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Abstract
We consider the critical temperature for superconductivity, defined via the linear BCS equation. We prove that at
weak coupling the critical temperature for a sample confined to a quadrant in two dimensions is strictly larger than
the one for a half-space, which in turn is strictly larger than the one for R2. Furthermore, we prove that the relative
difference of the critical temperatures vanishes in the weak coupling limit.
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1. Introduction

Recent work [18, 19, 1, 2, 21, 20] predicts the occurrence of boundary superconductivity in the BCS
model. Close to edges superconductivity sets in at higher temperatures than in the bulk, and at corners the
critical temperature appears to be even higher than at edges. A first rigorous justification was provided
in [12, 16], where it was proved that the system on half-spaces in dimensions 𝑑 ∈ {1, 2, 3} can have
higher critical temperatures than on R𝑑 . Here, we consider 𝑑 = 2 and the goal is to show that a quadrant
has a higher critical temperature than a half-space. Since comparing the critical temperatures for the
nonlinear Bardeen–Cooper–Schrieffer model is very difficult, we work with the critical temperature
defined via the linear BCS equation and show that a quadrant has a higher critical temperature than a
half-space, at least at weak coupling in the same spirit as in [8, 9]. This may serve as a starting point for
future investigations of the nonlinear model.
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Superconductivity is more stable close to boundaries also when a magnetic field is applied. This
phenomenon has been widely studied using Ginzburg–Landau theory; see, for example, [7, 4] and the
references therein. Ginzburg–Landau theory can be rigorously derived from BCS theory for domains
without boundaries [10, 5, 6], while for domains with boundaries this is an open problem.

We consider the full plane and the half- and quarter-spaces Ω𝑘 = (0,∞)𝑘 × R2−𝑘 for 𝑘 ∈ {0, 1, 2}.
We define the critical temperature as in [12, 16] using the operator

𝐻Ω
𝑇 =

−Δ 𝑥 − Δ 𝑦 − 2𝜇

tanh
(
−Δ𝑥−𝜇

2𝑇

)
+ tanh

(
−Δ𝑦−𝜇

2𝑇

) − 𝜆𝑉 (𝑥 − 𝑦) (1.1)

acting in 𝐿2
sym (Ω × Ω) = {𝜓 ∈ 𝐿2 (Ω × Ω) |𝜓(𝑥, 𝑦) = 𝜓(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ Ω}, where −Δ denotes

the Dirichlet or Neumann Laplacian and the subscript indicates on which variable it acts, T is the
temperature, 𝜇 is the chemical potential, V is the interaction and 𝜆 is the coupling constant. The first
term is defined through functional calculus. For 𝑉 ∈ 𝐿𝑡 (R2) with 𝑡 > 1, the 𝐻Ω𝑘

𝑇 are self-adjoint
operators defined via the KLMN theorem [16, Remark 2.2].

The critical temperatures are defined as

𝑇 𝑘𝑐 (𝜆) := inf{𝑇 ∈ (0,∞)| inf 𝜎(𝐻Ω𝑘

𝑇 ) ≥ 0}. (1.2)

The operator 𝐻Ω𝑘

𝑇 is the Hessian of the BCS functional at the normal state [8], and the linear BCS
equation reads 𝐻Ω𝑘

𝑇 𝛼 = 0.
In particular, the system is superconducting for 𝑇 < 𝑇 𝑘𝑐 (𝜆), when the normal state is not a minimizer

of the full, nonlinear BCS functional. A priori, superconductivity may also occur at temperatures
𝑇 > 𝑇 𝑘𝑐 (𝜆), either when the ground state energy of the Hessian is not monotone in the temperature or
when the normal state is a local minimum of the BCS functional, but not a global one. For translation
invariant systems with suitable interactions V, in particular for Ω0 = R2, this is not the case and the
system is in the normal state if 𝑇 > 𝑇0

𝑐 (𝜆). This was proved in [11, 13] without the restriction to
symmetric Cooper pair wave functions and is adapted for symmetric Cooper pair wave functions in
[17]. Hence, 𝑇0

𝑐 separates the normal and the superconducting phase. However, it remains an open
question whether the same is true for 𝑇1

𝑐 and 𝑇2
𝑐 .

We prove that for small enough 𝜆, the critical temperatures defined through the linear criterion (1.2)
satisfy 𝑇2

𝑐 (𝜆) > 𝑇1
𝑐 (𝜆). Together with the result from [16], we get the strictly decreasing sequence

𝑇2
𝑐 (𝜆) > 𝑇1

𝑐 (𝜆) > 𝑇0
𝑐 (𝜆) of critical temperatures at weak coupling.

Similarly to [16, Lemma 2.3], where it was shown that𝑇1
𝑐 (𝜆) ≥ 𝑇0

𝑐 (𝜆) for all 𝜆, the following Lemma
is relatively easy to prove.

Lemma 1.1. Let 𝜆, 𝑇 > 0 and 𝑉 ∈ 𝐿𝑡 (R2) for some 𝑡 > 1. Then inf 𝜎(𝐻Ω2
𝑇 ) ≤ inf 𝜎(𝐻Ω1

𝑇 ).

Its proof can be found in Section 3. In particular, it follows that for all 𝜆 > 0, we have 𝑇2
𝑐 (𝜆) ≥ 𝑇1

𝑐 (𝜆).
The difficulty lies in proving a strict inequality, which the rest of the paper will be devoted to. In order to
prove 𝑇2

𝑐 (𝜆) > 𝑇1
𝑐 (𝜆), we shall give a precise analysis of the asymptotic behavior of 𝐻Ω1

𝑇 1
𝑐 (𝜆) as 𝜆 → 0.

For 𝜇 > 0 let F : 𝐿1 (R2) → 𝐿2 (S1) act as the restriction of the Fourier transform to a sphere of
radius√𝜇, that is,F𝜓(𝜔) = 𝜓(√𝜇𝜔) and for𝑉 ≥ 0 define𝑂𝜇 = 𝑉1/2F†F𝑉1/2 on 𝐿2 (R2). The operator
𝑂𝜇 is compact. For the desired asymptotic behavior of 𝐻Ω1

𝑇 1
𝑐 (𝜆) , we need that 𝑂𝜇 has a nondegenerate

eigenvalue 𝑒𝜇 = sup𝜎(𝑂𝜇) > 0 at the top of its spectrum [13, 14].
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We require the following assumptions for our main result.
Assumption 1.2. Let 𝜇 > 0. Assume that
1. 𝑉 ∈ 𝐿1 (R2) ∩ 𝐿𝑡 (R2) for some 𝑡 > 1,
2. V is radial, 𝑉 � 0,
3. | · |𝑉 ∈ 𝐿1 (R2),
4. 𝑉 ≥ 0,
5. 𝑒𝜇 = sup𝜎(𝑂𝜇) is a nondegenerate eigenvalue.
Remark 1.3. Similarly to the three-dimensional case discussed in [13, Section III.B.1], because
of rotation invariance the eigenfunctions of 𝑂𝜇 are given, in radial coordinates 𝑟 ≡ (|𝑟 |, 𝜑), by
𝑉1/2 (𝑟)𝑒𝑖𝑚𝜑𝐽𝑚 (

√
𝜇 |𝑟 |), where 𝐽𝑚 denote the Bessel functions. The corresponding eigenvalues are

𝑒 (𝑚)
𝜇 =

1
2𝜋

∫
R2
𝑉 (𝑟) |𝐽𝑚 (

√
𝜇 |𝑟 |) |2d𝑟 (1.3)

and in particular 𝑒 (𝑚)
𝜇 = 𝑒 (−𝑚)

𝜇 . Assumption (5) therefore means that 𝑒𝜇 = 𝑒 (0)𝜇 and that all other
eigenvalues 𝑒 (𝑚)

𝜇 are strictly smaller. Hence, the eigenstate corresponding to 𝑒𝜇 has zero angular
momentum. Analogously to the three-dimensional case, a sufficient condition for equation (5) to hold
is that 𝑉 ≥ 0.

Our first main result is:
Theorem 1.4. Let 𝜇 > 0, and let V satisfy Assumption 1.2. Assume the same boundary conditions,
either Dirichlet or Neumann, on Ω1 and Ω2. Then there is a 𝜆1 > 0, such that for all 0 < 𝜆 < 𝜆1,
𝑇2
𝑐 (𝜆) > 𝑇1

𝑐 (𝜆).
Remark 1.5. The critical temperature 𝑇1

𝑐 (𝜆) is the smallest temperature T satisfying inf 𝜎(𝐻Ω1
𝑇 ) = 0.

Other solutions to this equation would define larger critical temperatures. Upon inspection, the proof of
Theorem 1.4 shows that for any temperature T satisfying inf 𝜎(𝐻Ω1

𝑇 ) = 0 the system on the quadrant is
superconducting for temperatures in an interval around T.

The second main result is that the relative difference in critical temperatures vanishes in the weak
coupling limit.
Theorem 1.6. Let 𝜇 > 0, and let V satisfy Assumption 1.2. Assume either Dirichlet or Neumann
boundary conditions on Ω2. Then

lim
𝜆→0

𝑇2
𝑐 (𝜆) − 𝑇0

𝑐 (𝜆)
𝑇0
𝑐 (𝜆)

= 0. (1.4)

Since 𝑇2
𝑐 (𝜆) ≥ 𝑇1

𝑐 (𝜆) ≥ 𝑇0
𝑐 (𝜆), this implies lim𝜆→0

𝑇 2
𝑐 (𝜆)−𝑇 1

𝑐 (𝜆)
𝑇 1
𝑐 (𝜆) = 0 and lim𝜆→0

𝑇 1
𝑐 (𝜆)−𝑇 0

𝑐 (𝜆)
𝑇 0
𝑐 (𝜆) = 0.

The latter was already shown in [16], and we closely follow [16] to prove Theorem 1.6.
The paper is structured as follows. In Section 1.1, we explain the proof strategy for Theorem 1.4.

Section 3 contains the proofs of some basic properties of 𝐻Ω
𝑇 . Section 4 discusses the regularity and

asymptotic behavior of the ground state of 𝐻Ω1
𝑇 . In Section 5, we prove Lemma 1.9, the first key step in

the proof of Theorem 1.4. The second key step, Lemma 1.10 is proved in Section 6. In Section 7, we
prove Theorem 1.6. Section 8 contains the proofs of auxiliary lemmas.

1.1. Proof strategy for Theorem 2.4

The proof of Theorem 1.4 is based on the variational principle. The idea is to construct a trial state for
𝐻Ω2
𝑇 1
𝑐 (𝜆) involving the ground state of 𝐻Ω1

𝑇 1
𝑐 (𝜆) . However, the latter operator is translation invariant in the

second component of the center of mass variable and therefore has purely essential spectrum. To work
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with an operator that has eigenvalues, we fix the momentum in the translation invariant direction and
choose it in order to minimize the energy.

Let 𝑈 : 𝐿2 (R2 × R2) → 𝐿2 (R2 × R2) be the unitary operator switching to relative and center of
mass coordinates 𝑟 = 𝑥 − 𝑦 and 𝑧 = 𝑥 + 𝑦, that is, 𝑈𝜓(𝑟, 𝑧) = 1

2𝜓((𝑟 + 𝑧)/2, (𝑧 − 𝑟)/2). We shall apply
U to functions defined on a subset of Ω ⊂ R2 × R2, by identifying 𝐿2 (Ω) with the set of functions in
𝐿2 (R2 ×R2) supported in Ω. The operator𝑈𝐻Ω1

𝑇 𝑈†, which is 𝐻Ω1
𝑇 transformed to relative and center of

mass coordinates, acts on functions on Ω̃1 × R, where Ω̃1 = {(𝑟, 𝑧1) ∈ R3 | |𝑟1 | < 𝑧1}, and is translation
invariant in 𝑧2. For every 𝑞2 ∈ R, let 𝐻1

𝑇 (𝑞2) be the operator obtained from 𝑈𝐻Ω1
𝑇 𝑈† by restricting

to momentum 𝑞2 in the 𝑧2 direction. The operator 𝐻1
𝑇 (𝑞2) acts in 𝐿2

s (Ω̃1) = {𝜓 ∈ 𝐿2 (Ω̃1) |𝜓(𝑟, 𝑧1) =
𝜓(−𝑟, 𝑧1)}, and we have inf 𝜎(𝐻Ω1

𝑇 1
𝑐 (𝜆) ) = inf𝑞2∈R inf 𝜎(𝐻1

𝑇 1
𝑐 (𝜆) (𝑞2)). We want to choose 𝑞2 to be

optimal. That this can be done is a consequence of the following Lemma, whose proof will be given in
Section 2.2.

Lemma 1.7. Let 𝑇, 𝜆, 𝜇 > 0 and 𝑉 ∈ 𝐿𝑡 (R2) for some 𝑡 > 1. The function 𝑞2 ↦→ inf 𝜎(𝐻1
𝑇 (𝑞2)) is

continuous, even and diverges to +∞ as |𝑞2 | → ∞.

Therefore, the infimum is attained and we can define 𝜂(𝜆) to be the minimal number in [0,∞) such
that inf 𝜎(𝐻1

𝑇 1
𝑐 (𝜆) (𝜂(𝜆))) = inf 𝜎(𝐻Ω1

𝑇 1
𝑐 (𝜆) ).

Next, we shall argue that 𝐻1
𝑇 1
𝑐 (𝜆) (𝜂(𝜆)) indeed has a ground state, at least for small enough coupling,

which allows us to construct the desired trial state. By [16, Remark 2.5], there is a 𝜆1 > 0 such
that inf 𝜎(𝐻Ω0

𝑇 0
𝑐 (𝜆)

) is attained at zero total momentum for 𝜆 < 𝜆1. Let 𝐻0
𝑇 denote the operator 𝐻Ω0

𝑇

restricted to zero total momentum. For 𝜆 < 𝜆1 the critical temperature 𝑇0
𝑐 (𝜆) is the unique temperature

satisfying inf 𝜎(𝐻0
𝑇 ) = 0. In the weak coupling limit both 𝑇0

𝑐 (𝜆) and 𝑇1
𝑐 (𝜆) vanish [14], [16, Theorem

1.7]. Furthermore, at weak enough coupling 𝑇1
𝑐 (𝜆) > 𝑇0

𝑐 (𝜆) [16, Theorem 1.3]. In particular, there is a
𝜆0 > 0 such that for 𝜆 ≤ 𝜆0 the critical temperatures satisfy 𝑇0

𝑐 (𝜆) < 𝑇1
𝑐 (𝜆) < 𝑇0

𝑐 (𝜆1).

Lemma 1.8. Let 𝜇 > 0, let V satisfy Assumption 1.2 and let 0 < 𝜆 ≤ 𝜆0. Then 𝐻1
𝑇 1
𝑐 (𝜆) (𝜂(𝜆)) has an

eigenvalue at the bottom of its spectrum.

The proof of Lemma 1.8 can be found in Section 2.3. For 𝜆 ≤ 𝜆0, let Φ̃𝜆 be the ground state of
𝐻1
𝑇 1
𝑐 (𝜆) (𝜂(𝜆)). In the case 𝜂(𝜆) = 0, the operator 𝐻1

𝑇 1
𝑐 (𝜆) (𝜂(𝜆)) commutes with reflections 𝑟2 → −𝑟2

and we may assume that Φ̃𝜆 is even or odd under this reflection. Irrespective of the value of 𝜂(𝜆),
we extend the function Φ̃𝜆 (anti)symmetrically from Ω̃1 to R3 such that the extended function Φ𝜆

satisfies Φ𝜆 ((−𝑟1, 𝑟2),−𝑧1) = Φ𝜆 (𝑟, 𝑧1) and ∓Φ𝜆((𝑧1, 𝑟2), 𝑟1) = Φ𝜆(𝑟, 𝑧1), where −/+ corresponds
to Dirichlet/Neumann boundary conditions (see Figure 1 for an illustration). The function Φ𝜆 is the
key ingredient for our trial state. Let 𝜒Ω̃1

denote multiplication by the characteristic function of Ω̃1;
then Φ̃𝜆 = 𝜒Ω̃1

Φ𝜆. We choose the normalization such that ‖𝑉1/2𝜒Ω̃1
Φ𝜆‖2 = 1, where 𝑉1/2𝜓(𝑟, 𝑧) =

𝑉1/2 (𝑟)𝜓(𝑟, 𝑧). (Since 𝑉 ∈ 𝐿𝑡 (R2) for some 𝑡 > 1 and Φ𝜆 ∈ 𝐻1 (R3), it follows by the Hölder and
Sobolev inequalities that 𝑉1/2Φ𝜆 is an 𝐿2 function [15].)

Our choice of trial state is

𝜓 𝜖𝜆 (𝑟1, 𝑟2, 𝑧1, 𝑧2) = (Φ𝜆 (𝑟1, 𝑟2, 𝑧1)𝑒𝑖𝜂 (𝜆)𝑧2 +Φ𝜆(𝑟1,−𝑟2, 𝑧1)𝑒−𝑖𝜂 (𝜆)𝑧2)𝑒−𝜖 |𝑧2 |

∓ (Φ𝜆 (𝑟1, 𝑧2, 𝑧1)𝑒𝑖𝜂 (𝜆)𝑟2 +Φ𝜆 (𝑟1,−𝑧2, 𝑧1)𝑒−𝑖𝜂 (𝜆)𝑟2)𝑒−𝜖 |𝑟2 | (1.5)

for some 𝜖 > 0. Here and throughout the paper, we use the convention that upper signs correspond
to Dirichlet and lower signs to Neumann boundary conditions, unless stated otherwise. The function
(1.5) is the natural generalization of the trial state for a half-space used in [16]. Note that 𝜓 𝜖𝜆 is the
(anti)symmetrization of Φ𝜆(𝑟, 𝑧1)𝑒𝑖𝜂 (𝜆)𝑧2−𝜖 |𝑧2 | and satisfies the boundary conditions. The trial state
vanishes if 𝜂 = 0 and Φ𝜆 is odd under 𝑟2 → −𝑟2; our proof will implicitly show that at weak coupling
Φ𝜆 must be even if 𝜂 = 0. We shall prove the following two lemmas in Sections 5 and 6, respectively.
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𝑦1

𝑥1

𝑧1

𝑟1

𝜓(𝑟, 𝑧)∓𝜓(𝑟, 𝑧)

∓𝜓(𝑟, 𝑧)𝜓(𝑟, 𝑧)

Figure 1. Sketch of the (anti)symmetric extension of a function 𝜓 defined on the upper right quadrant in
the (𝑟1, 𝑧1)-coordinates. The extension is defined by mirroring along the 𝑥1 and 𝑦1-axes and multiplying
by −1 for Dirichlet boundary conditions

Lemma 1.9. Let 𝜇 > 0, let V satisfy Assumption 1.2 and let 0 < 𝜆 ≤ 𝜆0. Then

lim
𝜖→0

〈𝜓 𝜖𝜆 ,𝑈𝐻
Ω2
𝑇 1
𝑐 (𝜆)𝑈

†𝜓 𝜖𝜆 〉 = 𝜆(𝐿1 + 𝐿2) (1.6)

with

𝐿1 =
∫
Ω̃1×R

𝜒 |𝑧2 |< |𝑟2 |𝑉 (𝑟)
(
|Φ𝜆 (𝑟1, 𝑟2, 𝑧1) |2 + |Φ𝜆 (𝑟1, 𝑧2, 𝑧1) |2

+Φ𝜆(𝑟1, 𝑟2, 𝑧1)Φ𝜆(𝑟1,−𝑟2, 𝑧1)𝑒−2𝑖𝜂 (𝜆)𝑧2 +Φ𝜆 (𝑟1, 𝑧2, 𝑧1)Φ𝜆(𝑟1,−𝑧2, 𝑧1)𝑒−2𝑖𝜂 (𝜆)𝑟2

∓Φ𝜆 (𝑟1, 𝑟2, 𝑧1)Φ𝜆(𝑟1, 𝑧2, 𝑧1)𝑒𝑖𝜂 (𝜆) (𝑟2−𝑧2) ∓Φ𝜆(𝑟1, 𝑧2, 𝑧1)Φ𝜆(𝑟1, 𝑟2, 𝑧1)𝑒−𝑖𝜂 (𝜆) (𝑟2−𝑧2)

∓Φ𝜆 (𝑟1, 𝑟2, 𝑧1)Φ𝜆(𝑟1,−𝑧2, 𝑧1)𝑒−𝑖𝜂 (𝜆) (𝑟2+𝑧2) ∓Φ𝜆(𝑟1, 𝑧2, 𝑧1)Φ𝜆 (𝑟1,−𝑟2, 𝑧1)𝑒𝑖𝜂 (𝜆) (−𝑟2+𝑧2)
)
d𝑟d𝑧 (1.7)

and

𝐿2 = −
∫
Ω̃1×R

𝑉 (𝑟)
(
|Φ𝜆 (𝑟1, 𝑧2, 𝑧1) |2 +Φ𝜆(𝑟1, 𝑧2, 𝑧1)Φ𝜆(𝑟1,−𝑧2, 𝑧1)𝑒−2𝑖𝜂 (𝜆)𝑟2

)
d𝑟d𝑧

∓ 2𝜋
∫
R2

(
Φ̂𝜆 (𝑝1, 𝜂(𝜆), 𝑞1) 𝜒Ω̃1

	𝑉 Φ𝜆 (𝑝1, 𝜂(𝜆), 𝑞1) + Φ̂𝜆(𝑝1,−𝜂(𝜆), 𝑞1) 𝜒Ω̃1
	𝑉 Φ𝜆(𝑝1,−𝜂(𝜆), 𝑞1)

)
d𝑝1d𝑞1,

(1.8)

where 𝜓(𝑝, 𝑞1) =
∫
R3

𝑒−𝑖𝑝·𝑟−𝑖𝑞1𝑧1
(2𝜋)3/2 𝜓(𝑟, 𝑧1)d𝑟d𝑧1 denotes the Fourier transform and 𝜒Ω̃1

denotes multipli-
cation by the characteristic function of Ω̃1.

