck-
ling load PSOL105 ≈ 12, 517N. The critical buckling mode involves mainly the rib-stiffener panels closest
to the root of the structure, indicating that, as expected, these panels experience the highest compressive
stress. The figure also shows the location of node 455, that is the node undergoing the largest displace-
ment in the critical buckling mode. We will use the displacement along the z-axis at this node in the
load-displacement diagrams obtained from the nonlinear analyses, and we will refer to it as the root
displacement.

As in Section 2, also in a nonlinear FE context, structural stability can be evaluated by considering
the second derivative of the total potential energy, i.e. the Hessian of the system, which represents the
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Table 3. Non-default parameters of the NLPARM and NLPCI
Nastran cards employed for the nonlinear analysis of the CRM-like
Box Beam

NLPARM field Value NLPCI field Value
NINC 100 TYPE CRIS
KMETHOD ITER MINALR 10−2

KSTEP −1 MAXALR 1.0001
MAXITER 5 DESITER 5
CONV PU MXINC 1, 300
EPSU 10−4

EPSP 10−4

MAXBIS 10

tangent stiffness matrix of the structure. The stability of an equilibrium point is thus established as

∂2�

∂u2
= H� (u) = KT (u)

⎧⎪⎨
⎪⎩

positive definite ⇒ stable equilibrium

semi − positive definite ⇒ neutral equilibrium

all other cases ⇒ unstable equilibrium.

(7)

The definiteness of a matrix can be evaluated by looking at its eigenvalues. Consequently, we can
recast Equation (7) as

KT (u)

⎧⎪⎨
⎪⎩

all eigen values > 0 ⇒ stable equilibrium

all eigen values ≥ 0 ⇒ neutral equilibrium3

atleast one eigen value < 0 ⇒ unstable equilibrium.

(8)

Equation (8) means that we can evaluate the nonlinear structural stability by monitoring the eigen-
values λ of the tangent stiffness matrix at each converged increment of the nonlinear arc-length analysis.
Since the tangent stiffness matrix of an FE model like the CRM-like Box Beam can be quite large,
we only monitor the Nλ smallest magnitude eigenvalues, as monitoring all eigenvalues would be
computationally impractical.

To investigate the nonlinear structural stability of the CRM-like Box Beam, we apply a load of magni-
tude twice as big as the linear buckling load, P/PSOL105 = 2, and we monitor the 20 smallest eigenvalues
of the tangent stiffness matrix. The analysis is carried out using MSC Nastran’s nonlinear solution
sequence, SOL 106, and the arc-length method is implemented using the NLPARM and NLPCI cards.
The parameters of these cards are set to trace the equilibrium path of the structure with suitably fine
resolution. Their values are given in Table 3. The reader is referred to the MSC Nastran Quick Reference
Guide for a detailed explanation on the meaning of the parameters.

The 20 smallest eigenvalues of the tangent stiffness matrix are evaluated with an appropriate DMAP
programme invoked by the Nastran input file. DMAP stands for Direct Matrix Abstraction Programme
and it is a high-level language with its own compiler and grammatical rules that allows the user to modify
MSC Nastran’s standard solution sequences to perform custom operations. The computation employs a
Lanczos algorithm to find the eigenvalues for each converged increment.

The load-displacement diagram resulting from the nonlinear analysis is plotted in Fig. 11, in terms of
the nondimensional applied load P/PSOL105 and of the root displacement uz, 455 nondimensionalised with
respect to the beam’s width w. The load-displacement diagram depicts a broken supercritical pitchfork
as the applied load approaches and exceeds P/PSOL105 = 1, a limit point bifurcation at P/PSOL105 = 1.42,
where the structure loses stability, and another limit point bifurcation at P/PSOL105 = 1.32, where the

3 The equilibrium is neutral when at least one eigenvalue is equal to zero.
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Figure 11. Load-displacement diagram of the CRM-like Box Beam in terms of the displacement along
the z-axis of node 455.

structures recovers stability. The broken supercritical pitchfork appears because the bending load intro-
duces a non-uniform compressive stress along the thickness of the top skin, making the problem
asymmetric. The first limit point corresponds to an applied load that is 42% larger than the linear buck-
ling load, clearly showing how the linear prediction places a glass ceiling on the structure’s limit load
and prevents the exploitation of its full load-carrying capacity.

At this point, it is important to clarify that in a real wing structure material nonlinearity and plasticity
can take place when exceeding the linear buckling load. This behaviour is not observed for the present
structure because of the low load level that the structure is subjected to. In fact, by choosing as design
load the linear buckling load of a wingbox structure with a uniform wall thickness distribution, this loads
results much smaller than that that would result from an equal weight wingbox with an appropriate wall
thickness distribution over its span. At the same time, this choice is beneficial to define an analysis and
optimisation scenario that is completely driven by stability considerations, allowing to narrow the focus
of this study.

The limit point bifurcation indicates that the structure would experience a snap when loaded past
the limit point. Figure 12 shows the deformations before and after the snap. It is possible to observe
a change of the deformation within the first rib bay: before the snap the deformation within each rib-
stiffener bay is characterised by a single half-wave, while after the snap the deformation is characterised
by two half-waves.

As mentioned earlier, the stability of the equilibrium points shown in Fig. 11 is inferred from
the eigenvalues of the tangent stiffness matrix. These are plotted in Fig. 13 against the nondimen-
sional applied load, to assess their change as the structure is loaded. From the insets we can observe
that all monitored eigenvalues remain positive along the broken supercritical pitchfork, that is to say
around P/PSOL105 = 1, while one eigenvalue becomes negative between the first and second limit point
bifurcations, that is to say between a nondimensional applied load of 1.42 and 1.32.