Lemma 1.10. Let 𝜇 > 0 and let V satisfy Assumption 1.2. As 𝜆 → 0, we have 𝐿1 = 𝑂 (1) and 𝐿2 ≤ −𝐶
𝜆

for some constant 𝐶 > 0.

In particular, there is a 𝜆2 > 0 such that for all 0 < 𝜆 ≤ 𝜆2, lim𝜖→0〈𝜓 𝜖𝜆 ,𝑈𝐻
Ω2
𝑇 1
𝑐 (𝜆)𝑈

†𝜓 𝜖𝜆 〉 < 0 and

hence also inf 𝜎(𝐻Ω2
𝑇 1
𝑐 (𝜆) ) < 0. The final ingredient is the continuity of inf 𝜎(𝐻Ω2

𝑇 ) in T, which can
be proved analogously to [16, Lemma 4.1]. For 𝜆 ≤ 𝜆2, we have for 𝑇 < 𝑇1

𝑐 (𝜆) by Lemma 1.1 and
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the definition of 𝑇1
𝑐 that inf 𝜎(𝐻Ω2

𝑇 ) ≤ inf 𝜎(𝐻Ω1
𝑇 ) < 0. We saw that inf 𝜎(𝐻Ω2

𝑇 1
𝑐 (𝜆) ) < 0, and thus by

continuity there is an 𝜖 > 0 such that for all 𝑇 ∈ (0, 𝑇1
𝑐 (𝜆) + 𝜖] we have inf 𝜎(𝐻Ω2

𝑇 ) < 0. In particular,
𝑇2
𝑐 (𝜆) > 𝑇1

𝑐 (𝜆). This concludes the proof of Theorem 1.4.

Remark 1.11. Compared to the proof of 𝑇1
𝑐 (𝜆) > 𝑇0

𝑐 (𝜆) in [16], there are two main differences and
additional difficulties here. The first difference is that Φ𝜆 here depends on r and 𝑧1 and not just r. In
particular, we need to understand the dependence and regularity of Φ𝜆 in 𝑧1. The second difference is
that for the full space minimizer it was possible to prove that the optimal momentum in the translation
invariant center of mass direction is zero, whereas here we have to work with the momentum 𝜂(𝜆), which
potentially is nonzero, and we need knowledge about its asymptotics for 𝜆 → 0. As a consequence,
we may have that Φ𝜆(𝑟1, 𝑟2, 𝑧1)𝑒𝑖𝜂 (𝜆)𝑧2 ≠ Φ𝜆(𝑟1,−𝑟2, 𝑧1)𝑒−𝑖𝜂 (𝜆)𝑧2 , which is why the expressions in
Lemma 1.9 are twice as long as in the analogous ones in [16, Lemma 4.3].

Remark 1.12. The Assumptions 1.2 are almost identical to the assumptions for proving 𝑇1
𝑐 (𝜆) > 𝑇0

𝑐 (𝜆)
in dimension two in [16]. Our method to compute the asymptotics of Φ𝜆 additionally requires the
assumption𝑉 ≥ 0, however. In particular, in the proof of Lemma 3.2 we require the Birman–Schwinger
operators corresponding to 𝐻Ω𝑘

𝑇 to be self-adjoint for technical reasons. No such assumption is needed
to determine the asymptotics of the ground state in the translation invariant case; hence, we expect this
assumption not to be necessary here either.

Remark 1.13. We expect that our method of proof can also be applied in the three-dimensional case.
For a quarter space in 𝑑 = 3, we conjecture that similarly to the case of a half-space [16], the three-
dimensional analogues of 𝐿1 and 𝐿2 in Lemma 1.9 are of equal order and converge to some finite numbers
as 𝜆 → 0. The limits of 𝐿1 and 𝐿2 then need to be computed to determine whether lim𝜆→0 (𝐿1+𝐿2) < 0.
This makes the computation in three dimensions much more tedious than in two dimensions, which is
why we do not work out the details of the three-dimensional case here. Instead, we describe the intuition
and the expected outcome. In [16], the ground state on the full space could effectively be replaced by
Φ0 = (

∫
R3 𝑉 (𝑟) 𝑗3(𝑟)2d𝑟)−1 𝑗3, with 𝑗3(𝑟) = (2𝜋)−3/2

∫
S2 𝑒

𝑖
√
𝜇𝑤 ·𝑟d𝜔, in the limit 𝜆 → 0. Motivated by

the asymptotics of the half-space minimizer Φ𝜆 in two dimensions proved in Lemma 3.2, we expect that
as 𝜆 → 0, 𝜂(𝜆) → 0 and the function Φ𝜆 behaves like Φ0 in the r-variable, and concentrates at zero
momentum in the 𝑧1 direction. A combination of the methods used in [16] and the methods developed
in this paper should then allow to compute the limit, and the expected result is

lim
𝜆→0

𝐿1 = 2
∫
R4
𝜒 |𝑧2 |< |𝑟2 |𝑉 (𝑟) |Φ0(𝑟) ∓Φ0(𝑟1, 𝑧2, 𝑟3) |2d𝑟d𝑧2 (1.9)

and

lim
𝜆→0

𝐿2 = −2
∫
R4
𝑉 (𝑟) |Φ0(𝑟1, 𝑧2, 𝑟3) |2d𝑟d𝑧2 ∓

2𝜋
𝜇1/2

∫
R3
𝑉 (𝑟) |Φ0(𝑟) |2d𝑟. (1.10)

We therefore expect 𝑇2
𝑐 (𝜆) > 𝑇1

𝑐 (𝜆) at weak enough coupling if V satisfies lim𝜆→0 (𝐿1 + 𝐿2) < 0, which
due to radiality of V and Φ0 is the same condition as for 𝑇1

𝑐 (𝜆) > 𝑇0
𝑐 (𝜆) in [16, Theorem 1.3]. In [16,

Theorem 1.4 and Remark 1.5] this condition on V is further analyzed.

2. Basic properties of 𝐻Ω1
𝑇 and 𝐻Ω2

𝑇

In this section, we shall introduce some notation that will be useful later on, and prove Lemmas 1.1, 1.7
and 1.8. The following functions will be important to describe the kinetic part of 𝐻Ω

𝑇 :

𝐾𝑇 (𝑝, 𝑞) =
𝑝2 + 𝑞2 − 2𝜇

tanh
(
𝑝2−𝜇
2𝑇

)
+ tanh

(
𝑞2−𝜇

2𝑇

) , and 𝐵𝑇 (𝑝, 𝑞) =
1

𝐾𝑇 (𝑝 + 𝑞, 𝑝 − 𝑞)
. (2.1)
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We may write 𝐵𝑇 ,𝜇 when the dependence on 𝜇 matters. The function 𝐾𝑇 satisfies the following bounds
[12, Lemma 2.1].

Lemma 2.1. For every 𝑇 > 0, there are constants 𝐶1 (𝑇, 𝜇), 𝐶2 (𝑇, 𝜇) > 0 such that 𝐶1 (1 + 𝑝2 + 𝑞2) ≤
𝐾𝑇 (𝑝, 𝑞) ≤ 𝐶2 (1 + 𝑝2 + 𝑞2).

We will frequently use the following estimates for 𝐵𝑇 [16, Eq. (2.3)]:

𝐵𝑇 (𝑝, 𝑞) ≤
1

max{|𝑝2 + 𝑞2 − 𝜇 |, 2𝑇}
and 𝐵𝑇 (𝑝, 𝑞)𝜒𝑝2+𝑞2>2𝜇>0 ≤ 𝐶 (𝜇)

1 + 𝑝2 + 𝑞2 , (2.2)

where 𝐶 (𝜇) depends only on 𝜇.
We use the notation 𝐻1

0 (Ω) for the Sobolev space of functions vanishing at the boundary of Ω. In
the case of Dirichlet boundary conditions, the form domain corresponding to 𝐻Ω𝑘

𝑇 is 𝐷𝐷
𝑘 := {𝜓 ∈

𝐻1
0 (Ω𝑘 ×Ω𝑘 ) |𝜓(𝑥, 𝑦) = 𝜓(𝑦, 𝑥)}. For Neumann boundary conditions, one needs to replace the Sobolev

space 𝐻1
0 by 𝐻1 to obtain 𝐷𝑁

𝑘 . Let 𝐾Ω
𝑇 be the kinetic term in 𝐻Ω

𝑇 . The corresponding quadratic form
acts as

〈𝜓, 𝐾Ω
𝑇 𝜓〉 =

∫
R4
𝐾𝑇 (𝑝, 𝑞)

����∫
Ω2
𝑇Ω (𝑥, 𝑝)𝑇Ω (𝑦, 𝑞)𝜓(𝑥, 𝑦)d𝑥d𝑦

����2d𝑝d𝑞, (2.3)

with

𝑇Ω1 (𝑥, 𝑝) =
(𝑒−𝑖 𝑝1𝑥1 ∓ 𝑒𝑖 𝑝1𝑥1)𝑒−𝑖 𝑝2𝑥2

21/22𝜋
, and 𝑇Ω2 (𝑥, 𝑝) =

(𝑒−𝑖 𝑝1𝑥1 ∓ 𝑒𝑖 𝑝1𝑥1) (𝑒−𝑖 𝑝2𝑥2 ∓ 𝑒𝑖 𝑝2𝑥2)
4𝜋

.

(2.4)

As already mentioned in the Introduction, we shall use the convention that upper signs correspond to
Dirichlet and lower signs to Neumann boundary conditions, unless stated otherwise. We now switch to
relative and center of mass coordinates 𝑟 = 𝑥− 𝑦, 𝑧 = 𝑥+ 𝑦, 𝑝′ = (𝑝−𝑞)/2 and 𝑞′ = (𝑝+𝑞)/2. Note that

𝑇Ω1 (𝑥, 𝑝)𝑇Ω1 (𝑦, 𝑝) =
1

(2𝜋)2 𝑡 (𝑝
′
1, 𝑞

′
1, 𝑟1, 𝑧1)𝑒−𝑖 (𝑝

′
2𝑟2+𝑞′2𝑧2) , (2.5)

where

𝑡 (𝑝1, 𝑞1, 𝑟1, 𝑧1) =
1
2

(
𝑒−𝑖 (𝑝1𝑟1+𝑞1𝑧1) + 𝑒𝑖 (𝑝1𝑟1+𝑞1𝑧1) ∓ 𝑒−𝑖 (𝑝1𝑧1+𝑞1𝑟1) ∓ 𝑒𝑖 (𝑝1𝑧1+𝑞1𝑟1)

)
. (2.6)

Therefore, conjugating the kinetic term 𝐾Ω1
𝑇 with U, which is the operator switching to relative and

center of mass coordinates, gives

〈𝜓,𝑈𝐾Ω1
𝑇 𝑈†𝜓〉 =

∫
R4
𝐵𝑇 (𝑝′, 𝑞′)−1

����∫
Ω̃1×R

1
(2𝜋)2 𝑡 (𝑝

′
1, 𝑞

′
1, 𝑟1, 𝑧1)𝑒−𝑖 (𝑝

′
2𝑟2+𝑞′2𝑧2)𝜓(𝑟, 𝑧)d𝑟d𝑧

����2d𝑝′d𝑞′.

(2.7)

The operators 𝐻1
𝑇 (𝑞2) defined by restricting 𝑈𝐻Ω1

𝑇 𝑈† to momentum 𝑞2 in 𝑧2-direction can thus be
expressed as

〈𝜓, 𝐻1
𝑇 (𝑞2)𝜓〉 = 〈𝜓, 𝐾1

𝑇 (𝑞2)𝜓〉 − 𝜆
∫
Ω̃1

𝑉 (𝑟) |𝜓(𝑟, 𝑧1) |2d𝑟d𝑧1, (2.8)
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where Ω̃1 = {(𝑟, 𝑧1) ∈ R3 | |𝑟1 | < 𝑧1} and the kinetic term 𝐾1
𝑇 (𝑞2) on 𝐿2

s (Ω̃1) is given by

〈𝜓, 𝐾1
𝑇 (𝑞2)𝜓〉 =

∫
R3
𝐵𝑇 (𝑝, (𝑞1, 𝑞2))−1

����∫
Ω̃1

1
(2𝜋)3/2 𝑡 (𝑝1, 𝑞1, 𝑟1, 𝑧1)𝑒−𝑖 𝑝2𝑟2𝜓(𝑟, 𝑧1)d𝑟d𝑧1

����2d𝑝d𝑞1.

(2.9)

It is convenient to introduce the Birman–Schwinger operators 𝐴0
𝑇 and 𝐴1

𝑇 corresponding to 𝐻Ω0
𝑇 and

𝐻Ω1
𝑇 , respectively. Let 𝐴0

𝑇 be the operator with domain 𝐿2 (R2 × R2) restricted to functions satisfying
𝜓(𝑟, 𝑧) = 𝜓(−𝑟, 𝑧) and given by

〈𝜓, 𝐴0
𝑇 𝜓〉 =

∫
R4
𝐵𝑇 (𝑝, 𝑞) |�𝑉1/2𝜓(𝑝, 𝑞) |2d𝑝d𝑞. (2.10)

Define the operator 𝐴1
𝑇 on 𝜓 ∈ 𝐿2

s (Ω̃1 × R) = {𝜓 ∈ 𝐿2 (Ω̃1 × R) |𝜓(𝑟, 𝑧) = 𝜓(−𝑟, 𝑧)} via

〈𝜓, 𝐴1
𝑇 𝜓〉 =

∫
R4
𝐵𝑇 (𝑝, 𝑞)

����∫
Ω̃1×R

1
(2𝜋)2 𝑡 (𝑝1, 𝑞1, 𝑟1, 𝑧1)𝑒−𝑖 (𝑝2𝑟2+𝑞2𝑧2)𝑉1/2 (𝑟)𝜓(𝑟, 𝑧)d𝑟d𝑧

����2d𝑝d𝑞.

(2.11)

For 𝑗 ∈ {0, 1}, the operator 𝐴 𝑗𝑇 is the Birman–Schwinger operator corresponding to 𝐻Ω 𝑗

𝑇 in relative and
center of mass variables [16, Section 6]. The Birman–Schwinger principle implies that

sgn inf 𝜎(𝐻Ω 𝑗

𝑇 ) = sgn(1/𝜆 − sup𝜎(𝐴 𝑗𝑇 )),

where we use the convention that sgn 0 = 0.
Due to translation invariance in 𝑧2, for fixed momentum 𝑞2 in this direction, we obtain the operators

𝐴1
𝑇 (𝑞2) on 𝜓 ∈ 𝐿2

s (Ω̃1) given by

〈𝜓, 𝐴1
𝑇 (𝑞2)𝜓〉 =

∫
R3
𝐵𝑇 (𝑝, (𝑞1, 𝑞2))

����∫
Ω̃1

1
(2𝜋)3/2 𝑡 (𝑝1, 𝑞1, 𝑟1, 𝑧1)𝑒−𝑖 𝑝2𝑟2𝑉1/2 (𝑟)𝜓(𝑟, 𝑧1)d𝑟d𝑧1

����2d𝑝d𝑞1.

(2.12)

The operator 𝐴1
𝑇 (𝑞2) is the Birman–Schwinger version of 𝐻1

𝑇 (𝑞2). In particular, 𝐻1
𝑇 1
𝑐 (𝜆) (𝜂(𝜆)) has the

eigenvalue zero at the bottom of its spectrum if and only if 1/𝜆 is the largest eigenvalue of 𝐴1
𝑇 1
𝑐 (𝜆) (𝜂(𝜆)).

Let 𝜄 : 𝐿2 (Ω̃1) → 𝐿2 (R3) be the isometry

𝜄𝜓(𝑟1, 𝑟2, 𝑧1) =
1
√

2
(𝜓(𝑟1, 𝑟2, 𝑧1)𝜒Ω̃1

(𝑟, 𝑧1) + 𝜓(−𝑟1, 𝑟2,−𝑧1)𝜒Ω̃1
(−𝑟1, 𝑟2,−𝑧1)). (2.13)

Using the definition of t in equation (2.6) and evenness of V in 𝑟2 one can rewrite equation (2.12) as

〈𝜓, 𝐴1
𝑇 (𝑞2)𝜓〉 =

∫
R3
𝐵𝑇 (𝑝, 𝑞)

���� 1
√

2
(�𝑉1/2𝜄𝜓(𝑝, 𝑞1) ∓ �𝑉1/2𝜄𝜓((𝑞1, 𝑝2), 𝑝1))

����2d𝑝d𝑞1. (2.14)

Let 𝐹2 denote the Fourier transform in the second variable 𝐹2𝜓(𝑟, 𝑞1) = 1√
2𝜋

∫
R
𝑒−𝑖𝑞1𝑧1𝜓(𝑟, 𝑧1)d𝑧1 and

𝐹1 the Fourier transform in the first variable 𝐹1𝜓(𝑝, 𝑞) = 1
2𝜋

∫
R2 𝑒

−𝑖 𝑝 ·𝑟𝜓(𝑟, 𝑞)d𝑟. Define the operators
𝐺𝑇 (𝑞2) on 𝐿2 (R3) through

〈𝜓, 𝐺𝑇 (𝑞2)𝜓〉 =
∫
R3
𝐹1𝑉1/2𝜓((𝑞1, 𝑝2), 𝑝1)𝐵𝑇 (𝑝, 𝑞)𝐹1𝑉

1/2𝜓(𝑝, 𝑞1)d𝑝d𝑞1. (2.15)
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Let 𝐴0
𝑇 (𝑞2) acting on 𝐿2

s (R2 × R) be given by 〈𝜓, 𝐴0
𝑇 (𝑞2)𝜓〉 =

∫
R3 𝐵𝑇 (𝑝, 𝑞) |�𝑉1/2𝜓(𝑝, 𝑞1) |2d𝑝d𝑞1. It

follows from equation (2.14) and 𝐵𝑇 (𝑝, 𝑞) = 𝐵𝑇 ((𝑞1, 𝑝2), (𝑝1, 𝑞2)) that

𝐴1
𝑇 (𝑞2) = 𝜄†(𝐴0

𝑇 (𝑞2) ∓ 𝐹†
2𝐺𝑇 (𝑞2)𝐹2)𝜄. (2.16)

2.1. Proof of Lemma 1.1

Proof of Lemma 1.1. The goal is to show that inf 𝜎(𝐻Ω2
𝑇 ) ≤ inf 𝜎(𝐻Ω1

𝑇 ). We proceed analogously to
the proof of [16, Lemma 2.3]. Let 𝑆𝑙 be the shift by l in the second component, that is, 𝑆𝑙𝜓(𝑥, 𝑦) =
𝜓((𝑥1, 𝑥2 − 𝑙), (𝑦1, 𝑦2 − 𝑙)). Let 𝜓 be a function in 𝐷𝐷/𝑁

1 with bounded support, for the case of
Dirichlet/Neumann boundary conditions, respectively. For l big enough, 𝑆𝑙𝜓 is supported on Ω2 × Ω2
and satisfies the boundary conditions. The goal is to prove that lim𝑙→∞〈𝑆𝑙𝜓, 𝐻Ω2

𝑇 𝑆𝑙𝜓〉 = 〈𝜓, 𝐻Ω1
𝑇 𝜓〉.

Then, since functions with bounded support are dense in 𝐷𝐷/𝑁
1 (with respect to the Sobolev norm), the

claim follows.
Note that 〈𝑆𝑙𝜓,𝑉𝑆𝑙𝜓〉 = 〈𝜓,𝑉𝜓〉. Let �̃� be the (anti-)symmetric continuation of 𝜓 from Ω1 ×Ω1 to

R2×R2 as in Figure 1, giving �̃� ∈ 𝐻1(R4). Furthermore, using symmetry of𝐾𝑇 in 𝑝2 and 𝑞2 one obtains

〈𝑆𝑙𝜓, 𝐾Ω2
𝑇 𝑆𝑙𝜓〉 =

1
4

∫
R4

̂̃𝜓(𝑝, 𝑞)𝐾𝑇 (𝑝, 𝑞) [̂̃𝜓(𝑝, 𝑞) ∓ ̂̃𝜓((𝑝1,−𝑝2), 𝑞)𝑒𝑖2𝑙 𝑝2 ∓ ̂̃𝜓(𝑝, (𝑞1,−𝑞2))𝑒𝑖2𝑙𝑞2

+ ̂̃𝜓((𝑝1,−𝑝2), (𝑞1,−𝑞2))𝑒𝑖2𝑙 (𝑝2+𝑞2)
]
d𝑝d𝑞 (2.17)

for l big enough such that 𝑆𝑙𝜓 is supported on Ω2 × Ω2. The first term is exactly 〈𝜓, 𝐾Ω1
𝑇 𝜓〉. Note that

by the Schwarz inequality and since 𝐾𝑇 (𝑝, 𝑞) ≤ 𝐶 (1 + 𝑝2 + 𝑞2) according to Lemma 2.1, the function

(𝑝, 𝑞) ↦→ ̂̃𝜓(𝑝, 𝑞)𝐾𝑇 (𝑝, 𝑞)̂̃𝜓((𝑝1,−𝑝2), 𝑞) (2.18)

is in 𝐿1 (R2𝑑) since �̃� ∈ 𝐻1(R4). By the Riemann–Lebesgue lemma, the second term in equation (2.17)
vanishes for 𝑙 → ∞. By the same argument, also the remaining terms vanish in the limit. �

2.2. Proof of Lemma 1.7

Proof of Lemma 1.7. To prove continuity of the function 𝑞2 ↦→ inf 𝜎(𝐻1
𝑇 (𝑞2)), it suffices to show that

for all 𝑇 > 0 and 𝜇, 𝑄0, 𝑄1 ∈ R there is a constant 𝐶 (𝑇, 𝜇, 𝑄0, 𝑄1) such that for all 𝑄0 < 𝑞2, 𝑞
′
2 < 𝑄1

we have

|𝐵𝑇 (𝑝, 𝑞)−1 − 𝐵𝑇 (𝑝, (𝑞1, 𝑞
′
2))

−1 | ≤ 𝐶 (𝑇, 𝜇, 𝑄0, 𝑄1) |𝑞2 − 𝑞′2 | (1 + 𝑝2 + 𝑞2
1).

The claim then follows analogously to the proof of [16, Lemma 4.1].
We write

𝐵𝑇 (𝑝, 𝑞)−1 − 𝐵𝑇 (𝑝, (𝑞1, 𝑞
′
2))

−1 = (𝑞′2 − 𝑞2) 𝑓 (𝑝, 𝑞, 𝑞′2 − 𝑞2)𝐵−1
𝑇 (𝑝, (𝑞1, 𝑞

′
2))𝐵

−1
𝑇 (𝑝, 𝑞),

where f is defined as in the following lemma.

Lemma 2.2. Let 𝑇, 𝜇, 𝑄1 > 0 and define the function 𝑓 : R2 × R2 × R→ R through

𝑓 (𝑝, 𝑞, 𝑥) = 1
𝑥
(𝐵𝑇 (𝑝, (𝑞1, 𝑞2 + 𝑥)) − 𝐵𝑇 (𝑝, 𝑞)) (2.19)
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for 𝑥 ≠ 0 and 𝑓 (𝑝, 𝑞, 0) = 𝜕𝑞2𝐵𝑇 (𝑝, 𝑞). Then f is continuous and for |𝑞2 | < 𝑄1 there is a constant C
depending only on 𝑇, 𝜇 and 𝑄1 such that

| 𝑓 (𝑝, 𝑞, 𝑥) | ≤ 𝐶

1 + 𝑝2
1 + 𝑝

2
2 + 𝑞

2
1
. (2.20)

The proof is provided in Section 7.1. Together with 𝐵−1
𝑇 (𝑝, 𝑞) ≤ 𝐶 (1 + 𝑝2 + 𝑞2) (c.f Lemma 2.1) the

desired bound on |𝐵𝑇 (𝑝, 𝑞)−1 − 𝐵𝑇 (𝑝, (𝑞1, 𝑞
′
2))

−1 | follows.
The function 𝑞2 → inf 𝜎(𝐻1

𝑇 (𝑞2)) is even since 〈𝜓, 𝐻1
𝑇 (−𝑞2)𝜓〉 = 〈�̃�, 𝐻1

𝑇 (𝑞2)�̃�〉, where �̃�(𝑟, 𝑧1) =
𝜓((𝑟1,−𝑟2), 𝑧1), which follows directly from the definitions of 𝐻1

𝑇 (𝑞2) and 𝐾𝑇 (𝑞2) in equations (2.8)
and (2.9) using radiality of V and substituting (𝑝2, 𝑟2) → −(𝑝2, 𝑟2). The divergence of inf 𝜎(𝐻1

𝑇 (𝑞2))
as |𝑞2 | → ∞ follows since the function 𝐵𝑇 (𝑝, 𝑞)−1 in 𝐾𝑇 (𝑞2) is bounded below by |𝑝2 + 𝑞2 − 𝜇 |; see
equation (2.2). �

2.3. Proof of Lemma 1.8

Proof of Lemma 1.8. The half-space Birman–Schwinger operator 𝐴1
𝑇 (𝑞2) for 𝑞2 ∈ R can be decom-

posed into a term involving 𝐴0
𝑇 (𝑞2) and a perturbation involving 𝐺𝑇 (𝑞2) according to equation (2.16).

The operator 𝐴0
𝑇 (𝑞2) has purely essential spectrum and let 𝑎0

𝑇 := sup𝜎(𝐴0
𝑇 ).

Below, we shall prove that 𝐺𝑇 (𝑞2) is compact. The part of the spectrum of 𝐴1
𝑇 that lies above 𝑎0

𝑇
hence consists of eigenvalues.

We first argue that 𝐴1
𝑇 1
𝑐 (𝜆) has spectrum above 𝑎0

𝑇 1
𝑐 (𝜆) . The Birman–Schwinger principle implies

sup𝜎(𝐴1
𝑇 1
𝑐 (𝜆) (𝜂(𝜆))) = 𝜆

−1 = 𝑎0
𝑇 0
𝑐 (𝜆) .

We need to show that 𝑎0
𝑇 0
𝑐 (𝜆)

> 𝑎0
𝑇 1
𝑐 (𝜆) . The idea is to use that 𝑎0

𝑇 is strictly decreasing in T when the
supremum of 𝜎(𝐴0

𝑇 ) is attained at zero total momentum and that 𝑇1
𝑐 (𝜆) > 𝑇0

𝑐 (𝜆) at weak coupling. At
weak coupling 𝜆 < 𝜆1, inf 𝜎(𝐻Ω0

𝑇 0
𝑐 (𝜆)

) is attained at zero total momentum and 𝑇0
𝑐 is uniquely determined

by inf 𝜎(𝐻0
𝑇 0
𝑐 (𝜆)

) = 0. The Birman–Schwinger principle implies that the supremum of𝜎(𝐴0
𝑇 ) is attained

at zero total momentum, that is, 𝑎0
𝑇 = sup𝜎(𝐴0

𝑇 (0)) for 𝑇 < 𝑇0
𝑐 (𝜆1). At weak enough coupling 𝜆 ≤ 𝜆0,

we have 𝑇0
𝑐 (𝜆1) > 𝑇1

𝑐 (𝜆) > 𝑇0
𝑐 (𝜆). Using the strict monotonicity of 𝑎0

𝑇

sup𝜎(𝐴1
𝑇 1
𝑐 (𝜆) (𝜂(𝜆))) = 𝑎

0
𝑇 0
𝑐 (𝜆) > 𝑎

0
𝑇 1
𝑐 (𝜆) .

Hence, 𝜆−1 is an eigenvalue of 𝐴1
𝑇 1
𝑐 (𝜆) (𝜂(𝜆)) and by the Birman–Schwinger principle 𝐻1

𝑇 1
𝑐 (𝜆) (𝜂(𝜆)) has

an eigenvalue at the bottom of the spectrum.
To prove compactness of𝐺𝑇 (𝑞2) defined in equation (2.15), we prove that its Hilbert–Schmidt norm

is finite. Writing out the Hilbert–Schmidt norm in terms of the integral kernel of 𝐺𝑇 (𝑞2) and carrying
out the integrations over relative and center of mass coordinates, one obtains

‖𝐺𝑇 (𝑞2)‖2
HS =

∫
R4

|𝑉 (0, 𝑝2 − 𝑝′2) |
2𝐵𝑇 (𝑝, 𝑞)𝐵𝑇 ((𝑝1, 𝑝

′
2), 𝑞)d𝑝1d𝑞1d𝑝2d𝑝′2. (2.21)

Using 𝐵𝑇 (𝑝, 𝑞) ≤ 𝐶 (𝑇, 𝜇)/(1 + 𝑝2 + 𝑞2) (c.f. equation (2.2)) and Young’s inequality, this is bounded
above by

𝐶 (𝑇, 𝜇)2
(∫
R

|𝑉 (0, |𝑝2 |) |2𝑟d𝑝2

)1/𝑟 ∫
R

(∫
R

(
1

1 + 𝑝2
1 + 𝑞

2
1 + 𝑝

2
2

)𝑠
d𝑝2

)2/𝑠

d𝑝1d𝑞1, (2.22)
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where 2 = 1/𝑟+2/𝑠. By assumption,𝑉 ∈ 𝐿1∩𝐿𝑡 for some 𝑡 > 1. Note that𝑉 is continuous by Riemann–
Lebesgue and 𝑉 ∈ 𝐿𝑡′ ∩ 𝐿∞ for some 𝑡 ′ < ∞ by the Hausdorff–Young inequality. In particular, due to

the radiality of V, we can bound
(∫
R
|𝑉 (0, |𝑝2 |) |2𝑟

)1/𝑟
≤ ‖𝑉 ‖2

∞ + 1
2𝜋 ‖𝑉 ‖

2
2𝑟 , which is finite for the choice

𝑟 = 𝑡 ′/2. With this choice, we have 𝑠 > 1. Note that
(∫
R

(
1

1+𝑝2
1+𝑞

2
1+𝑝

2
2

)𝑠
d𝑝2

)2/𝑠
= 𝐶

(1+𝑝2
1+𝑞

2
1 )2−1/𝑠 for some

constant C. Hence, the integral over 𝑝1, 𝑞1 in equation (2.22) is finite for 𝑠 > 1. �

3. Regularity and asymptotic behavior of the half-space ground state

In this section, we collect regularity and convergence results for Φ𝜆 (defined in Section 1.1), which we
shall use later to prove Lemmas 1.9 and 1.10. The asymptotics of𝑇0

𝑐 (𝜆) and𝑇1
𝑐 (𝜆) for 𝜆 → 0 are known:

Remark 3.1. At weak enough coupling, inf 𝜎(𝐻Ω0
𝑇 0
𝑐 (𝜆)

) is attained at zero total momentum [16, Remark
2.5]. In the case of zero total momentum, the asymptotics of𝑇0

𝑐 (𝜆) were computed in [14, Theorem 2.5] to
be |𝜆−1−𝑒𝜇 ln 𝜇

𝑇 0
𝑐 (𝜆) | = 𝑂 (1) for𝜆 → 0. Furthermore, [16, Theorem 1.7] implies that ln 𝜇

𝑇 0
𝑐 (𝜆) −ln 𝜇

𝑇 1
𝑐 (𝜆) =

𝑜(1) for 𝜆 → 0. Therefore, |𝜆−1 − 𝑒𝜇 ln 𝜇

𝑇 1
𝑐 (𝜆) | = 𝑂 (1) as well. In particular, both 𝑇0

𝑐 (𝜆) and 𝑇1
𝑐 (𝜆) → 0

as 𝜆 → 0 exponentially fast.

Let Ψ𝜆(𝑟, 𝑧1) := 1√
2
𝑉1/2(𝑟)Φ𝜆(𝑟, 𝑧1)𝜒 |𝑟1 |< |𝑧1 | as function on R3. Note that ‖Ψ𝜆‖2 = 1 due to the

symmetry under (𝑟1, 𝑧1) → −(𝑟1, 𝑧1) and the normalization ‖𝑉1/2𝜒Ω̃1
Φ𝜆‖2 = 1. The first convergence

result describes the asymptotic behavior of 𝜂(𝜆) and Ψ𝜆 as 𝜆 → 0. According to the Birman–Schwinger
principle, 𝜒Ω̃1

Ψ𝜆 is an eigenvector of 𝐴𝑇 1
𝑐 (𝜆) (𝜂(𝜆)) corresponding to the largest eigenvalue.

Let

𝑗2 (𝑟) :=
1

2𝜋

∫
S1
𝑒𝑖𝜔 ·𝑟√𝜇d𝜔. (3.1)

Due to assumptions 1.2(2) and (5), the eigenvector corresponding to the largest eigenvalue 𝑒𝜇 of 𝑂𝜇

has angular momentum zero and is given by [16]

𝜓0 (𝑟) = 𝑉1/2(𝑟) 𝑗2(𝑟)( ∫
R2 𝑉 (𝑟 ′) 𝑗2(𝑟 ′)2d𝑟 ′

)1/2 . (3.2)

Let P : 𝐿2 (R3) → 𝐿2 (R3) denote the projection onto 𝜓0 in the r-variable, that is,

P𝜓(𝑟, 𝑞1) = 𝜓0(𝑟)
∫
R2
𝜓0 (𝑟 ′)𝜓(𝑟 ′, 𝑞1)d𝑟 ′.

For 0 ≤ 𝛽 < 1 let Q𝛽 denote the projection onto small momenta in 𝑞1, that is,

Q𝛽𝜓(𝑟, 𝑞1) = 𝜓(𝑟, 𝑞1)𝜒 |𝑞1 |√
𝜇 <

(
𝑇 1
𝑐 (𝜆)
𝜇

)𝛽 .
Let P⊥ = I − P and Q⊥

𝛽 = 1 − Q𝛽 .
Our first convergence result for the minimizer of 𝐻Ω1

𝑇 1
𝑐 (𝜆) is that for 𝜆 → 0 the optimal momentum

𝜂(𝜆) → 0 and Ψ𝜆 concentrates at momentum zero in 𝑧1 direction and approaches 𝜓0 in the r-variables.
This is made precise in the following Lemma, whose proof can be found in Section 3.1.
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Lemma 3.2. Let 𝜇 > 0, V satisfy Assumption 1.2, and let 0 ≤ 𝛽 < 1. For 𝜆 → 0, we have

1. 𝜂(𝜆) = 𝑂 (𝑇1
𝑐 (𝜆))

2. ‖P⊥𝐹2Ψ𝜆‖2
2 = 𝑂 (𝜆)

3. ‖Q⊥
𝛽𝐹2Ψ𝜆‖2

2 = 𝑂 (𝜆) .

For a function f depending on two variables, we define the mixed Lebesgue norm ‖ 𝑓 ‖𝐿𝑝
𝑖 𝐿

𝑞
𝑗

for
{𝑖, 𝑗} = {1, 2}, as first taking the 𝐿𝑞-norm in the j-th variable and then taking the 𝐿 𝑝-norm in the i-th
variable. The following estimate is analogous to [16, Lemma 3.7] and follows from the Cauchy-Schwarz
inequality.