To assess the global effect of the nonlinear response shown in Fig. 11, we can plot the load-
displacement diagram in terms of the tip displacement uz, tip, as it is done in Fig. 14, where the
displacement is nondimensionalised with the length l of the CRM-like Box Beam. In this case, the
loss of stability at P/PSOL105 = 1.42 appears hidden by the stable points. This suggests that looking only
at the tip displacement and without monitoring the eigenvalues of the tangent stiffness matrix may be
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(a) (b)

Figure 12. Deformation over the root of the CRM-like Box Beam before and after the snap-through.
Displacements are amplified by a factor 50 for visualisation purposes. Elements are coloured by their
average rotation about the x-axis.

Figure 13. Smallest 20 eigenvalues of the tangent stiffness matrix, coloured from lowest to highest for
each arc-length increment.
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Figure 14. Load-displacement diagram of the CRM-like Box Beam in terms of tip displacement.

misleading for a structural analyst, as a limit point could not be immediately spotted. Finally, we can
observe a change in the slope of the curve, corresponding to a global softening of the structure.

The challenge of path-following
For the 1-DOF system of Section 2.2, it was shown that the broken supercritical pitchfork is made

by two equilibrium paths: a stable natural path connected to the ground state and a partially stable and
partially unstable complementary path disconnected from the ground state. The nonlinear response of
the CRM-like Box Beam shown in Fig. 11, indicates the presence of a broken supercritical pitchfork and
consequently suggests that one or more complementary paths may exist beyond the natural path shown
in the figure.

We investigate the existence of equilibrium points that do not belong to the natural path by employing
a coarse arc-length increment size, thereby allowing the nonlinear solver to jump away from the natural
path to find equilibrium points on other paths. The coarse arc-length increments are implemented by
setting default parameters for the NLPARM and NLPCI cards, except for the fields KMETHOD, KSTEP,
TYPE, MAXITER and DESITER, which are kept as indicated in Table 3.

The results of the new nonlinear analysis are shown in Fig. 15 in terms of a 3D load-displacement
diagram, where the root and tip displacements are plotted along the x- and y-axis, respectively. The
previously found natural path is also shown for comparison. We can observe that only the first two points
lie on the natural equilibrium path, while all the others appear to belong to one or more complementary
paths.

To verify the existence of a complementary path, we unload the CRM-like Box Beam from the last
equilibrium point of the analysis with coarse arc-length increments, setting the applied load to 0. The
nonlinear analysis parameters of Table 3 are used to follow the unloading equilibrium path with a fine
resolution4 and the results are shown in Fig. 16.

The structure is unloaded down to approximately P/PSOL105 = 0.87, where the analysis stops because
it reaches the maximum number of increments. However, we can clearly notice a jump from the com-
plementary path to the natural path around P/PSOL105 = 1.03. Before this jump, the complementary path

4The field MXINC of card NLPCI card, which determines the maximum number of increments, is reduced to 400 to avoid an
excessively long computational time.
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Figure 15. Comparison of the 3D load-displacement diagram obtained with fine and coarse arc-length
increment size.

Figure 16. 3D load-displacement diagram obtained by unloading the structure from the last equilib-
rium point obtained from the analysis with coarse arc-length increments.

https://doi.org/10.1017/aer.2024.151 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.151


The Aeronautical Journal 1253

Figure 17. 3D load-displacement diagram obtained by unloading the structure from the last equilib-
rium point obtained from the analysis with coarse arc-length increments using a maximum number of
iterations for each increment equal to 3.

appears to be the ‘mirrored’ version of the natural path. In fact, we can observe the presence of a pair
of load limit points between P/PSOL105 = 1.29 and 1.32. Except for the segment between these two limit
points, the complementary equilibrium path appears to be completely stable.

By examining Nastran’s output file, it is possible to notice that most arc-length increments converge
within two or three iterations, whereas the increment where the jump occurs takes five iterations to
converge. This finding suggests that the predictor step taken by the arc-length solver brings the system
into the basin of attraction of the natural equilibrium path, and the successive iterations make the solver
converge to a point on the natural path. For this reason, we repeat the analysis limiting the maximum
number of iterations for each increment to 35.

The results of this analysis are shown in Fig. 17. The solver follows the complementary path; a first
limit point bifurcation is found and subsequently, the unstable segment of the path is successfully tra-
versed past the second limit point bifurcation. When the solver approaches P/PSOL105 = 1, the applied
load increases and the equilibrium becomes unstable. This unstable part of the complementary path goes
through a sequence of new load limit points. Interestingly, two islands of stability appear after the first
two local maxima of the applied load. Instead, after the third local maximum of the applied load, the
equilibrium path remains unstable, and the analysis stops at approximately P/PSOL105 = 1.40 because it
reaches the maximum number of increments.

The analyses shown above are meant to give an idea of the challenges that can be encountered when
path-following the equilibrium paths of a relatively complex structure such as a wingbox. The arc-length
control method is needed to follow equilibrium paths with unstable points and sometimes a small incre-
ment size is required to prevent the solver from jumping between different paths. However, even a small

5In this case, we increase the value of MXINC to 800 to allow the solver for a more extensive exploration of the complementary
path.
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increment size cannot always prevent the solver from jumping onto another path or from bouncing back
at limit points.