Lemma 3.3. Let 𝑉 ∈ 𝐿1 (R2) and 𝜓 ∈ 𝐿2 (R2 × R). Then

‖�𝑉1/2𝜓‖𝐿∞
1 𝐿

2
2
≤ sup

𝑝

(∫
R

|�𝑉1/2𝜓(𝑝, 𝑞1) |2d𝑞1

)1/2

≤ ‖�𝑉1/2𝜓‖𝐿2
2𝐿

∞
1
=

(∫
R

sup
𝑝

|�𝑉1/2𝜓(𝑝, 𝑞1) |2d𝑞1

)1/2
≤

‖𝑉 ‖1/2
1

2𝜋
‖𝜓‖2. (3.3)

To simplify notation, we shall sometimes write 𝑇1
𝑐 , 𝜂 instead of 𝑇1

𝑐 (𝜆), 𝜂(𝜆). Recall the definition of
𝑡 (𝑝1, 𝑞1, 𝑟1, 𝑧1) from equation (2.6) and note that due to the (anti-)symmetry of Φ𝜆

1
(2𝜋)3/2

∫
Ω̃1

𝑡 (𝑝1, 𝑞1, 𝑟1, 𝑧1)𝑒−𝑖 𝑝2𝑟2Φ𝜆 (𝑟, 𝑧1)d𝑟d𝑧1 =
1
2
Φ̂𝜆(𝑝, 𝑞1). (3.4)

Combining this with the eigenvalue equation 𝜒Ω̃1
Φ𝜆 = 𝜆(𝐾1

𝑇 1
𝑐 (𝜆) (𝜂(𝜆))

−1𝑉𝜒Ω̃1
Φ𝜆 gives

Φ̂𝜆(𝑝, 𝑞1) =
2𝜆

(2𝜋)3/2

∫
Ω̃1

𝐵𝑇 1
𝑐 (𝜆) (𝑝, (𝑞1, 𝜂(𝜆))) 𝑡 (𝑝1, 𝑞1, 𝑟

′
1, 𝑧

′
1)𝑒

−𝑖 𝑝2𝑟
′
2𝑉 (𝑟 ′)Φ𝜆(𝑟 ′, 𝑧′1)d𝑟

′d𝑧′1 (3.5)

for (𝑝, 𝑞1) ∈ R3.
To describe the asymptotics of Φ𝜆 for 𝜆 → 0, it is convenient to split the function into dif-

ferent summands with different asymptotic properties. We use equation (3.5) together with Ψ𝜆 =
1√
2
𝑉1/2Φ𝜆𝜒 |𝑟1 |< |𝑧1 | to split Φ𝜆 into the sum Φ𝑑

𝜆 ∓Φ𝑒𝑥
𝜆 , where the first term uses the first two summands

of 𝑡 (𝑝1, 𝑞1, 𝑟
′
1, 𝑧

′
1)

Φ𝑑
𝜆 (𝑟, 𝑧1) =

√
2𝜆

∫
R3

𝑒𝑖 (𝑝 ·𝑟+𝑞1𝑧1)

(2𝜋)3/2 𝐵𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))	𝑉1/2Ψ𝜆(𝑝, 𝑞1)d𝑝d𝑞1, (3.6)

and the second term uses the last two summands of 𝑡 (𝑝1, 𝑞1, 𝑟
′
1, 𝑧

′
1)

Φ𝑒𝑥
𝜆 (𝑟, 𝑧1) =

√
2𝜆

∫
R3

𝑒𝑖 (𝑝 ·𝑟+𝑞1𝑧1)

(2𝜋)3/2 𝐵𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))	𝑉1/2Ψ𝜆((𝑞1, 𝑝2), 𝑝1)d𝑝d𝑞1. (3.7)

For 𝑗 ∈ {𝑑, 𝑒𝑥}, we further split Φ 𝑗
𝜆 = Φ 𝑗 ,<

𝜆 + Φ 𝑗 ,>
𝜆 , where Φ 𝑗 ,# for # ∈ {<, >} has the characteristic

function 𝜒𝑝2+𝑞2
1 #2𝜇 in the integrand. Furthermore, let Φ# = Φ𝑑,# ∓Φ𝑒𝑥,#.

The following three lemmas contain regularity properties for Φ𝜆, which are later used for dominated
convergence arguments in the proof of Lemma 1.9. Furthermore, they also contain information about
the weak coupling behavior of the different Φ 𝑗 ,#

𝜆 , which is important for the proof of Lemma 1.10. The
first lemma is useful to prove that 𝐿1 is of order 𝑂 (1).
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Lemma 3.4. Let 𝜇 > 0, let V satisfy Assumption 1.2 and let 0 < 𝜆 ≤ 𝜆0. Then ‖Φ𝜆‖𝐿∞
1 𝐿

2
2
< ∞.

Furthermore, ‖Φ𝑑
𝜆 ‖𝐿∞

1 𝐿
2
2
= 𝑂 (1) and ‖Φ𝑒𝑥,>

𝜆 ‖𝐿∞
1 𝐿

2
2
= 𝑂 (𝜆) as 𝜆 → 0.

To understand the asymptotics of 𝐿2 the following result comes in handy.

Lemma 3.5. Let 𝜇 > 0, let V satisfy Assumption 1.2 and let 0 < 𝜆 ≤ 𝜆0. The function (𝑟, 𝑧) ↦→
𝑉1/2 (𝑟) |Φ𝜆(𝑟1, 𝑧2, 𝑧1) | is in 𝐿2 (R4). Furthermore, as 𝜆 → 0, the 𝐿2 (R4)-norms of the functions
𝑉1/2 (𝑟) |Φ>

𝜆 (𝑟1, 𝑧2, 𝑧1) |, 𝑉1/2(𝑟) |Φ𝑑,<
𝜆 (𝑟1, 𝑧2, 𝑧1) | and 𝑉1/2(𝑟) |Φ𝑒𝑥,<

𝜆 (𝑟1, 𝑧2, 𝑧1) | are of order 𝑂 (𝜆),
𝑂 (𝜆−1/2), and 𝑂 (𝜆1/2), respectively.

This suggests that the only possible origin for divergence in 𝐿2 lies in contributions from
𝑉1/2 (𝑟) |Φ𝑑,<

𝜆 (𝑟1, 𝑧2, 𝑧1) |. In the proof of Lemma 1.10, we shall show that the 𝐿2 norm of this term in-
deed grows as 𝜆−1/2, resulting in the 1/𝜆 divergence of 𝐿2. Furthermore, we need the following for the
proof of Lemma 1.9.

Lemma 3.6. Let 𝜇 > 0, let V satisfy Assumption 1.2 and let 0 < 𝜆 ≤ 𝜆0. Define the functions 𝑔0, 𝑔+ and
𝑔− on R2 as

𝑔0(𝑝2, 𝑞2) :=
∫
R2

Φ̂𝜆 (𝑝, 𝑞1) 𝜒Ω̃1
	𝑉 Φ𝜆(𝑝1, 𝑞2, 𝑞1)d𝑝1d𝑞1 (3.8)

and

𝑔±(𝑝2, 𝑞2) :=
∫
R2

Φ̂𝜆(𝑝, 𝑞1)
[
𝐵−1
𝑇 1
𝑐
(𝑝, 𝑞) − 𝐵−1

𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))

]
Φ̂𝜆((𝑝1,±𝑞2), 𝑞1)d𝑝1d𝑞1. (3.9)

The functions 𝑔0 and 𝑔± are continuous and bounded and 𝑔±(𝑝2, 𝜂) = 0 for all 𝑝2 ∈ R.

The proofs of these three lemmas are given in Sections 4.2 – 4.4, which may be skipped at first
reading.

3.1. Proof of Lemma 3.2

Proof of Lemma 3.2. Recall the operators 𝐴0
𝑇 , and 𝐴1

𝑇 from Section 3, and let 𝑎 𝑗𝑇 = sup𝜎(𝐴 𝑗𝑇 ). In
the proof of [16, Theorem 1.7] it was shown that 𝑎0

𝑇 ≤ 𝑎1
𝑇 for all 𝑇 > 0. Recall the decomposition of

𝐴1
𝑇 (𝑞2) into 𝐴0

𝑇 (𝑞2) and𝐺𝑇 (𝑞2) in (2.16). The operator norm of𝐺𝑇 (𝑞2) is bounded uniformly in T and
𝑞2 according to [16, Lemma 6.1]. Recall that

√
2𝜒Ω̃1

Ψ𝜆 is a normalized eigenvector of 𝐴1
𝑇 1
𝑐 (𝜆) (𝜂(𝜆)),

and note that 𝜄
√

2𝜒Ω̃1
Ψ𝜆 = Ψ𝜆, where 𝜄 is the isometry extending a function defined on Ω̃1 to R3

symmetrically under (𝑟1, 𝑧1) → −(𝑟1, 𝑧1); see equation (2.13). With the asymptotics 𝑇1
𝑐 (𝜆) → 0 for

𝜆 → 0 and 𝑎0
𝑇 = 𝑒𝜇 ln(𝜇/𝑇) +𝑂 (1) for 𝑇 → 0 discussed in Remark 3.1, we have for 𝜆 → 0

𝑒𝜇 ln 𝜇/𝑇1
𝑐 (𝜆) +𝑂 (1) = 𝑎0

𝑇 1
𝑐 (𝜆) ≤ 𝑎

1
𝑇 1
𝑐 (𝜆) = 〈Ψ𝜆, 𝐴0

𝑇 1
𝑐 (𝜆) (𝜂(𝜆))Ψ𝜆〉 +𝑂 (1). (3.10)

For 𝑞 ∈ R2, let 𝐵𝑇 (·, 𝑞) denote the operator on 𝐿2 (R2) which acts as multiplication by 𝐵𝑇 (𝑝, 𝑞) (defined
in equation (2.1)) in momentum space. Note that

〈Ψ𝜆, 𝐴0
𝑇 1
𝑐 (𝜆) (𝜂(𝜆))Ψ𝜆〉 =

∫
R

〈𝐹2Ψ𝜆(·, 𝑞1), 𝑉1/2𝐵𝑇 1
𝑐 (𝜆) (·, (𝑞1, 𝜂(𝜆)))𝑉1/2𝐹2Ψ𝜆(·, 𝑞1)〉d𝑞1. (3.11)
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14 B. Roos and R. Seiringer

According to [16, Lemma 6.8], there is a constant 𝐶 (𝜇,𝑉), such that for all 𝑞 ∈ R2 and 𝜓 ∈ 𝐿2
s (R2)

with ‖𝜓‖2 = 1

〈𝜓,𝑉1/2𝐵𝑇 (·, 𝑞)𝑉1/2𝜓〉 ≤ 〈𝜓,𝑂𝜇𝜓〉 ln
(
min

{√
𝜇

|𝑞 | ,
𝜇

𝑇

})
𝜒2<min{𝜇/𝑇 ,√𝜇/ |𝑞 | } + 𝐶 (𝜇,𝑉). (3.12)

In combination, we have for 𝜆 → 0

𝑒𝜇 ln 𝜇/𝑇1
𝑐 (𝜆) ≤

∫
|𝑞1 |<

√
𝜇/2

〈𝐹2Ψ𝜆(·, 𝑞1), 𝑂𝜇𝐹2Ψ𝜆(·, 𝑞1)〉 ln
����min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
𝜇√

𝑞2
1 + 𝜂(𝜆)2

,
𝜇

𝑇1
𝑐 (𝜆)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
��� d𝑞1 +𝑂 (1).

(3.13)

We will use this to prove the three parts of the claim.
(1) We want to prove a bound on 𝜂(𝜆). Since 𝑒𝜇 = sup𝜎(𝑂𝜇), we can bound

〈𝐹2Ψ𝜆(·, 𝑞1), 𝑂𝜇𝐹2Ψ𝜆(·, 𝑞1)〉 ≤ 𝑒𝜇 ‖𝐹2Ψ𝜆(·, 𝑞1)‖2
2 .

Moreover, clearly ln
(
min

{ √
𝜇√

𝑞2
1+𝜂 (𝜆)2

, 𝜇

𝑇 1
𝑐 (𝜆)

})
≤ ln(√𝜇/𝜂(𝜆)).By equation (3.13) and since ‖𝐹2Ψ𝜆‖2 =

1, there is a constant c such that 𝑒𝜇 ln(𝜇/𝑇1
𝑐 (𝜆)) ≤ 𝑒𝜇 ln(√𝜇/𝜂(𝜆)) + 𝑐 for small 𝜆. In particular,

|𝜂(𝜆) | ≤ exp(𝑐/𝑒𝜇)√
𝜇 𝑇1

𝑐 (𝜆), that is, 𝜂(𝜆) = 𝑂 (𝑇1
𝑐 (𝜆)).

(2) We want to bound ‖P⊥𝐹2Ψ𝜆‖. Denote the ratio of the second highest and the highest eigenvalue
of 𝑂𝜇 by 𝛼, where 𝛼 < 1 by Assumption 1.2(5). Then∫

R

〈𝐹2Ψ𝜆(·, 𝑞1), 𝑂𝜇𝐹2Ψ𝜆(·, 𝑞1)〉d𝑞1 ≤ 𝑒𝜇

(
‖P𝐹2Ψ𝜆‖2 + 𝛼‖P⊥𝐹2Ψ𝜆‖2

)
= 𝑒𝜇

(
‖𝐹2Ψ𝜆‖2 − (1 − 𝛼)‖P⊥𝐹2Ψ𝜆‖2

)
(3.14)

Therefore, by equation (3.13)

ln 𝜇/𝑇1
𝑐 (𝜆) ≤

(
1 − (1 − 𝛼)‖P⊥𝐹2Ψ𝜆‖2) ln 𝜇/𝑇1

𝑐 (𝜆) +𝑂 (1) (3.15)

for 𝜆 → 0. This means that ‖P⊥𝐹2Ψ𝜆‖2 = 𝑂 (1/ln 𝜇/𝑇1
𝑐 (𝜆)). According to Remark 3.1,

lim𝜆→0 𝜆 ln 𝜇/𝑇1
𝑐 (𝜆) = 𝑒−1

𝜇 and thus ‖P⊥𝐹2Ψ𝜆‖2 = 𝑂 (𝜆).
(3) In this part, we bound ‖Q⊥

𝛽𝐹2Ψ𝜆‖. Let

𝜖 (𝜆) = ‖Q⊥
𝛽𝐹2Ψ𝜆‖2 =

∫
R3

|𝐹2Ψ𝜆(𝑟, 𝑞1) |2𝜒
|𝑞1 |>

√
𝜇

(
𝑇 1
𝑐 (𝜆)
𝜇

)𝛽d𝑟d𝑞1.

By equation (3.13), we have for small 𝜆

𝑒𝜇 ln 𝜇/𝑇1
𝑐 (𝜆) ≤ (1 − 𝜖 (𝜆))𝑒𝜇 ln 𝜇/𝑇1

𝑐 (𝜆) + 𝜖 (𝜆)𝑒𝜇 ln
𝜇𝛽

𝑇1
𝑐 (𝜆)𝛽

+ 𝐶 (3.16)

for some constant C. Hence,

𝜖 (𝜆) ≤ 𝐶

(1 − 𝛽)𝑒𝜇 ln 𝜇/𝑇1
𝑐 (𝜆)

= 𝑂 (𝜆), (3.17)

where we used lim𝜆→0 𝜆 ln 𝜇/𝑇1
𝑐 (𝜆) = 𝑒−1

𝜇 (Remark 3.1) in the last step. �
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3.2. Proof of Lemma 3.4

Proof of Lemma 3.4. The goal is to prove ‖Φ𝜆‖𝐿∞
1 𝐿

2
2
< ∞, as well as ‖Φ𝑑

𝜆 ‖𝐿∞
1 𝐿

2
2

= 𝑂 (1) and
‖Φ𝑒𝑥,>

𝜆 ‖𝐿∞
1 𝐿

2
2
= 𝑂 (𝜆) as 𝜆 → 0. If we show ‖Φ𝑑

𝜆 ‖𝐿∞
1 (R2)𝐿2

2 (R)
< ∞ and ‖Φ𝑒𝑥

𝜆 ‖𝐿∞
1 (R2)𝐿2

2 (R)
< ∞, the

Schwarz inequality implies ‖Φ𝜆‖𝐿∞
1 (R2)𝐿2

2 (R)
< ∞ .

We shall first prove that ‖Φ𝑑
𝜆 ‖𝐿∞

1 𝐿
2
2

is finite and of order 𝑂 (1) for 𝜆 → 0. Using the definition of Φ𝑑
𝜆

(3.6), we have

‖Φ𝑑
𝜆 (𝑟, ·)‖

2
2

= 2𝜆2
∫
R5

	𝑉1/2Ψ𝜆(𝑝′, 𝑞1)𝐵𝑇 1
𝑐
(𝑝′, (𝑞1, 𝜂))

𝑒𝑖 (𝑝−𝑝
′) ·𝑟

(2𝜋)2 𝐵𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))	𝑉1/2Ψ𝜆(𝑝, 𝑞1)d𝑝d𝑝′d𝑞1

≤ 2𝜆2 sup
𝑞1∈R

sup
𝜓∈𝐿2 (R2) , ‖𝜓 ‖2=1

∫
R4

�𝑉1/2𝜓(𝑝′)𝐵𝑇 1
𝑐
(𝑝′, (𝑞1, 𝜂))

𝑒𝑖 (𝑝−𝑝
′) ·𝑟

(2𝜋)2 𝐵𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))�𝑉1/2𝜓(𝑝)d𝑝d𝑝′

(3.18)

For fixed r, the latter integral is the quadratic form corresponding to the projection onto the function
𝜙𝑞1 (𝑟 ′) = 1

2𝜋 𝐹1𝐵𝑇 1
𝑐
(𝑟−𝑟 ′, (𝑞1, 𝜂))𝑉1/2(𝑟 ′). Hence, taking the supremum over𝜓, equation (3.18) equals

2𝜆2 sup
𝑞1∈R

‖𝜙𝑞1 ‖2
2 = 2𝜆2 sup

𝑞1∈R

∫
R4

𝑒𝑖 (𝑝−𝑝
′) ·𝑟

(2𝜋)3 𝐵𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))𝑉 (𝑝 − 𝑝′)𝐵𝑇 1

𝑐
(𝑝′, (𝑞1, 𝜂))d𝑝d𝑝′. (3.19)

We split the integration into 𝑝2 > 2𝜇, 𝑝2 < 2𝜇 and 𝑝′2 > 2𝜇, 𝑝′2 < 2𝜇. Using the upper bounds on 𝐵𝑇
stated in equation (2.2) leads to the bound

‖Φ𝑑
𝜆 (𝑟, ·)‖

2
2 ≤ 2𝜆2

(2𝜋)3

[
‖𝑉 ‖∞ sup

𝑞1

( ∫
R2
𝐵𝑇 1

𝑐
(𝑝, (𝑞1, 𝜂))𝜒𝑝2<2𝜇d𝑝

)2

+ 2 sup
𝑞1

∫
R4
𝐵𝑇 1

𝑐
(𝑝, (𝑞1, 𝜂))𝜒𝑝2<2𝜇 |𝑉 (𝑝 − 𝑝′) |

𝐶

1 + 𝑝′2 d𝑝d𝑝′

+
∫
R4

𝐶

1 + 𝑝2 |𝑉 (𝑝 − 𝑝
′) | 𝐶

1 + 𝑝′2 d𝑝d𝑝′
]

(3.20)

for a constant C independent of 𝜆. We start by considering the first term in the square bracket. Note that
‖𝑉 ‖∞ < ‖𝑉 ‖1

2𝜋 < ∞. For fixed 𝑇 > 0, the function 𝐵𝑇 (𝑝, 𝑞) is bounded, hence the term is finite for fixed
𝜆. For 𝑇 → 0, we have

sup
𝑞∈R2

∫
R2
𝐵𝑇 (𝑝, 𝑞)𝜒𝑝2<2𝜇d𝑝 = 𝑂 (ln 𝜇/𝑇). (3.21)

To see this, we first apply the inequality [12, (6.1)]

𝐵𝑇 (𝑝, 𝑞) ≤
1
2
(𝐵𝑇 (𝑝 + 𝑞, 0) + 𝐵𝑇 (𝑝 − 𝑞, 0)). (3.22)

This gives the upper bound sup𝑞∈R2

∫
R2 𝐵𝑇 (𝑝, 0)𝜒(𝑝−𝑞)2<2𝜇d𝑝. The vector q shifts the disk-shaped

domain of integration but does not change its size. In particular, the contribution with 𝑝2 < 2𝜇 is
bounded above by

∫
R2 𝐵𝑇 (𝑝, 0)𝜒𝑝2<2𝜇d𝑝 = 𝑂 (ln 𝜇/𝑇) [14, Proposition 3.1] while the contribution

with 𝑝2 > 2𝜇 is uniformly bounded in T since 𝐵𝑇 (𝑝, 0)𝜒𝑝2>2𝜇 ≤ 𝐶 (𝜇)/(1 + 𝑝2) by equation (2.2).
Since for 𝜆 → 0, we have ln 𝜇/𝑇1

𝑐 (𝜆) = 𝑂 (1/𝜆) by Remark 3.1, the first term in the square bracket in
equation (3.20) is of order 1/𝜆2 as 𝜆 → 0. For the second term in the square bracket, we use Hölder’s
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inequality in 𝑝′. By assumption, V is in 𝐿𝑡 (R2) for some 𝑡 > 0, thus by the Hausdorff–Young inequality
we have 𝑉 ∈ 𝐿𝑡′ , where 1 = 1/𝑡 ′ + 1/𝑡. Hence, the second term is bounded by

2 sup
𝑞1

∫
R4
𝐵𝑇 1

𝑐
(𝑝, (𝑞1, 𝜂))𝜒𝑝2<2𝜇d𝑝‖𝑉 ‖𝑡′

%%%% 𝐶

1 + | · |2

%%%%
𝐿𝑡 (R2)

, (3.23)

which is finite for fixed 𝜆 and of order 𝑂 (1/𝜆) for 𝜆 → 0 by equation (3.21). Using Young’s inequality,
one sees that the third term in the square bracket is bounded. Taking into account the factor 𝜆2 in front
of the square bracket, we conclude that ‖Φ𝑑

𝜆 (𝑟, ·)‖
2
2 = 𝑂 (1) uniformly in r.

We shall now show that for fixed 𝜆, ‖Φ𝑒𝑥
𝜆 ‖𝐿∞

1 𝐿
2
2
< ∞ and ‖Φ𝑒𝑥,>

𝜆 ‖𝐿∞
1 𝐿

2
2
= 𝑂 (𝜆) as 𝜆 → 0. We have

‖Φ𝑒𝑥
𝜆 (𝑟, ·)‖2

2 = 2𝜆2
∫
R2𝑑+1

	𝑉1/2Ψ𝜆((𝑞1, 𝑝
′
2), 𝑝

′
1)𝐵𝑇 1

𝑐
(𝑝′, (𝑞1, 𝜂))

𝑒𝑖 (𝑝−𝑝
′) ·𝑟

(2𝜋)𝑑
𝐵𝑇 1

𝑐
(𝑝, (𝑞1, 𝜂))

× 	𝑉1/2Ψ𝜆((𝑞1, 𝑝2), 𝑝1)d𝑝d𝑝′d𝑞1. (3.24)

Similarly, we get an expression for ‖Φ𝑒𝑥,>
𝜆 (𝑟, ·)‖2

2 if we multiply the above integrand by the characteristic
functions 𝜒𝑝2+𝑞2

1>2𝜇𝜒𝑝′2+𝑞2
1>2𝜇. Using the bounds for 𝐵𝑇 in equation (2.2), we bound ‖Φ𝑒𝑥

𝜆 ‖2
𝐿∞

1 𝐿
2
2

and

‖Φ𝑒𝑥,>
𝜆 ‖2

𝐿∞
1 𝐿

2
2

above by

𝐶𝜆2
∫
R2𝑑+1

|	𝑉1/2Ψ𝜆((𝑞1, 𝑝
′
2), 𝑝

′
1) |

1
1 + 𝑝′2 + 𝑞2

1

1
1 + 𝑝2 + 𝑞2

1
|	𝑉1/2Ψ𝜆((𝑞1, 𝑝2), 𝑝1) |d𝑝d𝑝′d𝑞1, (3.25)

where the constant C depends on 𝜇 and 𝜆 for the bound on ‖Φ𝑒𝑥
𝜆 ‖2

𝐿∞
1 𝐿

2
2

but is independent of 𝜆 for the

bound on ‖Φ𝑒𝑥,>
𝜆 ‖2

𝐿∞
1 𝐿

2
2
. Using the Schwarz inequality in 𝑝1 and 𝑝′1 and then the bound on the mixed

Lebesgue norm in Lemma 3.3, we get the upper bound

𝐶𝜆2‖	𝑉1/2Ψ𝜆‖2
𝐿∞

1 𝐿
2
2

∫
R2𝑑+1

(∫
R

1
(1 + 𝑝′2 + 𝑞2

1)2
d𝑝′1

)1/2 (∫
R

1
(1 + 𝑝2 + 𝑞2

1)2
d𝑝1

)1/2

d𝑝2d𝑝′2d𝑞1

≤ �̃�𝜆2‖𝑉 ‖1‖Ψ𝜆‖2
2 . (3.26)

Therefore, ‖Φ𝑒𝑥
𝜆 ‖𝐿∞

1 𝐿
2
2

is finite and ‖Φ𝑒𝑥,>
𝜆 ‖𝐿∞

1 𝐿
2
2
= 𝑂 (𝜆). �

3.3. Proof of Lemma 3.5

Proof of Lemma 3.5. The goal is to show that the function (𝑟, 𝑧) ↦→ 𝑉1/2(𝑟) |Φ𝜆(𝑟1, 𝑧2, 𝑧1) | is in 𝐿2 (R4)
and that for 𝜆 → 0 the 𝐿2 (R4)-norms of the functions 𝑉1/2(𝑟) |Φ>

𝜆 (𝑟1, 𝑧2, 𝑧1) |,𝑉1/2(𝑟) |Φ𝑑,<
𝜆 (𝑟1, 𝑧2, 𝑧1) |

and 𝑉1/2(𝑟) |Φ𝑒𝑥,<
𝜆 (𝑟1, 𝑧2, 𝑧1) | are of order 𝑂 (𝜆), 𝑂 (𝜆−1/2), and 𝑂 (𝜆1/2), respectively.

By the Schwarz inequality, it suffices to prove that for 𝑗 ∈ {𝑑, 𝑒𝑥} and # ∈ {<, >} the inte-
grals

∫
R4 𝑉 (𝑟) |Φ

𝑗 ,#
𝜆 (𝑟1, 𝑧2, 𝑧1) |2d𝑟d𝑧 are finite for all 𝜆0 ≥ 𝜆 > 0 and that as 𝜆 → 0, we have∫

R4 𝑉 (𝑟) |Φ
𝑗 ,>
𝜆 (𝑟1, 𝑧2, 𝑧1) |2d𝑟d𝑧 = 𝑂 (𝜆2) for 𝑗 ∈ {𝑑, 𝑒𝑥},

∫
R4 𝑉 (𝑟) |Φ𝑑,<

𝜆 (𝑟1, 𝑧2, 𝑧1) |2d𝑟d𝑧 = 𝑂 (𝜆−1)
and

∫
R4 𝑉 (𝑟) |Φ𝑒𝑥,<

𝜆 (𝑟1, 𝑧2, 𝑧1) |2d𝑟d𝑧 = 𝑂 (𝜆).
Using the definitions of the different Φ 𝑗 ,#

𝜆 (see equations (3.6) and (3.7)), one can rewrite for
# ∈ {<, >}∫

R4
𝑉 (𝑟) |Φ𝑑,#

𝜆 (𝑟1, 𝑧2, 𝑧1) |2d𝑟d𝑧 = 2𝜆2
∫
R4
𝑉 (𝑝1 − 𝑝′1, 0)𝐵𝑇 1

𝑐
((𝑝′1, 𝑝2), (𝑞1, 𝜂))	𝑉1/2Ψ𝜆(𝑝′1, 𝑝2, 𝑞1)

× 𝐵𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))	𝑉1/2Ψ𝜆(𝑝, 𝑞1)𝜒𝑝2+𝑞2

1 #2𝜇𝜒𝑝′2
1 +𝑝2

2+𝑞
2
1 #2𝜇d𝑝1d𝑝′1d𝑝2d𝑞1 (3.27)
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and∫
R4
𝑉 (𝑟) |Φ𝑒𝑥,#

𝜆 (𝑟1, 𝑧2, 𝑧1) |2d𝑟d𝑧 = 2𝜆2
∫
R4
𝑉 (𝑝1 − 𝑝′1, 0)𝐵𝑇 1

𝑐
((𝑝′1, 𝑝2), (𝑞1, 𝜂))	𝑉1/2Ψ𝜆(𝑞1, 𝑝2, 𝑝

′
1)

× 𝐵𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))	𝑉1/2Ψ𝜆(𝑞1, 𝑝2, 𝑝1)𝜒𝑝2+𝑞2

1 #2𝜇𝜒𝑝′2
1 +𝑝2

2+𝑞
2
1 #2𝜇d𝑝1d𝑝′1d𝑝2d𝑞1.

(3.28)

For Φ𝑑,>
𝜆 , with the aid of the bound on 𝐵𝑇 in equation (2.2) and the estimate for mixed Lebesgue norms

in Lemma 3.3 the expression is bounded by

𝐶𝜆2‖𝑉 ‖1

∫
R4

1
1 + 𝑝′2

1 + 𝑝2
2

1
1 + 𝑝2

1 + 𝑝
2
2
‖	𝑉1/2Ψ𝜆(·, 𝑞1)‖2

∞d𝑞1d𝑝′1d𝑝1d𝑝2 ≤ �̃�𝜆2‖𝑉 ‖2
1 ‖Ψ𝜆‖

2
2 < ∞,

(3.29)

where the constants 𝐶, �̃� depend only on 𝜇. For Φ𝑒𝑥,>
𝜆 we use the bound on 𝐵𝑇 in equation (2.2) and

the Schwarz inequality in 𝑝1 and 𝑝′1 to bound equation (3.28) by

𝐶𝜆2‖𝑉 ‖1

∫
R2

%%%%% 1
1 + | · |2 + 𝑝2

2 + 𝑞
2
1

%%%%%2

𝐿2 (R)

d𝑝2d𝑞1‖	𝑉1/2Ψ𝜆‖2
𝐿∞
𝑝 𝐿

2
𝑞
≤ �̃�𝜆2‖𝑉 ‖2

1 ‖Ψ𝜆‖
2
2 , (3.30)

where we used the estimate for mixed Lebesgue norms from Lemma 3.3 in the second step. Again, the
constants 𝐶, �̃� depend only on 𝜇.

For Φ𝑑,<
𝜆 we bound equation (3.27) above by

‖𝑉 ‖1
𝜋

𝜆2
∫
R4
𝐵𝑇 1

𝑐
(𝑝, (𝑞1, 𝜂))𝐵𝑇 1

𝑐
((𝑝′1, 𝑝2), (𝑞1, 𝜂))‖	𝑉1/2Ψ𝜆(·, 𝑞1)‖2

∞𝜒𝑝2+𝑞2
1<2𝜇

× 𝜒𝑝′2
1 +𝑝2

2+𝑞
2
1<2𝜇d𝑝d𝑝′1d𝑞1

≤
‖𝑉 ‖2

1
4𝜋3 𝜆

2 sup
𝑞1∈R

∫
R3
𝐵𝑇 1

𝑐
(𝑝, (𝑞1, 𝜂))𝐵𝑇 1

𝑐
((𝑝′1, 𝑝2), (𝑞1, 𝜂))𝜒𝑝2+𝑞2

1<2𝜇𝜒𝑝′2
1 +𝑝2

2+𝑞
2
1<2𝜇d𝑝d𝑝′1, (3.31)

where we used the bound on mixed Lebesgue norms from Lemma 3.3 and ‖Ψ𝜆‖2 = 1 in the second step.
For fixed 𝜆, this is finite because 𝐵𝑇 1

𝑐
is a bounded function. For 𝜆 → 0, the first part of the following

lemma together with the weak coupling asymptotics of 𝑇1
𝑐 stated in Remark 3.1 imply that this is of

order 𝑂 (𝜆−1).

Lemma 3.7. Let 𝜇, 𝐶 > 0. For 𝑇 → 0, we have

sup
𝑞,𝑞′ ∈R2

∫
R3
𝐵𝑇 (𝑝, 𝑞)𝐵𝑇 ((𝑝′1, 𝑝2), 𝑞′)d𝑝1d𝑝′1d𝑝2 = 𝑂 (ln 𝜇/𝑇)3. (3.32)

Furthermore, for every 0 < 𝛿1 < 𝜇 there is a 𝛿2 > 0 such that for 𝑇 → 0

sup
|𝑞 |, |𝑞′ |<𝛿2

∫
R3
(1 − 𝜒𝜇−𝛿1<𝑝

2
2<𝜇+𝛿1

𝜒𝑝2
1<4𝛿1

𝜒𝑝′2
1 <4𝛿1

)𝐵𝑇 (𝑝, 𝑞)𝐵𝑇 ((𝑝′1, 𝑝2), 𝑞′)d𝑝1d𝑝′1d𝑝2

= 𝑂 (ln 𝜇/𝑇)5/2. (3.33)

The second part of this lemma will be used in the proof of Lemma 1.10 to compute the asymptotics
of 𝐿2. The proof of Lemma 3.7 can be found in Section 7.2.
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For Φ𝑒𝑥,<
𝜆 we bound equation (3.28) above using the bound on mixed Lebesgue norms in Lemma 3.3

and ‖Ψ𝜆‖2 = 1, which gives

𝜆2

2𝜋2 ‖𝑉 ‖
2
1 ‖𝐵

𝑒𝑥,2
𝑇 1
𝑐

(𝜂)‖, (3.34)

where 𝐵𝑒𝑥,2𝑇 (𝜉) is the operator acting on 𝐿2 (−
√

2𝜇,
√

2𝜇) with integral kernel

𝐵𝑒𝑥,2𝑇 (𝜉) (𝑝′1, 𝑝1) =
∫
R2
𝐵𝑇 ((𝑝′1, 𝑝2), (𝑞1, 𝜉))𝐵𝑇 (𝑝, (𝑞1, 𝜉))𝜒𝑞2

1+𝑝
2
2<2𝜇d𝑞1d𝑝2. (3.35)

The superscript 2 indicates that there are two factors of 𝐵𝑇 , as opposed to 𝐵𝑒𝑥𝑇 which is defined later in
equation (5.8). The following lemma together with the asymptotics of 𝑇1

𝑐 (𝜆) from Remark 3.1 and the
fact that 𝜂(𝜆) = 𝑂 (𝑇1

𝑐 (𝜆)) (see Lemma 3.2(1)) implies that equation (3.34) is bounded for fixed 𝜆 and
of order 𝑂 (𝜆) for 𝜆 → 0.

Lemma 3.8. Let 𝑐, 𝜇 > 0. Then sup |𝜉 |<𝑐𝑇 ‖𝐵
𝑒𝑥,2
𝑇 (𝜉)‖ is finite for all 𝑇 > 0 and of order 𝑂 (ln 𝜇/𝑇) as

𝑇 → 0.

The proof of Lemma 3.8 is given in Section 7.3. �

3.4. Proof of Lemma 3.6

Proof of Lemma 3.6. Recall the functions 𝑔0, 𝑔+ and 𝑔− on R2 defined as

𝑔0(𝑝2, 𝑞2) :=
∫
R2

Φ̂𝜆 (𝑝, 𝑞1) 𝜒Ω̃1
	𝑉 Φ𝜆(𝑝1, 𝑞2, 𝑞1)d𝑝1d𝑞1 (3.36)

and

𝑔±(𝑝2, 𝑞2) :=
∫
R2

Φ̂𝜆 (𝑝, 𝑞1)
[
𝐵−1
𝑇 1
𝑐
(𝑝, 𝑞) − 𝐵−1

𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))

]
Φ̂𝜆((𝑝1,±𝑞2), 𝑞1)d𝑝1d𝑞1. (3.37)

We aim to prove that the functions 𝑔0 and 𝑔± are continuous and bounded and 𝑔±(𝑝2, 𝜂) = 0 for all
𝑝2 ∈ R.

For functions 𝜓 on R3, let 𝑆𝜓(𝑝1, 𝑝2, 𝑞1) = 𝜓(𝑝, 𝑞1) + 𝜓(−𝑝1, 𝑝2,−𝑞1) ∓ 𝜓(𝑞1, 𝑝2, 𝑝1) ∓
𝜓(−𝑞1, 𝑝2,−𝑝1). For 𝑝, 𝑞 ∈ R2, let

𝐿0 (𝑝, 𝑞) := 𝜆𝐵𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂)), (3.38)

𝐿±(𝑝, 𝑞) := 𝜆2𝐵𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))

[
𝐵−1
𝑇 1
𝑐
(𝑝, 𝑞) − 𝐵−1

𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))

]
𝐵𝑇 1

𝑐
((𝑝1,±𝑞2), (𝑞1, 𝜂). (3.39)

Using the expression for Φ̂𝜆 in equation (3.5) obtained from the eigenvalue equation we have

𝑔0 (𝑝2, 𝑞2) =
∫
R2
𝑆 𝜒Ω̃1
	𝑉 Φ𝜆 (𝑝, 𝑞1)𝐿0 (𝑝, 𝑞) 𝜒Ω̃1

	𝑉 Φ𝜆(𝑝1, 𝑞2, 𝑞1)d𝑝1d𝑞1 (3.40)

and

𝑔±(𝑝2, 𝑞2) =
∫
R2
𝑆 𝜒Ω̃1
	𝑉 Φ𝜆(𝑝, 𝑞1)𝐿±(𝑝, 𝑞)𝑆 𝜒Ω̃1

	𝑉 Φ𝜆(𝑝1,±𝑞2, 𝑞1)d𝑝1d𝑞1. (3.41)

https://doi.org/10.1017/fms.2024.145 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.145


Forum of Mathematics, Sigma 19

Note that 𝑔±(𝑝2, 𝜂) = 0 since 𝐿±(𝑝, (𝑞1, 𝜂)) = 0. For measurable functions 𝜓1, 𝜓2 on R3 and 𝑝2, 𝑞2 ∈ R
we obtain using the Schwarz inequality in 𝑞1∫

R2
|𝜓1 (𝑝1, 𝑝2, 𝑞1) |

1
1 + 𝑝2

1
|𝜓2 (𝑝1, 𝑞2, 𝑞1) |d𝑝1d𝑞1

≤
∫
R

1
1 + 𝑝2

1
d𝑝1 sup

𝑝∈R2
‖𝜓1 (𝑝, ·)‖𝐿2 (R) sup

𝑝∈R2
‖𝜓2 (𝑝, ·)‖𝐿2 (R) (3.42)

and using the Schwarz inequality in 𝑞1, 𝑝1∫
R2

|𝜓1 (𝑝1, 𝑝2, 𝑞1) |
1

1 + 𝑝2
1 + 𝑞

2
1
|𝜓2 (𝑞1, 𝑞2, 𝑝1) |d𝑝1d𝑞1

≤
∫
R

1
1 + 𝑝2

1
d𝑝1 sup

𝑝∈R2
‖𝜓1 (𝑝, ·)‖𝐿2 (R) sup

𝑝∈R2
‖𝜓2 (𝑝, ·)‖𝐿2 (R) . (3.43)