As discussed by Groh et al. [36], generalised path-following methods can facilitate the analysis of
complex nonlinear equilibrium paths by providing a more robust continuation approach. For instance, a
potential solution to the demonstrated path-following issues could be the use of higher-order prediction
methods for the arc-length solver, which are based on the idea of using the information related to a few,
rather than just one, of the last converged points to obtain a more robust prediction of the next equilibrium
point [37]. However, this is not an option when using closed-source commercial codes, such as MSC
Nastran in this work. In fact, in the face of such a challenging task like the one described above, the
availability of an open-source structural code allowing full control over the nonlinear solver would be
ideal to tackle the problem. Instead, when working with closed-source commercial codes, the options
are very limited, and the user has to use their creativity to make the most of the parameters that the
commercial code offers to control the nonlinear analysis.

4.0 Optimisation of the CRM-like Box Beam with nonlinear structural stability constraints
In this section, a novel nonlinear structural stability constraint for aeroelastic optimisation is formulated
and a simple structural optimisation is attempted to prove its validity.

The proposed nonlinear structural stability constraint is based on the idea of assessing the stability
of the structure by monitoring the Nλ smallest magnitude eigenvalues of the tangent stiffness matrix,
as shown in Section 3. As stated in Equation (8), the structure is in a stable equilibrium when all
eigenvalues of the tangent stiffness matrix are positive, and, as a consequence, the proposed constraint
consists in imposing that the Nλ eigenvalues monitored during the nonlinear analysis are always larger
than zero.

The nonlinear stability constraint is tested in a structural optimisation of the CRM-like Box Beam, to
verify its benefit over the traditional linear buckling approach. The objective function to be minimised is
chosen to be the structural mass m. To keep the optimisation problem simple, a single design variable is
considered, corresponding to the wall thickness t, which is taken as a uniform value for all the elements
of the structure. With this choice, a one to one relation between the wall thickness and the linear buckling
load is obtained. In other words, for each value of wall thickness there is a corresponding value of linear
buckling load predicted by SOL 105. It follows that when the CRM-like Box Beam is loaded with the
linear buckling load corresponding to the value of its initial wall thickness, the structure is already
optimal in linear buckling terms. The reason for this is that the wall thickness cannot be decreased while
keeping the same applied load, because the linear buckling analysis would predict that the structure
has failed in buckling. However, as demonstrated in Section 3, this glass ceiling placed by the linear
analysis can be broken by means of a nonlinear analysis, which shows that the structure remains in a
stable equilibrium far beyond the linear buckling load and consequently suggests that the wall thickness
can be reduced without incurring into failure.

For the reason described above, we choose the optimisation design load to be equal to the linear
buckling load of the initial design, Pdesign = PSOL105, 0. Besides stability, we also require all deformations
to be elastic, or in other words that the material does not yield. Finally, we need to impose that the applied
load at the end of the nonlinear analysis, Pend, is equal to the design load, in order to avoid misleading the
optimiser if the analysis does not converge to the prescribed load. In summary, the optimisation problem
is defined as

minimise m

by varying tmin ≤ t ≤ tmax

subject to gλ, ij = −λij < 0 i = 1, . . . , Ni, j = 1, . . . , Nλ

gσ , k = σk − σmax < 0 k = 1, . . . , Ne

gP = 0.99 − Pend
Pdesign

< 0,

(9)
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where tmin and tmax are the thickness bounds, which are set between 1 and 20mm, λij is the j-th tangent
stiffness matrix eigenvalue at the i-th iteration, σk is the von Mises stress of the k-th element for the final
applied load, evaluated at both the top and bottom plane of the element, and σmax is the yield strength of
the material.

The constraint on the applied load at the end of the nonlinear analysis is implemented as an inequality,
where the difference with respect to the prescribed load must be smaller than 1%. As far as the other
constraints are concerned, instead of imposing them on individual eigenvalues and elements, they are
aggregated using the Kreisselmeier–Steinhauser (KS) functions [38]

KSλ = max
i,j

(
gλ, ij

)+ 1

ρ
ln

(
Ni∑

i=1

Nλ∑
j=1

exp

(
ρ

(
gλ, ij − max

i,j

(
gλ, ij

))))
(10)

KSσ = max
k

(
gσ , k

)+ 1

ρ
ln

(
Ne∑

k=1

exp
(
ρ
(

gσ , k − max
k

(
gσ , k

))))
(11)

where ρ is the aggregation factor determining how close the KS function is to the maximum function,
and it is set to 100. This aggregation technique returns a single value for each constraint, representing
an envelope of all the calculated quantities.

Despite being a single-discipline problem, the optimisation is set up in the OpenMDAO framework
[39] in view of a future extension to a coupled aeroelastic analysis. OpenMDAO is an open-source soft-
ware framework for multidisciplinary design, analysis, and optimisation of complex systems. Among
the optimisation algorithms available within the OpenMDAO architecture, the gradient-free Constrained
Optimisation BY Linear Approximation (COBYLA) algorithm is chosen. COBYLA is a derivative-free
optimisation method that constructs linear polynomial approximations of the objective and constraint
functions [40]. The choice of a gradient-free algorithm is made both out of simplicity and because in
the nonlinear structural stability optimisations the constraint on the applied load makes the constraint
functions discontinuous, which can pose challenges for gradient-based methods. COBYLA is particu-
larly well-suited for problems with nonlinear constraints and where gradient information is unavailable
or unreliable. The pyNastran library6 is utilised to interface the Nastran model with the OpenMDAO
framework.

The challenge of path-following explained in Section 3 becomes even more arduous when it is
applied to an optimisation problem. In fact, optimisation ideally requires a high-performance and robust
structural code that can follow the natural equilibrium path in a computationally efficient manner and
without jumping to other paths or bouncing back at limit points. This is in contrast with what was
observed for MSC Nastran SOL 106, where robust path-following required a small arc-length incre-
ment size, which is not computationally efficient. To address this issue, several combinations of the
nonlinear analysis parameters available in SOL 106 were tested. The most efficient strategy was found
by starting the nonlinear analysis with a relatively large arc-length increment size, and then allowing
the increment size to reduce as much as needed in presence of strong nonlinearities such as broken
supercritical pitchforks and limit points. In fact, a fine resolution of the natural equilibrium path is only
needed in those circumstances, and for small applied loads the path can be reliably followed with coarse
resolution.

The described strategy is implemented by setting the default initial step size to 10% of the total
applied load, and by constraining the maximum number of allowed Newton-Raphson iterations for each
increment to 3. This choice ensures that the arc-length solver can easily converge in three iterations
where the path is largely ‘straight’, while it is forced to bisect the increment size a number of times
in presence of strong nonlinearities. The full list of the non-default parameters of the NLPARM and
NLPCI cards adopted for the optimisation is given in Table 4.

6https://github.com/SteveDoyle2/pyNastran, accessed October 2024.
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Table 4. Non-default parameters of the NLPARM and NLPCI Nastran cards employed
for the nonlinear analyses during the optimisation of the CRM-like Box Beam

NLPARM field Value NLPCI field Value
KMETHOD ITER TYPE CRIS
KSTEP −1 MINALR 10−5

MAXITER 3 DESITER 4
CONV PU MXINC 100
EPSU 10−4

EPSP 10−5

MAXBIS 20

Figure 18. Optimisation history.

The optimisation is performed on a Dell OptiPlex 5060 workstation and it takes 3.5 hours to complete.
Only limited parallelisation is employed, setting SOL 106 to use shared memory parallel computation
over four processors. The optimisation history is shown in Fig. 18. As it can be observed, the COBYLA
algorithm does not guarantee to end the optimisation on a feasible design point, so we select the optimal
design in correspondence of the last feasible iteration. At this design point, the structural mass is reduced
by 10.9%, with the wall thickness decreasing from its initial value of 7.7mm to a final value of 6.9mm,
and with all constraints being satisfied within optimiser tolerances. As expected from the choice of the
design load, we note that the constraint on nonlinear structural stability is active, in contrast to that on
material failure, which is not active.

The load-displacement diagram of the optimised structure is shown in Fig. 19, both in terms of root
and tip displacement, and it is compared with that of the initial structure. As far as the root displace-
ment is concerned, it is possible to notice a broken supercritical pitchfork around P/Pdesign = 0.7 and the
onset of a limit point bifurcation right at the design load. This response is analogous to the one shown
in Fig. 11, only shifted towards a lower applied load. As far as the tip displacement is concerned, it
can be observed that the optimised structure is globally softer than the initial design, as evidenced by

https://doi.org/10.1017/aer.2024.151 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.151


The Aeronautical Journal 1257

Figure 19. Load-displacement diagrams of initial and optimised CRM-like Box Beam.

the smaller slope of the load-displacement curve. This is expected given the reduced wall thickness and
mass. It is also possible to notice that the difference in slope between the two curves appears to increase
approaching the design load, meaning that geometrical nonlinearities are kicking in for the optimised
structure and having an effect on its global stiffness. Furthermore, in both plots it can be observed
that the chosen parameters of the NLPARM and NLPCI cards successfully managed to decrease
the arc-length increment size where the equilibrium path required a finer resolution to be accurately
followed.

Finally, the linear buckling load of the optimised structure is calculated with SOL 105, and the result
is displayed in the load-displacement diagram. As it can be observed in the figure, the linear buckling
analysis places a glass ceiling on the limit load of the structure at 71% of the design load. In other words,
the linear buckling approach would require a heavier structure to carry the design load, while in reality
the structure optimised with the nonlinear structural stability constraint is capable of carrying the design
load in a stable equilibrium and with elastic deformations, thus saving mass with respect to the linear
buckling approach.

At this point, it is important to clarify that the ultimate aim of the proposed approach is not to design
structures operating close to their nonlinear structural stability limit under normal conditions, such as
cruise flight. In future work, a careful assessment will be necessary to understand what loss of structural
stability implies for a more realistic optimisation scenario. This assessment will involve the inclusion of
multiple loading conditions in the sizing process, the identification of the structural parts that become
critical in those different conditions, the effect of the nonlinear structural stability constraints on cruise
flight performance, and the evaluation of the stability margins needed to prevent structural failure in
extreme scenarios such as gust encounters.

The deformation at the design load for both the initial and the optimised structures is shown in Fig. 20,
where the colourmap indicates the average rotation of the elements about the x-axis. From the colour
pattern, it is possible to observe a buckled-like deformation over the root region of the optimised struc-
ture, even if in terms of displacements, the pattern is basically unnoticeable. The softening effect when
approaching the design load observed in Fig. 19 can be ascribed to the emergence of this shape. In
comparison, the initial structure barely shows the same type of deformation over the root region, and its
colour pattern is more similar to a beam undergoing a linear deformation.
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(a) (b)

Figure 20. Deformation at design load of initial and optimised CRM-like Box Beam. Elements coloured
by their average rotation about the x-axis.

5.0 Conclusion
A novel nonlinear structural stability constraint for the optimisation of wingbox structures has been pre-
sented in this work. The theoretical principles on nonlinear structural mechanics underlying the proposed
approach were introduced and demonstrated on three canonical examples featuring the supercritical
pitchfork bifurcation, the broken supercritical pitchfork and the limit point bifurcation. Successively, the
nonlinear structural stability of a reinforced box beam abstraction of the CRM wingbox, called CRM-like
Box Beam, was investigated. It was shown that the natural equilibrium path of the structure comprises a
broken supercritical pitchfork and a limit point bifurcation. The structure was demonstrated to be stable
up to an applied load that is 42% larger than the linear buckling load, showing how the linear approach
places a glass ceiling on the limit load that the structure can carry. A contribution to this large difference
comes from the choice of the applied load for the considered structure, while for more realistic wing
structures under more realistic loading conditions material nonlinearity would be likely to occur and
limit the highlighted difference.