There is a constant C independent of 𝑝, 𝑞 (but dependent on 𝜆) such that 𝐿0 (𝑝, 𝑞) ≤ 𝐶
1+𝑝2

1+𝑞
2
1

by equation
(2.2). Similarly, the bounds on 𝐵𝑇 in equation (2.2) and Lemma 2.1 imply that there is a constant C
independent of 𝑝, 𝑞 but dependent on 𝜆 such that

𝐿±(𝑝, 𝑞) ≤ 𝐶 (1 + 𝑝2 + 𝑞2)
(1 + 𝑝2 + 𝑞2

1) (1 + 𝑝2
1 + 𝑞2)

≤ 2𝐶
1 + 𝑝2

1 + 𝑞
2
1
. (3.44)

It follows from equations (3.42) and (3.43) that there is a constant C such that for all measurable
functions 𝜓1, 𝜓2 on R3 and 𝑝2, 𝑝

′
2, 𝑞2, 𝑞

′
2 ∈ R

��� ∫
R2
𝑆𝜓1 (𝑝, 𝑞1)𝐿0 (𝑝1, 𝑝

′
2, 𝑞1, 𝑞

′
2)𝜓2(𝑝1, 𝑞2, 𝑞1)d𝑝1d𝑞1

���
≤ 𝐶 sup

𝑝∈R2
‖𝜓1 (𝑝, ·)‖𝐿2 (R) sup

𝑝∈R2
‖𝜓2 (𝑝, ·)‖𝐿2 (R) , (3.45)

and similarly

��� ∫
R2
𝑆𝜓1 (𝑝, 𝑞1)𝐿±(𝑝1, 𝑝

′
2, 𝑞1, 𝑞

′
2)𝑆𝜓2(𝑝1,±𝑞2, 𝑞1)d𝑝1d𝑞1

���
≤ 𝐶 sup

𝑝∈R2
‖𝜓1 (𝑝, ·)‖𝐿2 (R) sup

𝑝∈R2
‖𝜓2 (𝑝, ·)‖𝐿2 (R) . (3.46)

In particular it follows from equations (3.40) and (3.41) with the mixed Lebesgue norm bounds in
Lemma 3.3 and the normalization ‖𝑉1/2𝜒Ω̃1

Φ𝜆‖2 = 1 that 𝑔0 and 𝑔± are bounded.
To prove continuity, first note that

𝜒Ω̃1
	𝑉 Φ𝜆 (𝑝1, 𝑝2 + 𝜖, 𝑞1) − 𝜒Ω̃1

	𝑉 Φ𝜆(𝑝, 𝑞1) = 𝜒Ω̃1
	𝑊𝜖 Φ𝜆(𝑝, 𝑞1), (3.47)
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where𝑊𝜖 (𝑟) = 𝑉 (𝑟) (𝑒−𝑖 𝜖 𝑟2 − 1). We only spell out the proof for 𝑔±, the argument for 𝑔0 is analogous.
For all 𝑝2, 𝑞2 ∈ R, we have

𝑔±(𝑝2 + 𝜖, 𝑞2 + 𝜖 ′) − 𝑔±(𝑝2, 𝑞2)

=
∫
R2
𝑆 𝜒Ω̃1
	𝑉 Φ𝜆(𝑝1, 𝑝2 + 𝜖, 𝑞1)𝐿±(𝑝1, 𝑝2 + 𝜖, 𝑞1, 𝑞2 + 𝜖 ′)𝑆 𝜒Ω̃1

	𝑊𝜖 Φ𝜆(𝑝1,±𝑞2, 𝑞1)d𝑝1d𝑞1

+
∫
R2
𝑆 𝜒Ω̃1

	𝑊𝜖 Φ𝜆 (𝑝, 𝑞1)𝐿±(𝑝1, 𝑝2 + 𝜖, 𝑞1, 𝑞2 + 𝜖 ′)𝑆 𝜒Ω̃1
	𝑉 Φ𝜆(𝑝1,±𝑞2, 𝑞1)d𝑝1d𝑞1

+
∫
R2
𝑆 𝜒Ω̃1
	𝑉 Φ𝜆(𝑝, 𝑞1)(𝐿±(𝑝1, 𝑝2 + 𝜖, 𝑞1, 𝑞2 + 𝜖 ′) − 𝐿±(𝑝, 𝑞))𝑆 𝜒Ω̃1

	𝑉 Φ𝜆(𝑝1,±𝑞2, 𝑞1)d𝑝1d𝑞1.

(3.48)

Using equation (3.44) it follows by dominated convergence that the last line vanishes as 𝜖, 𝜖 ′ → 0.
Furthermore, note that by the mixed Lebesgue norm estimates in Lemma 3.3

‖ 𝜒Ω̃1
	𝑊𝜖 Φ𝜆‖𝐿∞

𝑝 𝐿
2
𝑞1

≤
‖𝑊𝜖 ‖1/2

1
2𝜋

‖𝑊1/2
𝜖 𝜒Ω̃1

Φ𝜆‖2≤
‖𝑊𝜖 ‖1

2𝜋
‖Φ𝜆‖𝐿∞

𝑟 𝐿
2
𝑧1
, (3.49)

where ‖Φ𝜆‖𝐿∞
𝑟 𝐿

2
𝑧1
< ∞ was shown in Lemma 3.4. Since ‖𝑊𝜖 ‖1 ≤ |𝜖 |‖ | · |𝑉 ‖1, it follows from equation

(3.46) that the first two lines in equation (3.48) vanish as 𝜖, 𝜖 ′ → 0. In particular, 𝑔± are continuous. �

4. Proof of Lemma 1.9

This section contains the proof of Lemma 1.9, where we compute lim𝜖→0〈𝜓 𝜖𝜆 ,𝑈𝐻
Ω2
𝑇 1
𝑐 (𝜆)𝑈

†𝜓 𝜖𝜆 〉. Recall
from (2.6) that

𝑡 (𝑝1, 𝑞1, 𝑟1, 𝑧1) =
1
2

(
𝑒−𝑖 (𝑝1𝑟1+𝑞1𝑧1) + 𝑒𝑖 (𝑝1𝑟1+𝑞1𝑧1) ∓ 𝑒−𝑖 (𝑝1𝑧1+𝑞1𝑟1) ∓ 𝑒𝑖 (𝑝1𝑧1+𝑞1𝑟1)

)
. (4.1)

Let Ω̃2 = {(𝑟, 𝑧) ∈ R2 ×R2 | |𝑟1 | < 𝑧1, |𝑟2 | < 𝑧2}. Analogously to the expression for𝑈𝐾Ω1
𝑇 𝑈† in equation

(2.7), we have

〈𝜓 𝜖𝜆 ,𝑈𝐻
Ω2
𝑇 𝑈†𝜓 𝜖𝜆 〉 =

∫
R4
𝐵𝑇 (𝑝, 𝑞)−1

����∫
Ω̃2

1
(2𝜋)2 𝑡 (𝑝1, 𝑞1, 𝑟1, 𝑧1)𝑡 (𝑝2, 𝑞2, 𝑟2, 𝑧2)𝜓 𝜖𝜆 (𝑟, 𝑧)d𝑟d𝑧

����2d𝑝d𝑞

− 𝜆
∫
Ω̃2

𝑉 (𝑟) |𝜓 𝜖𝜆 (𝑟, 𝑧) |
2d𝑟d𝑧. (4.2)

Since the function 𝜓 𝜖𝜆 defined in equation (1.5) is symmetric under (𝑟2, 𝑧2) → −(𝑟2, 𝑧2) and
(anti)symmetric under (𝑟2, 𝑧2) → (𝑧2, 𝑟2), we have∫

|𝑟2 |<𝑧2

𝑡 (𝑝2, 𝑞2, 𝑟2, 𝑧2)𝜓 𝜖𝜆 (𝑟, 𝑧)d𝑟2d𝑧2 =
1
2

∫
R2
𝑒−𝑖 𝑝2𝑟2−𝑖𝑞2𝑧2𝜓 𝜖𝜆 (𝑟, 𝑧)d𝑟2d𝑧2 (4.3)

and∫
|𝑟2 |<𝑧2

𝑉 (𝑟) |𝜓 𝜖𝜆 (𝑟, 𝑧) |
2d𝑟2d𝑧2 =

1
4

∫
R2
(𝑉 (𝑟)𝜒 |𝑟2 |< |𝑧2 | +𝑉 (𝑟1, 𝑧2)𝜒 |𝑧2 |< |𝑟2 | ) |𝜓 𝜖𝜆 (𝑟, 𝑧) |

2d𝑟2d𝑧2. (4.4)

Comparing with the expression for𝑈𝐾Ω1
𝑇 𝑈† in equation (2.7), we obtain

〈𝜓 𝜖𝜆 ,𝑈𝐻
Ω2
𝑇 1
𝑐 (𝜆)𝑈

†𝜓 𝜖𝜆 〉 =
1
4
〈𝜓 𝜖𝜆 , 𝐻

2
𝑇 1
𝑐 (𝜆)𝜓

𝜖
𝜆 〉,
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where the operator 𝐻2
𝑇 is given by

𝐻2
𝑇 = 𝑈𝐾Ω1

𝑇 𝑈† − 𝜆𝑉 (𝑟)𝜒 |𝑟2 |< |𝑧2 | − 𝜆𝑉 (𝑟1, 𝑧2)𝜒 |𝑧2 |< |𝑟2 | (4.5)

acting on 𝐿2 (Ω̃1 ×R) functions symmetric in r and antisymmetric/symmetric under swapping 𝑟2 ↔ 𝑧2
for Dirichlet/Neumann boundary conditions, respectively. Let us define 𝐾2

𝑇 := 𝑈𝐾Ω1
𝑇 𝑈†.

The trial state 𝜓 𝜖𝜆 has four summands, which we number from one to four in the order they appear
in equation (1.5) and refer to as | 𝑗〉 for 𝑗 ∈ {1, 2, 3, 4}. By symmetry under (𝑧2, 𝑟2) → −(𝑧2, 𝑟2) and
(𝑟2, 𝑧2) → (𝑧2, 𝑟2), we have

〈𝜓 𝜖𝜆 , 𝐻
2
𝑇 1
𝑐
𝜓 𝜖𝜆 〉 = 4

4∑
𝑗=1

〈1, 𝐻2
𝑇 1
𝑐
𝑗〉. (4.6)

For each 𝑗 ∈ {1, 2, 3, 4}, we write

〈1, 𝐻2
𝑇 1
𝑐
𝑗〉 = 〈1, (𝐾2

𝑇 1
𝑐
− 𝜆𝑉 (𝑟)) 𝑗〉 + 〈1, (𝜆𝑉 (𝑟)𝜒 |𝑧2 |< |𝑟2 | + 𝜆𝑉 (𝑟1, 𝑧2)𝜒 |𝑟2 |< |𝑧2 | ) 𝑗〉 − 〈1, 𝜆𝑉 (𝑟1, 𝑧2) 𝑗〉.

(4.7)

We shall prove that

lim
𝜖→0

4∑
𝑗=1

〈1, (𝐾2
𝑇 1
𝑐
− 𝜆𝑉 (𝑟)) 𝑗〉 = 0, (4.8)

𝐿1 = lim
𝜖→0

4∑
𝑗=1

〈1, (𝑉 (𝑟)𝜒 |𝑧2 |< |𝑟2 | +𝑉 (𝑟1, 𝑧2)𝜒 |𝑟2 |< |𝑧2 | ) 𝑗〉, (4.9)

and

𝐿2 = − lim
𝜖→0

4∑
𝑗=1

〈1, 𝑉 (𝑟1, 𝑧2) 𝑗〉, (4.10)

where 𝐿1 and 𝐿2 are the expressions in equations (1.7) and (1.8). In particular, it follows that

lim
𝜖→0

〈𝜓 𝜖𝜆 ,𝑈𝐻
Ω2
𝑇 1
𝑐
𝑈†𝜓 𝜖𝜆 〉 = 𝜆(𝐿1 + 𝐿2).

4.1. Proof of (4.8):

We argue that all summands vanish as 𝜖 → 0.
j=1: We first show that

〈1, (𝐾2
𝑇 1
𝑐
− 𝜆𝑉 (𝑟))1〉 = 1

2𝜋

∫
R4

[
𝐵−1
𝑇 1
𝑐
(𝑝, (𝑞1, 𝑞2 + 𝜂)) − 𝐵−1

𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))

]
𝜖2

(𝜖2 + 𝑞2
2)2

|Φ̂𝜆 (𝑝, 𝑞1) |2d𝑝d𝑞.

(4.11)

Using eigenvalue equation 𝐾1
𝑇 1
𝑐
(𝜂)𝜒Ω̃1

Φ𝜆 = 𝜆𝑉 𝜒Ω̃1
Φ𝜆 together with the expressions (2.7) and (2.9) for

𝐾Ω1
𝑇 and 𝐾1

𝑇 (𝑞2), respectively, we observe that
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〈1, (𝐾2
𝑇 1
𝑐
− 𝜆𝑉 (𝑟))1〉

=
1

(2𝜋)4

∫
(Ω̃1×R)2×R3

Φ𝜆(𝑟, 𝑧1)𝑡 (𝑝1, 𝑞1, 𝑟1, 𝑧1)𝑒𝑖 𝑝2𝑟2

[ ∫
R

𝐵−1
𝑇 1
𝑐
(𝑝, 𝑞)𝑒𝑖 (𝜂−𝑞2) (𝑧′2−𝑧2)−𝜖 ( |𝑧2 |+ |𝑧′2 |)d𝑞2

− 𝐵−1
𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))𝑒−2𝜖 |𝑧2 |2𝜋𝛿(𝑧2 − 𝑧′2)

]
𝑡 (𝑝1, 𝑞1, 𝑟

′
1, 𝑧

′
1)𝑒

−𝑖 𝑝2𝑟
′
2Φ𝜆(𝑟 ′, 𝑧′1)d𝑟d𝑧d𝑟

′d𝑧′d𝑝d𝑞1

(4.12)

We shall carry out the 𝑟, 𝑟 ′, 𝑧, 𝑧′ integrations. Integration of 1
(2𝜋)3/2 𝑡 · 𝑒−𝑖 𝑝2𝑟2Φ𝜆 over 𝑟, 𝑧1 gives 1

2 Φ̂𝜆

(c.f. equation (3.4)), and for the integration over 𝑧2, 𝑧
′
2, we observe∫

R

𝑒𝑖 (𝜂−𝑞2)𝑧2−𝜖 |𝑧2 |d𝑧2 =
2𝜖

𝜖2 + (𝜂 − 𝑞2)2 ,

2𝜋
∫
R

𝑒−2𝜖 |𝑧2 | = 2𝜋𝜖−1 =
∫
R

4𝜖2

(𝜖2 + (𝜂 − 𝑞2)2)2 d𝑞2.

In total, we obtain

〈1, (𝐾2
𝑇 1
𝑐
− 𝜆𝑉 (𝑟))1〉 = 1

2𝜋

∫
R4

[
𝐵−1
𝑇 1
𝑐
(𝑝, 𝑞) − 𝐵−1

𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))

]
𝜖2

(𝜖2 + (𝜂 − 𝑞2)2)2 |Φ̂𝜆 (𝑝, 𝑞1) |2d𝑝d𝑞

(4.13)

and substituting 𝑞2 → 𝑞2 + 𝜂 we arrive at equation (4.11).
For |𝑞2 | > 1, using 𝐵−1

𝑇 (𝑝, 𝑞) ≤ �̃� (1+ 𝑝2 +𝑞2) (see Lemma 2.1), we bound the integrand in equation

(4.11) above by 𝐶𝜖 2 (1+𝑝2+𝑞2
1 )

𝑞2
2

|Φ̂𝜆 (𝑝, 𝑞1) |2. Since Φ𝜆 ∈ 𝐻1 (R3), the integral vanishes as 𝜖 → 0. For
|𝑞2 | < 1, substitute 𝑞2 → 𝜖𝑞2 and use that

𝑞−1
2 (𝐵−1

𝑇 1
𝑐
(𝑝, (𝑞1, 𝑞2 + 𝜂) − 𝐵−1

𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))) = − 𝑓 (𝑝, (𝑞1, 𝜂), 𝑞2)𝐵−1

𝑇 1
𝑐
(𝑝, (𝑞1, 𝑞2 + 𝜂)𝐵−1

𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂)),

where f is defined as in Lemma 2.2. The integral then equals

− 1
2𝜋

∫
R4
𝜒 |𝑞2 |<𝜖 −1 𝑓 (𝑝, (𝑞1, 𝜂), 𝜖𝑞2)𝐵−1

𝑇 1
𝑐
(𝑝, (𝑞1, 𝜖𝑞2 + 𝜂)𝐵−1

𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))

𝑞2

(1 + 𝑞2
2)2

|Φ̂𝜆 (𝑝, 𝑞1) |2d𝑝d𝑞.