The existence of a complementary path disconnected from the ground state was also highlighted,
depicting the challenges of following the equilibrium paths of a complex structure like a wingbox. The
nonlinear structural stability constraint was then introduced into a simple structural optimisation of the
CRM-like Box Beam. A mass reduction of 10.9% was found in comparison to the baseline structure,
optimal in linear buckling terms, highlighting the potential of the proposed constraint for aeroelastic
optimisation. Future developments will focus on the use of more design variables to obtain a varying
distribution of thickness over the wingbox, the inclusion of non-conservative aerodynamic loading, and
the use of a more realistic wingbox model.

Acknowledgments. This research was supported by Embraer S.A. and by the Engineering and Physical Sciences Research
Council (EPSRC) via grant EP/T517872/1. The authors would like to thank Dr Mark Schenk from University of Bristol, whose
course material provided inspiration for the canonical examples shown in this work, Mike Coleman from Coleman FEA Ltd. for
his contribution to the development of the DMAP programme for the calculation of the eigenvalues of the tangent stiffness matrix,
and Steven Doyle for his support with the pyNastran library.

Competing interests. The authors declare none.

References
[1] Filippone, A. Flight Performance of Fixed and Rotary Wing Aircraft, Elsevier, 2006. ISBN 09780750668170.
[2] Sleesongsom, S. and Bureerat, S. New conceptual design of aeroelastic wing structures by multi-objective optimization,

Eng. Optim., 2013, 45, (1), pp 107–122. https://doi.org/10.1080/0305215X.2012.661728
[3] Dunning, D.P., Stanford, B. and Kim, A.H. Level-Set Topology Optimiza- tion with Aeroelastic Constraints, 2015.

https://arc.aiaa.org/doi/abs/10.2514/6.2015-1128

https://doi.org/10.1017/aer.2024.151 Published online by Cambridge University Press

https://doi.org/10.1080/0305215X.2012.661728
https://arc.aiaa.org/doi/abs/10.2514/6.2015-1128
https://doi.org/10.1017/aer.2024.151


The Aeronautical Journal 1259

[4] Stodieck, O., Cooper, J.E., Weaver, P.M. and Kealy, P. Aeroelastic tailoring of a representative wing box using tow-steered
composites, AIAA J., 2017, 55, (4), pp 1425–1439. https://doi.org/10.2514/1.J055364

[5] Stanford, K.B., Jutte, V.C. and Coker, A.C. Aeroelastic sizing and layout design of a wingbox through nested optimization,
AIAA J., 2019, 57, (2), pp 848–857. https://doi.org/10.2514/1.J057428

[6] Silva, H.C.G., Pereira do Prado, A., Cabral, P.H., De Breuker, R. and Dillinger, J.K.S. Tailoring of a composite regional jet
wing using the slice and swap method, Journal of Aircraft, 2019, 56, (3), pp 990–1004. https://doi.org/10.2514/1.C035094

[7] Keidel, D., Molinari, G., and Ermanni, P. Aero-structural optimization and analysis of a camber-morphing flying
wing: Structural and wind tunnel testing, J. Intell. Mater. Syst. Struct., 2019, 30, (6), pp 908–923. https://doi.org/
10.1177/1045389X19828501

[8] Jrad, M., De, S. and Kapania, K.R. Global-local Aeroelastic Optimization of Internal Structure of Transport Aircraft wing,
2017. https://arc.aiaa.org/doi/abs/10.2514/6.2017-4321

[9] De, S., Jrad, M. and Kapania, K.R. Structural optimization of internal structure of aircraft wings with curvilinear spars and
ribs, Journal of Aircraft, 2019, 56, (2), pp 707–718. https://doi.org/10.2514/1.C034818

[10] Qian, J. and Alonso, J.J. Design of Unconventional Aircraft Structures with Aeroelastic and Buckling Considerations, 2022.
https://arc.aiaa.org/doi/abs/10.2514/6.2022-0542

[11] Stanford, K.B., Jutte, V.C. and Wieseman, D.C. Trim and structural opti- mization of subsonic transport wings using
nonconventional aeroelastic tailoring, AIAA J., 2016, 54, (1), pp 293–309. https://doi.org/10.2514/1.J054244

[12] Stanford, K.B. Aeroelastic wingbox stiffener topology optimization, J. Aircraft, 2018, 55, (3), pp 1244–1251.
https://doi.org/10.2514/1.C034653

[13] Qian, J. and Alonso, J.J. Wing Structural Optimization through Highly- Parameterized Design, 2021. https://
arc.aiaa.org/doi/abs/10.2514/6.2021-1967

[14] Qian, .. and Alonso, J. Structural Optimization of Blended Wing Body Transport Aircraft With Buckling Constraints, 2021.
https://arc.aiaa.org/doi/abs/10.2514/6.2021-3022

[15] Wang, Z., Wan, Z., Groh, M.J.R. and Wang, X. Aeroelastic and local buckling optimisation of a variable-angle-tow
composite wing-box structure, Compos. Struct., 2021, 258, p 113201. ISSN 0263-8223. https://www.sciencedirect.com/
science/article/pii/S0263822320331275

[16] Kilimtzidis, S. and Kostopoulos, V. Multidisciplinary structural optimization of novel high-aspect ratio composite aircraft
wings, Struct. Multi-Discip. Optim., 2023, 66, (7), p 150. ISSN 1615-1488. https://doi.org/10.1007/s00158-023-03600-1

[17] Herencia, J., Weaver, P. and Friswell, M. Morphing wing design via aeroelastic tailoring, 2007. https://arc.aiaa.org/
doi/abs/10.2514/6.2007-2214

[18] Dillinger, J.K.S., Klimmek, T., Abdalla, M.M. and Gürdal, Z. Stiffness optimization of composite wings with aeroelastic
constraints, J. Aircraft, 2013, 50, (4), pp 1159–1168. https://doi.org/10.2514/1.C032084

[19] Stanford, K.B. and Jutte, V.C. Comparison of curvilinear stiffeners and tow steered composites for aeroelastic tailor-
ing of aircraft wings, Comput. Struct., 2017, 183, pp 48–60. ISSN 0045-7949. https://www.sciencedirect.com/science/
article/pii/S0045794916305569

[20] Kennedy, J.G. and Martins, R.R.A.J. A parallel aerostructural optimization framework for aircraft design studies, Struct.
Multidiscip. Optim., 2014, 50, (6), pp 1079–1101. ISSN 1615-1488. https://doi.org/10.1007/s00158-014-1108-9

[21] Kennedy, G., Kenway, K.G. and Martins, A.J.R.R. High Aspect Ratio Wing Design: Optimal Aerostructural Tradeoffs for
the Next Generation of Materials, 2014. https://arc.aiaa.org/doi/abs/10.2514/6.2014-0596

[22] Kenway, G., Kennedy, G. and Martins, R.R.A.J. Aerostructural optimization of the Common Research Model configuration,
2014. https://arc.aiaa.org/doi/abs/10.2514/6.2014-3274

[23] Stanford, B. Aeroservoelastic Optimization under Stochastic Gust Constraints, 2018. https://arc.aiaa.org/doi/abs/
10.2514/6.2018-2837

[24] Brooks, R.T., Martins, R.R.A.J. and Kennedy, J.G. High-fidelity aerostructural optimization of tow-steered com-
posite wings, J. Fluids Struct., 2019, 88, pp 122–147. ISSN 0889-9746. https://www.sciencedirect.com/science/
article/pii/S0889974618306340

[25] Gray, C.A. and Martins, R.J. Geometrically Nonlinear High-fidelity Aerostructural Optimization for Highly Flexible Wings,
2021. https://arc.aiaa.org/doi/abs/10.2514/6.2021-0283

[26] Niu, C. Airframe Structural Design: Practical Design Information and Data on Aircraft Structures, Conmilit Press, 1988.
ISBN 9789627128045. https://books.google.it/books?id=EHdGAAAAYAAJ

[27] Qu, S., Kennedy, D. and Featherston, A.C. A multilevel framework for optimization of an aircraft wing incor-
porating postbuckling effects, Proc. Inst. Mech. Eng. Part G J. Aerospace Eng., 2012, 226, (7), pp 830–845.
https://doi.org/10.1177/0954410011415158

[28] Liguori, S.F., Zucco, G., Madeo, A., Magisano, D., Leonetti, L., Garcea, G. and Weaver, M.P. Postbuckling optimisation of
a variable angle tow composite wingbox using a multi-modal koiter approach, ThinWalled Struct., 2019, 138, pp 183–198.
ISSN 0263-8231. https://www.sciencedirect.com/science/article/pii/S0263823118316331

[29] Liang, K. and Yin, Z. Investigation on nonlinear buckling performance of the opti- mized wing structure under the real-
istic flight cases, Aerospace Sci. Technol., 2023, 139, p 108416. ISSN 1270-9638. https://www.sciencedirect.com/science/
article/pii/S1270963823003139

[30] Vassberg, J., Dehaan, M., Rivers, M. and Wahls, R. Development of a Common Research Model for Applied CFD Validation
Studies, 2008. https://arc.aiaa.org/doi/abs/10.2514/6.2008-6919

https://doi.org/10.1017/aer.2024.151 Published online by Cambridge University Press

https://doi.org/10.2514/1.J055364
https://doi.org/10.2514/1.J057428
https://doi.org/10.2514/1.C035094
https://doi.org/10.1177/1045389X19828501
https://doi.org/10.1177/1045389X19828501
https://arc.aiaa.org/doi/abs/10.2514/6.2017-4321
https://doi.org/10.2514/1.C034818
https://arc.aiaa.org/doi/abs/10.2514/6.2022-0542
https://doi.org/10.2514/1.J054244
https://doi.org/10.2514/1.C034653
https://arc.aiaa.org/doi/abs/10.2514/6.2021-1967
https://arc.aiaa.org/doi/abs/10.2514/6.2021-1967
https://arc.aiaa.org/doi/abs/10.2514/6.2021-3022
https://www.sciencedirect.com/science/article/pii/S0263822320331275
https://www.sciencedirect.com/science/article/pii/S0263822320331275
https://doi.org/10.1007/s00158-023-03600-1
https://arc.aiaa.org/doi/abs/10.2514/6.2007-2214
https://arc.aiaa.org/doi/abs/10.2514/6.2007-2214
https://doi.org/10.2514/1.C032084
https://www.sciencedirect.com/science/article/pii/S0045794916305569
https://www.sciencedirect.com/science/article/pii/S0045794916305569
https://doi.org/10.1007/s00158-014-1108-9
https://arc.aiaa.org/doi/abs/10.2514/6.2014-0596
https://arc.aiaa.org/doi/abs/10.2514/6.2014-3274
https://arc.aiaa.org/doi/abs/10.2514/6.2018-2837
https://arc.aiaa.org/doi/abs/10.2514/6.2018-2837
https://www.sciencedirect.com/science/article/pii/S0889974618306340
https://www.sciencedirect.com/science/article/pii/S0889974618306340
https://arc.aiaa.org/doi/abs/10.2514/6.2021-0283
https://books.google.it/books?id$=$\gdef  \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}EHdGAAAAYAAJ
https://doi.org/10.1177/0954410011415158
https://www.sciencedirect.com/science/article/pii/S0263823118316331
https://www.sciencedirect.com/science/article/pii/S1270963823003139
https://www.sciencedirect.com/science/article/pii/S1270963823003139
https://arc.aiaa.org/doi/abs/10.2514/6.2008-6919
https://doi.org/10.1017/aer.2024.151