(4.14)

By Lemma 2.2 and Lemma 2.1, the integrand is bounded above by the integrable function

𝐶 (1 + 𝑝2 + 𝑞2
1)

|𝑞2 |
(1 + 𝑞2

2)2
|Φ̂𝜆 (𝑝, 𝑞1) |2. (4.15)

Thus, by dominated convergence, continuity of f and 𝐵𝑇 and since
∫
R

𝑞2
(1+𝑞2

2 )2 d𝑞2 = 0, we have

lim𝜖→0〈1, 𝐾2
𝑇 1
𝑐
− 𝜆𝑉 (𝑟)1〉 = 0.

j=2: We distinguish the cases 𝜂(𝜆) = 0 and 𝜂(𝜆) ≠ 0. If 𝜂(𝜆) = 0, Φ𝜆(𝑟, 𝑧1) is either even or odd in
𝑟2. The term for 𝑗 = 2 hence agrees with the term for 𝑗 = 1 or its negative and hence vanishes in the
limit. For 𝜂(𝜆) ≠ 0, the intuition is that integration over 𝑧2, 𝑧

′
2 approximately gives a product of delta

functions 𝛿(𝑞2 − 𝜂)𝛿(𝑞2 + 𝜂) = 0. Using that the integral of 1
(2𝜋)3/2 𝑡 · 𝑒−𝑖 𝑝2𝑟2Φ𝜆 over 𝑟, 𝑧1 gives 1

2 Φ̂𝜆

https://doi.org/10.1017/fms.2024.145 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.145


Forum of Mathematics, Sigma 23

(see (3.4)) and 𝑒−𝑖 𝑝2𝑟2 = 𝑒−𝑖 (−𝑝2) (−𝑟2) we have

〈1, (𝐾2
𝑇 1
𝑐
− 𝜆𝑉 (𝑟))2〉

=
1

8𝜋

∫
R6

Φ̂𝜆 (𝑝, 𝑞1)𝐵−1
𝑇 1
𝑐
(𝑝, 𝑞)𝑒−𝑖 (𝜂−𝑞2)𝑧2−𝑖 (𝜂+𝑞2)𝑧′2−𝜖 ( |𝑧2 |+ |𝑧′2 |)Φ̂𝜆((𝑝1,−𝑝2), 𝑞1)d𝑧2d𝑧′2d𝑝d𝑞

−
∫
Ω̃1×R

Φ𝜆 (𝑟, 𝑧1)𝜆𝑉 (𝑟)Φ𝜆(𝑟1,−𝑟2, 𝑧1)𝑒−2𝑖𝜂𝑧2−2𝜖 |𝑧2 |d𝑟d𝑧. (4.16)

Carrying out the 𝑧2 and 𝑧′2 integrations gives

〈1, (𝐾2
𝑇 1
𝑐
− 𝜆𝑉 (𝑟))2〉

=
1

2𝜋

∫
R4

Φ̂𝜆 (𝑝, 𝑞1)𝐵−1
𝑇 1
𝑐
(𝑝, 𝑞) 𝜖2

(𝜖2 + (𝜂 − 𝑞2)2) (𝜖2 + (𝜂 + 𝑞2)2)
Φ̂𝜆 ((𝑝1,−𝑝2), 𝑞1)d𝑝d𝑞

−
∫
Ω̃1

Φ𝜆 (𝑟, 𝑧1)𝜆𝑉 (𝑟)Φ𝜆(𝑟1,−𝑟2, 𝑧1)
𝜖

𝜖2 + 𝜂2 d𝑟d𝑧1. (4.17)

Using the Schwarz inequality in the 𝑟2 variable, we bound the absolute value of the second term by
𝜖 𝜆
𝜂2

∫
Ω̃1
𝑉 (𝑟) |Φ𝜆 (𝑟, 𝑧1) |2d𝑟d𝑧1 ≤ 𝜖 𝜆

𝜂2 ‖𝑉 ‖1‖Φ𝜆‖2
𝐿∞

1 𝐿
2
2
. It was shown in Lemma 3.4 that ‖Φ𝜆‖𝐿∞

1 𝐿
2
2
< ∞

and hence the term vanishes for 𝜖 → 0. To bound the absolute value of the first term in equation (4.17),
we first use that 𝐵−1

𝑇 (𝑝, 𝑞) ≤ 𝐶 (1+ 𝑝2 +𝑞2) by Lemma 2.1 and the Schwarz inequality in the 𝑝2 variable
and then use symmetry to restrict to 𝑞2 > 0 and distinguish the cases |𝑞2 − 𝜂 | ≶ 𝜖 :

𝐶

∫
R4

𝜖2(1 + 𝑝2 + 𝑞2)
(𝜖2 + (𝜂 − 𝑞2)2) (𝜖2 + (𝜂 + 𝑞2)2)

|Φ̂𝜆 (𝑝, 𝑞1) |2d𝑝d𝑞

≤ 2𝐶
∫
R3

( ∫ ∞

0

[
𝜒 |𝑞2−𝜂 |<𝜖 (1 + 𝑝2 + 𝑞2)
(𝜂 − 𝑞2)2 + (𝜂 + 𝑞2)2 +

𝜒 |𝑞2−𝜂 |>𝜖 𝜖
2(1 + 𝑝2 + 𝑞2)

(𝜂 − 𝑞2)2(𝜂 + 𝑞2)2

]
d𝑞2

)
|Φ̂𝜆 (𝑝, 𝑞1) |2d𝑝d𝑞1.

(4.18)

There is a constant 𝐶 (𝜂) such that the first term in the square brackets is bounded above by
𝐶 (𝜂)𝜒 |𝑞2−𝜂 |<𝜖 (1 + 𝑝2 + 𝑞2

1), and the second term is bounded by 𝐶 (𝜂) 𝜒|𝑞2−𝜂 |>𝜖 𝜖
2 (1+𝑝2+𝑞2

1 )
(𝜂−𝑞2)2 . This gives

the upper bound

�̃�

( ∫ ∞

0

[
𝜒 |𝑞2−𝜂 |<𝜖 +

𝜒 |𝑞2−𝜂 |>𝜖 𝜖
2

(𝜂 − 𝑞2)2

]
d𝑞2

)
‖Φ𝜆‖2

𝐻 1 (R3) . (4.19)

The remaining integral is of order 𝑂 (𝜖) as 𝜖 → 0, and thus the term vanishes in the limit 𝜖 → 0.
j=3,4: Using the eigenvalue equation 𝐾1

𝑇 1
𝑐 (𝜆) (𝜂)𝜒Ω̃1

Φ𝜆 = 𝜆𝑉 𝜒Ω̃1
Φ𝜆 and that the integral of 1

(2𝜋)3/2 𝑡 ·
Φ𝜆 over the spatial variables gives 1

2 Φ̂𝜆 (see equation (3.4)), we have

|〈1, (𝐾2
𝑇 1
𝑐
− 𝜆𝑉 (𝑟)) 𝑗〉|

=
��� 1
8𝜋

∫
R6

Φ̂𝜆 (𝑝, 𝑞1)
(
𝐵−1
𝑇 1
𝑐
(𝑝, 𝑞) − 𝐵−1

𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))

)
𝑒−𝑖 (𝜂−𝑞2)𝑧2−𝑖 (∓𝜂+𝑝2)𝑟 ′2−𝜖 ( |𝑧2 |+ |𝑟 ′2 |)

× Φ̂𝜆((𝑝1,±𝑞2), 𝑞1)d𝑧2d𝑟 ′2d𝑝d𝑞
���, (4.20)

https://doi.org/10.1017/fms.2024.145 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.145


24 B. Roos and R. Seiringer

where the upper signs correspond to 𝑗 = 3 and the lower ones to 𝑗 = 4, respectively. Carrying out the
integration over 𝑟 ′2 and 𝑧2 and substituting 𝑞2 → 𝜖𝑞2 + 𝜂, 𝑝2 → 𝜖 𝑝2 ± 𝜂 we obtain

|〈1, (𝐾2
𝑇 1
𝑐
− 𝜆𝑉 (𝑟)) 𝑗〉|

=
��� 1
2𝜋

∫
R4

Φ̂𝜆((𝑝1, 𝜖 𝑝2 ± 𝜂), 𝑞1)
1

1 + 𝑝2
2

1
1 + 𝑞2

2

[
𝐵−1
𝑇 1
𝑐
((𝑝1, 𝜖 𝑝2 ± 𝜂), (𝑞1, 𝜖𝑞2 + 𝜂))

− 𝐵−1
𝑇 1
𝑐
((𝑝1, 𝜖 𝑝2 ± 𝜂), (𝑞1, 𝜂))

]
Φ̂𝜆 ((𝑝1,±(𝜖𝑞2 + 𝜂)), 𝑞1)d𝑝d𝑞

���. (4.21)

With the definition of 𝑔± as in Lemma 3.6, the latter equals��� 1
2𝜋

∫
R2

𝑔±(𝜖 𝑝2 ± 𝜂, 𝜖𝑞2 + 𝜂)
(1 + 𝑝2

2) (1 + 𝑞2
2)

d𝑝2d𝑞2

���. (4.22)

With Lemma 3.6, it follows by dominated convergence that lim𝜖→0〈1, (𝐾2
𝑇 1
𝑐
− 𝜆𝑉 (𝑟)) 𝑗〉 = 0.

4.2. Proof of equation (5.9):

We have

4∑
𝑗=1

〈1, (𝑉 (𝑟)𝜒 |𝑧2 |< |𝑟2 | +𝑉 (𝑟1, 𝑧2)𝜒 |𝑟2 |< |𝑧2 | ) 𝑗〉 =
∫
Ω̃1×R

(𝑉 (𝑟)𝜒 |𝑧2 |< |𝑟2 | +𝑉 (𝑟1, 𝑧2)𝜒 |𝑟2 |< |𝑧2 | )Φ𝜆(𝑟, 𝑧1)

×
(
Φ𝜆(𝑟, 𝑧1)𝑒−2𝜖 |𝑧2 | +Φ𝜆(𝑟1,−𝑟2, 𝑧1)𝑒−2𝜖 |𝑧2 |−2𝑖𝜂𝑧2 ∓Φ𝜆(𝑟1, 𝑧2, 𝑧1)𝑒−𝜖 ( |𝑟2 |+ |𝑧2 |)−𝑖𝜂 (𝑧2−𝑟2)

∓Φ𝜆(𝑟1,−𝑧2, 𝑧1)𝑒−𝜖 ( |𝑟2 |+ |𝑧2 |)−𝑖𝜂 (𝑧2+𝑟2)
)
d𝑟d𝑧. (4.23)

The claim follows from dominated convergence provided that∫
R4
(𝑉 (𝑟)𝜒 |𝑧2 |< |𝑟2 | +𝑉 (𝑟1, 𝑧2)𝜒 |𝑟2 |< |𝑧2 | ) |Φ𝜆(𝑟, 𝑧1) |

(
|Φ𝜆 (𝑟, 𝑧1) | + |Φ𝜆 (𝑟1,−𝑟2, 𝑧1) |

+ |Φ𝜆 (𝑟1, 𝑧2, 𝑧1) | + |Φ𝜆 (𝑟1,−𝑧2, 𝑧1) |
)
d𝑟d𝑧 (4.24)

is finite. Using the Schwarz inequality in 𝑧1 and carrying out the integration over 𝑧2, this is bounded
above by

4
∫
R3
(𝑉 (𝑟)𝜒 |𝑧2 |< |𝑟2 | +𝑉 (𝑟1, 𝑧2)𝜒 |𝑟2 |< |𝑧2 | ) ‖Φ𝜆‖𝐿∞

1 𝐿
2
2
d𝑟d𝑧2 ≤ 16

∫
R2
𝑉 (𝑟) |𝑟2 |d𝑟 ‖Φ𝜆‖𝐿∞

1 𝐿
2
2
. (4.25)

This is finite since ‖Φ𝜆‖𝐿∞
1 𝐿

2
2
< ∞ was shown in Lemma 3.4 and | · |𝑉 ∈ 𝐿1 by assumption.

4.3. Proof of equation (4.10):

j=1,2: We have

〈1, 𝑉 (𝑟1, 𝑧2)1〉 =
∫
Ω̃1×R

𝑉 (𝑟1, 𝑧2) |Φ𝜆(𝑟, 𝑧1) |2𝑒−2𝜖 |𝑧2 |d𝑟d𝑧 (4.26)

and

〈1, 𝑉 (𝑟1, 𝑧2)2〉 =
∫
Ω̃1×R

𝑉 (𝑟1, 𝑧2)Φ𝜆(𝑟, 𝑧1)Φ𝜆(𝑟1,−𝑟2, 𝑧1)𝑒−2𝜖 |𝑧2 |−2𝑖𝜂𝑧2 d𝑟d𝑧. (4.27)
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In both cases, we can apply dominated convergence since𝑉 (𝑟1, 𝑧2) |Φ𝜆(𝑟, 𝑧1) |2 ∈ 𝐿1 (R4) by Lemma 3.5
(and using additionally the Schwarz inequality in the second case) and obtain the first two terms in 𝐿2.

j=3,4: We start with the case of Neumann boundary conditions. Rewriting the expression in momen-
tum space, we have

〈1, 𝑉 (𝑟1, 𝑧2) 𝑗〉 =
∫
R4
𝑉 (𝑟1, 𝑧2)𝜒Ω̃1

Φ𝜆(𝑟, 𝑧1)Φ𝜆 (𝑟1,±𝑧2, 𝑧1)𝑒−𝜖 |𝑧2 |−𝑖𝜂𝑧2𝑒−𝜖 |𝑟2 |±𝑖𝜂𝑟2 d𝑟d𝑧

=
2
𝜋

∫
R4

Φ̂𝜆(𝑝, 𝑞1) 𝜒Ω̃1
	𝑉 Φ𝜆(𝑝1, 𝑝

′
2, 𝑞1)

𝜖2

(𝜖2 + (𝑝2 ∓ 𝜂)2) (𝜖2 + (𝑝′2 ∓ 𝜂)2)
d𝑝1d𝑝2d𝑝′2d𝑞1

=
2
𝜋

∫
R2
𝑔0(𝜖 𝑝2 ± 𝜂, 𝜖 𝑝′2 ± 𝜂)

1
(1 + 𝑝2

2) (1 + 𝑝′22 )
d𝑝2d𝑝′2, (4.28)

where the upper/lower signs correspond to 𝑗 = 3 and 𝑗 = 4, respectively, and 𝑔0 is defined as in
Lemma 3.6. It follows from Lemma 3.6, dominated convergence and

∫
R

1
1+𝑥2 d𝑥 = 𝜋 that

lim
𝜖→0

〈1, 𝑉 (𝑟1, 𝑧2) 𝑗〉 = 2𝜋𝑔0 (±𝜂,±𝜂). (4.29)

For Dirichlet boundary conditions, this comes with a minus sign.

5. Weak coupling asymptotics

In this section, we shall prove Lemma 1.10. We prove the desired asymptotic bounds 𝐿1 = 𝑂 (1) and
𝐿2 ≤ −𝐶/𝜆 as 𝜆 → 0 in Sections 5.1 and 5.2, respectively.

5.1. Asymptotics of 𝐿1

We recall the definition of 𝐿1

𝐿1 =
∫
Ω̃1×R

𝜒 |𝑧2 |< |𝑟2 |𝑉 (𝑟)
(
|Φ𝜆 (𝑟1, 𝑟2, 𝑧1) |2 + |Φ𝜆 (𝑟1, 𝑧2, 𝑧1) |2

+Φ𝜆(𝑟1, 𝑟2, 𝑧1)Φ𝜆(𝑟1,−𝑟2, 𝑧1)𝑒−2𝑖𝜂 (𝜆)𝑧2 +Φ𝜆(𝑟1, 𝑧2, 𝑧1)Φ𝜆(𝑟1,−𝑧2, 𝑧1)𝑒−2𝑖𝜂 (𝜆)𝑟2

∓Φ𝜆(𝑟1, 𝑟2, 𝑧1)Φ𝜆(𝑟1, 𝑧2, 𝑧1)𝑒𝑖𝜂 (𝜆) (𝑟2−𝑧2) ∓Φ𝜆(𝑟1, 𝑧2, 𝑧1)Φ𝜆(𝑟1, 𝑟2, 𝑧1)𝑒−𝑖𝜂 (𝜆) (𝑟2−𝑧2)

∓Φ𝜆(𝑟1, 𝑟2, 𝑧1)Φ𝜆(𝑟1,−𝑧2, 𝑧1)𝑒−𝑖𝜂 (𝜆) (𝑟2+𝑧2) ∓Φ𝜆(𝑟1, 𝑧2, 𝑧1)Φ𝜆 (𝑟1,−𝑟2, 𝑧1)𝑒𝑖𝜂 (𝜆) (−𝑟2+𝑧2)

)
d𝑟d𝑧.

(5.1)

The goal is to show that 𝐿1 is of order 𝑂 (1) as 𝜆 → 0. By the Schwarz inequality, it suffices to
prove that

∫
Ω̃1×R

𝜒 |𝑧2 |< |𝑟2 |𝑉 (𝑟) (|Φ𝜆 (𝑟1, 𝑟2, 𝑧1) |2 + |Φ𝜆 (𝑟1, 𝑧2, 𝑧1) |2)d𝑟d𝑧 = 𝑂 (1). Furthermore, since
Φ𝜆 = Φ𝑑

𝜆 ∓ Φ𝑒𝑥,<
𝜆 ∓ Φ𝑒𝑥,>

𝜆 (see equations (3.6) and (3.7) for the definitions), again by the Schwarz
inequality it suffices to prove∫

Ω̃1×R
𝜒 |𝑧2 |< |𝑟2 |𝑉 (𝑟) |Φ

𝑗
𝜆(𝑟1, 𝑟2, 𝑧1) |2d𝑟d𝑧 = 𝑂 (1) (5.2)

and ∫
Ω̃1×R

𝜒 |𝑧2 |< |𝑟2 |𝑉 (𝑟) |Φ
𝑗
𝜆 (𝑟1, 𝑧2, 𝑧1) |2d𝑟d𝑧 = 𝑂 (1) (5.3)

for 𝑗 ∈ {𝑑, (𝑒𝑥, <), (𝑒𝑥, >)}.
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Case 𝑗 ∈ {𝑑, (𝑒𝑥, >)}: In Lemma 3.4, we show that sup𝑟 ∈R2

∫
R
|Φ 𝑗

𝜆(𝑟, 𝑧1) |2d𝑧1 = 𝑂 (1). Both
equations (5.2) and (5.3) follow since | · |𝑉 ∈ 𝐿1.

Case 𝑗 = (𝑒𝑥, <): Let𝑊1 (𝑟) := 2|𝑟2 |𝑉 (𝑟) and𝑊2(𝑟) :=
∫
R
𝑉 (𝑟1, 𝑧2)𝜒 |𝑟2 |< |𝑧2 |d𝑧2. We have𝑊1,𝑊2 ∈

𝐿1 (R2). Note that∫
Ω̃1×R

𝜒 |𝑧2 |< |𝑟2 |𝑉 (𝑟) |Φ
𝑒𝑥,<
𝜆 (𝑟1, 𝑟2, 𝑧1) |2d𝑟d𝑧 =

∫
Ω̃1

𝑊1(𝑟) |Φ𝑒𝑥,<
𝜆 (𝑟1, 𝑟2, 𝑧1) |2d𝑟d𝑧1 (5.4)

and ∫
Ω̃1×R

𝜒 |𝑧2 |< |𝑟2 |𝑉 (𝑟) |Φ
𝑒𝑥,<
𝜆 (𝑟1, 𝑧2, 𝑧1) |2d𝑟d𝑧 =

∫
Ω̃1

𝑊2(𝑟) |Φ𝑒𝑥,<
𝜆 (𝑟1, 𝑟2, 𝑧1) |2d𝑟d𝑧1, (5.5)

where we renamed 𝑧2 ↔ 𝑟2. For any 𝐿1-function𝑊 ≥ 0, we have(∫
Ω̃1

𝑊 (𝑟) |Φ𝑒𝑥,<
𝜆 (𝑟1, 𝑟2, 𝑧1) |2d𝑟d𝑧1

)1/2

= ‖𝑊1/2Φ𝑒𝑥,<
𝜆 ‖2 = sup

𝜓∈𝐿2 (Ω̃1) , ‖𝜓 ‖2=1
|〈𝜓,𝑊1/2Φ𝑒𝑥,<

𝜆 〉|

≤
√

2𝜆 sup
𝜓1 ,𝜓2∈𝐿2 (R3) , ‖𝜓1 ‖=‖𝜓2 ‖=1

∫
R3

��	𝑊1/2𝜓1(𝑝, 𝑞1)𝐵𝑇 1
𝑐
(𝑝, (𝑞1, 𝜂))𝜒𝑝2

2<2𝜇

× �𝑉1/2𝜓2 ((𝑞1, 𝑝2), 𝑝1)
��d𝑝d𝑞1, (5.6)

where we used the definition of Φ𝑒𝑥,<
𝜆 (see equation (3.7)) and the normalization ‖Ψ𝜆‖ = 1 in the

last step. We bound |	𝑊1/2𝜓1(𝑝, 𝑞1) | ≤ ‖𝑊 ‖1/2
1 ‖𝐹2𝜓1(·, 𝑞1)‖2, and similarly for | �𝑉1/2𝜓2(𝑝, 𝑞1) |. Thus,

equation (5.6) is bounded above by
√

2𝜆‖𝑊 ‖1/2
1 ‖𝑉 ‖1/2

1 ‖𝐵𝑒𝑥𝑇 (𝜂)‖, (5.7)

where 𝐵𝑒𝑥𝑇 (𝑞2) is the operator on 𝐿2 (R) with integral kernel

𝐵𝑒𝑥𝑇 (𝑞2) (𝑝1, 𝑞1) =
∫
R

𝐵𝑇 (𝑝, 𝑞)𝜒𝑝2
2<2𝜇d𝑝2. (5.8)

It was shown in [16, Proof of Lemma 6.1] (see equation (5.16) and rest of argument), that

sup
𝑇

sup
𝑞2

‖𝐵𝑒𝑥𝑇 (𝑞2)‖ < ∞. (5.9)

In particular, we conclude that
∫
Ω̃1
𝑊𝑘 (𝑟) |Φ𝑒𝑥,<

𝜆 (𝑟1, 𝑟2, 𝑧1) |2d𝑟d𝑧1 = 𝑂 (𝜆2) for 𝑘 ∈ {1, 2}.