1260 Mitrotta et al.

[31] Bazănt, P.Z. and Cedolin, L. Stability of Structures, World Scientific, 2010. https://www.worldscientific.com/doi/abs/
10.1142/7828

[32] Rajpal, D., Gillebaart, E. and De Breuker, R. Preliminary aeroelastic design of composite wings subjected to criti-
cal gust loads, Aerospace Sci. Technol., 2019, 85, pp 96–112. ISSN 1270-9638. https://www.sciencedirect.com/science/
article/pii/S1270963818303948

[33] Leon, E.S., Paulino, H.G., Pereira, A., Menezes, F.M.I. and Lages, N.E. A unified library of nonlinear solution schemes,
Appl. Mech. Rev., 2012, 64, (4). ISSN 0003-6900. https://doi.org/10.1115/1.4006992.040803

[34] Taylor, D.J. and Hunsaker, F.D. Characterization of the Common Research Model Wing for Low-Fidelity Aerostructural
Analysis, 2021. https://arc.aiaa.org/doi/abs/10.2514/6.2021-1591

[35] Brooks, R.T., Kenway, K.W.G. and Martins, R.R.A.J. Benchmark aerostructural models for the study of transonic aircraft
wings, AIAA J., 2018, 56, (7), pp 2840–2855. https://doi.org/10.2514/1.J056603

[36] Groh, R.M.J., Avitabile, D. and Pirrera, A. Generalised path-following for well-behaved nonlinear structures, Comput.
Methods Appl. Mech. Eng., 331, pp 394–426, 2018. ISSN 0045-7825. https://www.sciencedirect.com/science/article/
pii/S0045782517307521

[37] Eriksson, A. On improved predictions for structural equilibrium path evaluations, Int. J. Numer. Methods Eng., 1993, 36,
(2), pp 201–220. https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620360203

[38] Martins, R.R.A.J. and Ning, A. Engineering Design Optimization, Cambridge University Press, 2022. ISBN
9781108833417.

[39] Gray, S.J., Hwang, T.J., Martins, R.R.A.J., Moore, T.K. and Naylor, A.B. OpenMDAO: an open-source framework for
multidisciplinary design, analysis, and optimization, Struct. Multidiscip. Optim., 2019, 59, pp 1075–1104.

[40] Powell, M.J.D. A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear
Interpolation, Springer Netherlands, 1994, Dordrecht, pp 51–67. ISBN 978-94-015-8330-5. https://doi.org/10.1007/978-
94-015-8330-5_4

A. Appendix
A.1 Derivation of canonical examples’ equilibrium equations
A.1.1 Supercritical pitchfork bifurcation
The total potential energy of the system shown in Fig. 1 is given by Equation (1), where the strain energy
U is given by

=
∫ 2θ

0

kβdβ = 2kθ 2 (A1)

and the work W done by the applied load P can be calculated as

W = Pδ = P2l(1 − cos θ) . (A2)

Substituting in Equation (1) we obtain the total potential energy in the form of

� = 2kθ 2 − 2Pl(1 − cos θ) . (A3)

To calculate the equilibrium points, we need to apply Equation (2) such that
∂�

∂θ
= 4kθ − 2Pl sin θ = 0. (A4)

The above expression has a trivial solution for θ = 0, corresponding to no displacement of the rods,
and a non-trivial solution for

P = 2k

l

θ

sin θ
. (A5)

For the stability of the equilibrium points, we need to apply Equation (3) such that
∂2�

∂θ 2
= 4k − 2Pl cos θ . (A6)

For θ = 0, the stability conditions are given by⎧⎪⎪⎨
⎪⎪⎩

∂2�

∂θ 2
> 0 for P < Pc

∂2�

∂θ 2
< 0 for P > Pc

(A7)
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where Pc = 2k/l is the critical buckling load, or in other words, the load where the second derivative of
the potential energy is zero and where a bifurcation occurs.

For P = Pcθ/sin θ , the stability condition is

∂2�

∂θ 2
= 4k −

(
2kθ

l sin θ

)
l cos θ = 4k

(
1 − θ

tan θ

)
> 0 (A8)

which means that the equilibrium points described by Equation (5) are always stable.

A.1.2 Broken supercritical pitchfork
For the case of the rods at an initial angle θ0 shown in Fig. 3, the strain energy is calculated as

U =
∫ 2(θ−θ0)

0

kβdβ = 2k(θ − θ0)
2 (A9)

and the work done by the applied load is found as

W = Pδ = P2l (cos θ0 − cos θ) . (A10)

Substituting into Equation (1), we obtain the total potential energy in the form of

� = 2k(θ − θ0)
2 − P2l (cos θ0 − cos θ) (A11)

and by applying Equation (2), we find the expression of the equilibrium points as

∂�

∂θ
= 4k (θ − θ0) − 2Pl sin θ = 0 (A12)

that can be rewritten in the form of

P = 2k

l

θ − θ0

sin θ
= Pc

θ − θ0

sin θ
. (A13)

We then apply Equation (3) to assess the stability of the equilibrium points, such that

∂2�

∂θ 2
= 4k − 2Pl cos θ . (A14)

Substituting Equation (3) into Equation (4), we can obtain a suitable expression to evaluate the
stability of the equilibrium points, thus

∂2�

∂θ 2
= 4k − 2lcos θ

2k (θ − θ0)

lsin θ
= 4k

(
1 − θ − θ0

tan θ

)
(A15)

and find the stability conditions in the form of⎧⎪⎪⎨
⎪⎪⎩

∂2�

∂θ 2
> 0 for

θ − θ0

tan θ
< 1

∂2�

∂θ 2
< 0 for

θ − θ0

tan θ
> 1.

(A16)

A.1.3 Limit point bifurcation
The strain energy of the inclined rods with elastic support shown in Fig. 5 is given by

U = 1

2
k(2lcos θ − 2lcos α0)

2. (A17)
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The work done by the applied transverse load is calculated as

W = Pl (sinα0 − sin θ) . (A18)

Substituting in Equation (1), we find the total potential energy as

� = 1

2
k(2lcos θ − 2lcos α0)

2 − Pl (sinα0 − sin θ) (A19)

and by applying Equation (2), we obtain the equilibrium equation of the system as
∂�

∂θ
= −4kl2 (cos θ − cos α0) sin θ + Plcos θ = 0. (A20)

Rearranging the equation in terms of the load P, we find that

P = 4kl (sin θ − cos α0tan θ) . (A21)

To assess the stability, we apply Equation (3), such that

∂2�

∂θ 2
= −4kl2 (cos θ − cos α0) cos θ + 4kl2sin2θ − Plsin θ . (A22)

We can then substitute the load P with the equilibrium equation, thus

∂2�

∂θ 2
= −4kl2 (cos θ − cos α0) cos θ + 4kl2sin2θ − 4kl (sin θ − cos α0tan θ) lsin θ =
= 4kl2

(
cos α0 (cos θ + tan θsin θ) − cos2θ

)=

= 4kl2 cos α0 − cos3 θ

cos θ
(A23)

which results in the stability conditions given by⎧⎪⎪⎨
⎪⎪⎩

∂2�

∂θ 2
> 0 for

cos α0 − cos3 θ

cos θ
> 0

∂2�

∂θ 2
< 0 for

cos α0 − cos3 θ

cos θ
< 0.

(A24)

A.2 Derivation of the CRM-like box beam model
The CRM-like Box Beam model presented in Section 3 and optimised in Section 4 is derived based on
the data provided by Ref. 38).

The length l of the CRM-like Box Beam is taken as half the span of the CRM wingbox bwb, such that

= bwb/2. (A25)

Since both the width wwb(y) and the height hwb(y) of the CRM wingbox vary along the span, a refer-
ence value for each is needed to develop a straight untapered box beam abstraction. The reference value
of the wingbox width is found by dividing the wingspan by the wingbox aspect ratio ARwb, thus

w = bwb/ARwb. (A26)

The aspect ratio of the wingbox is defined as the ratio between the square of its span and its planform
area Swb, in the form of

ARwb = (bwb)
2

Swb

, (A27)
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Figure A1. Comparison of the 3D load-displacement diagram obtained with original and refined mesh.

where the planform area is calculated as the integral of the width along the semi-span, such that

Swb = 2
∫ bwb/2

0

wwb (y) dy. (A28)

The distribution of wingbox width along the span, wwb (y), is inferred from the data reported by
Ref. 38).

The reference wingbox height is obtained by dividing the wingbox volume Vwb by the planform area,
thus

h = Vwb

Swb

. (A29)

The wingbox volume can be calculated as the integral of the cross-sectional area of the wingbox
along the semi-span. In turn, the cross-sectional area at each spanwise station can be approxi-
mated with the area of the trapezium formed by connecting the two spars. Consequently the volume
results in

Vwb = 2
∫ bwb/2

0

hfront(y) + hrear(y)

2
wwb (y) dy (A30)

where hfront (y) and hrear (y) are the spanwise distribution of the front and rear spar height, respectively.
Also these quantities are inferred from the data reported by Ref. 38).

The height of the stiffeners hs and the wall thickness t are taken as 1/10 and 1/100 of the CRM-like
Box Beam height, respectively. The values obtained from the above relations are reported in Fig. 9.

Since the mesh convergence study discussed in Section 3 is performed employing linear buckling
analyses, the convergence of the mesh is verified in the nonlinear regime. To do this, two nonlinear
analyses are performed, one using the original mesh resulting from the convergence study and another
one using a refined mesh generated by choosing as target element length half the element length used
for the original mesh. The applied load is set to twice the linear buckling load obtained for the original
mesh to capture the nonlinear region of the structural response.

The results of these analyses are shown in Fig. A1 in terms of a 3D load-displacement diagram.
The root displacement is evaluated for both models at the node where the linear buckling analysis pre-
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dicts the maximum displacement for the critical buckling mode, that is to say node 455 for the model
employing the original mesh and and node 1,362 for the model employing the refined mesh. It is possi-
ble to observe that the two analyses predict the same qualitative behaviour, suggesting that the original
mesh is detailed enough to capture the nonlinear response of the CRM-like Box Beam. In quantitative
terms, the final root and tip displacements are 3.5% higher and 1.0% lower with respect to the model
employing the refined mesh, respectively, while the applied load where the stability is lost is 4.3%
higher.
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