5.2. Asymptotics of 𝐿2

Recall that

𝐿2 = −
∫
Ω̃1×R

𝑉 (𝑟)
(
|Φ𝜆 (𝑟1, 𝑧2, 𝑧1) |2 +Φ𝜆(𝑟1, 𝑧2, 𝑧1)Φ𝜆(𝑟1,−𝑧2, 𝑧1)𝑒−2𝑖𝜂 (𝜆)𝑟2

)
d𝑟d𝑧

∓ 2𝜋
∫
R2

(
Φ̂𝜆 (𝑝1, 𝜂(𝜆), 𝑞1) 𝜒Ω̃1

	𝑉 Φ𝜆 (𝑝1, 𝜂(𝜆), 𝑞1) + Φ̂𝜆(𝑝1,−𝜂(𝜆), 𝑞1) 𝜒Ω̃1
	𝑉 Φ𝜆(𝑝1,−𝜂(𝜆), 𝑞1)

)
d𝑝1d𝑞1.

(5.10)
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The goal is to prove that 𝐿2 diverges like −𝜆−1 to negative infinity as 𝜆 → 0. We shall prove that the
second line in equation (5.10) is of order 𝑂 (1) as 𝜆 → 0. For the first line in equation (5.10), we shall
prove that it is bounded above by −𝑐𝜆−1 for some 𝑐 > 0 as 𝜆 → 0.

Second line of equation (5.10): Let 𝜉 ∈ {𝜂,−𝜂}. Consider the expression

��� ∫
R2

Φ̂𝜆(𝑝1, 𝜉, 𝑞1) 𝜒Ω̃1
	𝑉 Φ𝜆 (𝑝1, 𝜉, 𝑞1)d𝑝1d𝑞1

���
which agrees with |𝑔0 (𝜉, 𝜉) | in equation (3.8). Recalling the expression for 𝑔0 in equation (3.40) involving
𝐿0 and S defined at the beginning of Section 3.4, we have

��� ∫
R2

Φ̂𝜆 (𝑝1, 𝜉, 𝑞1) 𝜒Ω̃1
	𝑉 Φ𝜆(𝑝1, 𝜉, 𝑞1)d𝑝1d𝑞1

���
≤ 𝜆

∫
R2
(| 𝜒Ω̃1
	𝑉 Φ𝜆 (𝑝1, 𝜉, 𝑞1) | + | 𝜒Ω̃1

	𝑉 Φ𝜆(−𝑝1, 𝜉,−𝑞1) |

+ | 𝜒Ω̃1
	𝑉 Φ𝜆(𝑞1, 𝜉, 𝑝1) |) + | 𝜒Ω̃1

	𝑉 Φ𝜆 (−𝑞1, 𝜉,−𝑝1) |)𝐵𝑇 1
𝑐
((𝑝1, 𝜉), (𝑞1, 𝜂)) | 𝜒Ω̃1

	𝑉 Φ𝜆 (𝑝1, 𝜉, 𝑞1) |d𝑝1d𝑞1.

(5.11)

Using the Schwarz inequality and | 𝜒Ω̃1
	𝑉 Φ𝜆(𝑝1, 𝜉, 𝑞1) | ≤ ‖ 𝜒Ω̃1

	𝑉 Φ𝜆(·, 𝑞1)‖∞ this is bounded above by

4𝜆
∫
R2
𝐵𝑇 1

𝑐
((𝑝1, 𝜉), (𝑞1, 𝜂))‖ 𝜒Ω̃1

	𝑉 Φ𝜆(·, 𝑞1)‖2
∞d𝑝1d𝑞1

≤ 4𝜆 sup
𝑞1∈R

∫
R

𝐵𝑇 1
𝑐
((𝑝1, 𝜉), (𝑞1, 𝜂))d𝑝1‖ 𝜒Ω̃1

	𝑉 Φ𝜆‖2
𝐿2

2 (R)𝐿
∞
1 (R2) , (5.12)

where in the second step we used that
∫
R
𝐵𝑇 1

𝑐
((𝑝1, 𝜉), (𝑞1, 𝜂))d𝑝1 acts as multiplication opera-

tor on ‖ 𝜒Ω̃1
	𝑉 Φ𝜆(·, 𝑞1)‖∞. Using the bound on the mixed Lebesgue norm in Lemma 3.3 and since

‖𝑉1/2𝜒Ω̃1
Φ𝜆‖2 = 1, we have ‖ 𝜒Ω̃1

	𝑉 Φ𝜆‖2
𝐿2

2 (R)𝐿
∞
1 (R2) ≤ ‖𝑉 ‖1. The following lemma together with the

weak coupling asymptotics of 𝑇1
𝑐 (𝜆) and 𝜂(𝑇) in Remark 3.1 and Lemma 3.2(1) imply that equation

(5.12) is of order 𝑂 (1).

Lemma 5.1. Let 𝜉 (𝑇), 𝜉 ′(𝑇) be functions of T with lim𝑇→0 𝜉 (𝑇) = lim𝑇→0 𝜉
′(𝑇) = 0. Then as 𝑇 → 0,

sup
𝑞1

∫
R

𝐵𝑇 ((𝑝1, 𝜉 (𝑇)), (𝑞1, 𝜉
′(𝑇)))d𝑝1 = 𝑂 (ln 𝜇/𝑇). (5.13)

The proof can be found in Section 7.4.
First line of equation (5.10): Recall from Section 4 that Φ𝜆 = Φ>

𝜆 + Φ𝑑,<
𝜆 ∓ Φ𝑒𝑥,<

𝜆 . We
show in Lemma 3.5 that the 𝐿2-norms of 𝑉1/2(𝑟)Φ>

𝜆 (𝑟1, 𝑧2, 𝑧1), 𝑉1/2(𝑟)Φ𝑑,<
𝜆 (𝑟1, 𝑧2, 𝑧1), and

𝑉1/2 (𝑟)Φ𝑒𝑥,<
𝜆 (𝑟1, 𝑧2, 𝑧1) are of order 𝑂 (𝜆), 𝑂 (𝜆−1/2), and 𝑂 (𝜆1/2), respectively. It follows with the

Schwarz inequality that the first line of 𝐿2 in equation (5.10) equals

−
∫
Ω̃1×R

𝑉 (𝑟)
(
|Φ𝑑,<

𝜆 (𝑟1, 𝑧2, 𝑧1) |2 +Φ𝑑,<
𝜆 (𝑟1, 𝑧2, 𝑧1)Φ𝑑,<

𝜆 (𝑟1,−𝑧2, 𝑧1)𝑒−2𝑖𝜂 (𝜆)𝑟2

)
d𝑟d𝑧 +𝑂 (1) (5.14)
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Note that Φ𝑑,<
𝜆 (𝑟1, 𝑧2, 𝑧1) = Φ𝑑,<

𝜆 (−𝑟1, 𝑧2,−𝑧1). We rewrite the expression in equation (5.14) as

− 1
2

∫
R4
𝑉 (𝑟)Φ𝑑,<

𝜆 (𝑟1, 𝑧2, 𝑧1)
(
Φ𝑑,<
𝜆 (𝑟1, 𝑧2, 𝑧1) +Φ𝑑,<

𝜆 (𝑟1,−𝑧2, 𝑧1)𝑒−2𝑖𝜂 (𝜆)𝑟2

)
𝜒 |𝑟1 |< |𝑧1 |d𝑟d𝑧

= −1
2

∫
R4
𝑉 (𝑟)Φ𝑑,<

𝜆 (𝑟1, 𝑧2, 𝑧1)
(
Φ𝑑,<
𝜆 (𝑟1, 𝑧2, 𝑧1) +Φ𝑑,<

𝜆 (𝑟1,−𝑧2, 𝑧1)𝑒−2𝑖𝜂 (𝜆)𝑟2

)
d𝑟d𝑧

+ 1
2

∫
R4
𝑉 (𝑟)Φ𝑑,<

𝜆 (𝑟1, 𝑧2, 𝑧1)
(
Φ𝑑,<
𝜆 (𝑟1, 𝑧2, 𝑧1) +Φ𝑑,<

𝜆 (𝑟1,−𝑧2, 𝑧1)𝑒−2𝑖𝜂 (𝜆)𝑟2

)
𝜒 |𝑧1 |< |𝑟1 |d𝑟d𝑧. (5.15)

We first consider the last line in equation (5.15) with the restriction to |𝑧1 | < |𝑟1 |. We prove that this
term is of order𝑂 (1) as 𝜆 → 0. Second, we will prove that the expression on the second line in equation
(5.15) is bounded above by −𝑐𝜆−1 for some constant 𝑐 > 0 as 𝜆 → 0.

Asymptotics of third line in equation (5.15): Define𝑊 ∈ 𝐿1 (R3) by𝑊 (𝑟, 𝑧1) := 𝑉 (𝑟)𝜒 |𝑧1 |< |𝑟1 | . By
the Schwarz inequality, it suffices to prove that

∫
R4 𝑊 (𝑟, 𝑧1) |Φ𝑑,<

𝜆 (𝑟1, 𝑧2, 𝑧1) |2d𝑟d𝑧 = 𝑂 (1) for 𝜆 → 0.
Using the definition of Φ𝑑,<

𝜆 , we have∫
R4
𝑊 (𝑟, 𝑧1) |Φ𝑑,<

𝜆 (𝑟1, 𝑧2, 𝑧1) |2d𝑟d𝑧

=
2𝜆2

(2𝜋)1/2

∫
R5
𝑊 ((𝑝1 − 𝑝′1, 0), 𝑞1 − 𝑞′1)𝐵𝑇 1

𝑐
(𝑝, (𝑞1, 𝜂))

× 	𝑉1/2Ψ𝜆(𝑝, 𝑞1)𝐵𝑇 1
𝑐
((𝑝′1, 𝑝2), (𝑞′1, 𝜂))	𝑉1/2Ψ𝜆(𝑝′1, 𝑝2, 𝑞

′
1)𝜒𝑝2+𝑞2

1<2𝜇𝜒𝑝′2
1 +𝑝2

2+𝑞
′2
1 <2𝜇d𝑝d𝑝′1d𝑞1d𝑞′1.

(5.16)

Using |𝑊 (𝑝, 𝑞1) | ≤ ‖𝑊 ‖1
(2𝜋)3/2 and ‖	𝑉1/2Ψ𝜆(·, 𝑞1)‖∞ ≤ ‖𝑉 ‖1/2

1 ‖𝐹2Ψ𝜆(·, 𝑞1)‖2, we bound this from
above by

𝜆2

2𝜋2 ‖𝑊 ‖1‖𝑉 ‖1

∫
R5
𝐵𝑇 1

𝑐
(𝑝, (𝑞1, 𝜂))𝐵𝑇 1

𝑐
((𝑝′1, 𝑝2), (𝑞′1, 𝜂))𝜒𝑝2+𝑞2

1<2𝜇𝜒𝑝′2
1 +𝑝2

2+𝑞
′2
1 <2𝜇

× ‖𝐹2Ψ𝜆(·, 𝑞1)‖2‖𝐹2Ψ𝜆(·, 𝑞′1)‖2d𝑝d𝑝′1d𝑞1d𝑞′1

≤ 𝜆2

2𝜋2 ‖𝑊 ‖1‖𝑉 ‖1

[
sup

𝑞1 ,𝑞
′
1∈R

∫
R3
𝐵𝑇 1

𝑐
(𝑝, (𝑞1, 𝜂))𝐵𝑇 1

𝑐
((𝑝′1, 𝑝2), (𝑞′1, 𝜂))𝜒𝑝′2

1 +𝑞′2
1 +𝑝2

2<2𝜇𝜒𝑝2+𝑞2
1<2𝜇d𝑝d𝑝′1

]
×

( ∫
R

‖𝐹2Ψ𝜆(·, 𝑞1)‖2𝜒𝑞2
1<2𝜇d𝑞1

)2
. (5.17)

The integral over the product of the two 𝐵𝑇 1
𝑐

terms is of order𝑂 ((ln 𝜇/𝑇1
𝑐 (𝜆))3) by Lemma 3.7. Together

with the asymptotics of 𝑇1
𝑐 (𝜆) in Remark 3.1, the term in the square bracket in equation (5.17) is thus

of order 𝑂 (𝜆−3). Splitting the domain of integration into |𝑞1 |/
√
𝜇 ≷ (𝑇1

𝑐 /𝜇)𝛽 for some 0 < 𝛽 < 1 and
using the Schwarz inequality, we observe that∫

R

‖𝐹2Ψ𝜆(·, 𝑞1)‖2𝜒𝑞2
1<2𝜇d𝑞1 ≤ (2√𝜇(𝑇1

𝑐 /𝜇)𝛽)1/2‖Ψ𝜆‖2 + (2
√

2𝜇)1/2‖𝐹2Ψ𝜆𝜒 |𝑞1 |/
√
𝜇> (𝑇 1

𝑐 /𝜇)𝛽 ‖2.

(5.18)

It was shown in Lemma 3.2(3) that ‖𝐹2Ψ𝜆𝜒 |𝑞1 |/
√
𝜇> (𝑇 1

𝑐 /𝜇)𝛽 ‖2 = 𝑂 (𝜆1/2). With the asymptotics of 𝑇1
𝑐 (𝜆)

in Remark 3.1, we have (𝑇1
𝑐 /𝜇)𝛽/2 ≤ 𝑂 ((ln 𝜇/𝑇1

𝑐 )−1) = 𝑂 (𝜆). Thus,
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( ∫
R

‖𝐹2Ψ𝜆(·, 𝑞1)‖2𝜒𝑞2
1<2𝜇d𝑞1

)2
= 𝑂 (𝜆)

and equation (5.17) is of order 𝑂 (1).
Asymptotics of second line in equation (5.15): Writing out the definition of Φ𝑑,<

𝜆 , we have∫
R4
𝑉 (𝑟)Φ𝑑,<

𝜆 (𝑟1, 𝑧2, 𝑧1)Φ𝑑,<
𝜆 (𝑟1,−𝑧2, 𝑧1)𝑒−2𝑖𝜂 (𝜆)𝑟2 d𝑟d𝑧 = 2𝜆2

∫
R4
𝑉 (𝑝1 + 𝑝′1, 2𝜂)𝐵𝑇 1

𝑐
(𝑝, (𝑞1, 𝜂))

× 	𝑉1/2Ψ𝜆(𝑝, 𝑞1)𝐵𝑇 1
𝑐
((𝑝′1, 𝑝2), (𝑞1, 𝜂))	𝑉1/2Ψ𝜆(𝑝′1, 𝑝2, 𝑞1)𝜒𝑝2+𝑞2

1<2𝜇𝜒𝑝′2
1 +𝑝2

2+𝑞
2
1<2𝜇d𝑝d𝑝′1d𝑞1. (5.19)

We can thus write

1
2

∫
R4
𝑉 (𝑟)Φ<,𝑑

𝜆 (𝑟1, 𝑧2, 𝑧1)
(
Φ<,𝑑
𝜆 (𝑟1, 𝑧2, 𝑧1) +Φ<,𝑑

𝜆 (𝑟1,−𝑧2, 𝑧1)𝑒−2𝑖𝜂 (𝜆)𝑟2
)
d𝑟d𝑧 = 〈𝐹2Ψ𝜆, 𝑀𝜆𝐹2Ψ𝜆〉,

(5.20)

where 𝑀𝜆 is the operator acting on 𝐿2 (R3) given by

〈𝜓, 𝑀𝜆𝜓〉 = 𝜆2
∫
R4
(𝑉 (𝑝1 − 𝑝′1, 0) +𝑉 (𝑝1 + 𝑝′1, 2𝜂))𝐵𝑇 1

𝑐
(𝑝, (𝑞1, 𝜂))𝐹1𝑉1/2𝜓(𝑝, 𝑞1)𝜒𝑝2+𝑞2

1<2𝜇

× 𝐵𝑇 1
𝑐
((𝑝′1, 𝑝2), (𝑞1, 𝜂))𝜒𝑝′2

1 +𝑝2
2+𝑞

2
1<2𝜇𝐹1𝑉

1/2𝜓(𝑝′1, 𝑝2, 𝑞1)d𝑝d𝑝′1d𝑞1. (5.21)

By the same argument as in the proof of
∫
R4 𝑉 (𝑟) |Φ𝑑,<

𝜆 (𝑟1, 𝑧2, 𝑧1) |2d𝑟d𝑧 = 𝑂 (𝜆−1) in Lemma 3.5 (see
equation (3.31)), we have ‖𝑀𝜆‖ = 𝑂 (𝜆−1). Recall the projections P and Q𝛽 from Section 4. Let T be
the projection T = PQ𝛽 for some 0 < 𝛽 < 1 and T⊥ = 1 − T. We have

〈𝐹2Ψ𝜆, 𝑀𝜆𝐹2Ψ𝜆〉 = 〈T𝐹2Ψ𝜆, 𝑀𝜆T𝐹2Ψ𝜆〉 + 〈T𝐹2Ψ𝜆, 𝑀𝜆T
⊥𝐹2Ψ𝜆〉 + 〈T⊥𝐹2Ψ𝜆, 𝑀𝜆𝐹2Ψ𝜆〉. (5.22)

Since P and Q𝛽 commute, we have ‖T⊥𝐹2Ψ𝜆‖ = ‖Q⊥
𝛽𝐹2Ψ𝜆 + Q𝛽P⊥𝐹2Ψ𝜆‖ = 𝑂 (𝜆1/2) according to

the asymptotics for ‖Q⊥𝐹2Ψ𝜆‖ and ‖P⊥𝐹2Ψ𝜆‖ proved in Lemma 3.2(2) and equation (3). In particular,
the last two terms in equation (5.22) are of order 𝑂 (𝜆−1/2). The remaining term in equation (5.22) is
bounded below by

〈T𝐹2Ψ𝜆, 𝑀𝜆T𝐹2Ψ𝜆〉

≥ inf
|𝑞1 |/

√
𝜇< (𝑇 1

𝑐 /𝜇)𝛽
𝜆2

∫
R3
(𝑉 (𝑝1 − 𝑝′1, 0) +𝑉 (𝑝1 + 𝑝′1, 2𝜂))𝐵𝑇 1

𝑐
((𝑝1, 𝑝2), (𝑞1, 𝜂))𝑉 𝑗2(𝑝)𝜒𝑝2+𝑞2

1<2𝜇

× 𝐵𝑇 1
𝑐
((𝑝′1, 𝑝2), (𝑞1, 𝜂))𝜒𝑝′2

1 +𝑝2
2+𝑞

2
1<2𝜇𝑉 𝑗2 (𝑝′1, 𝑝2)d𝑝d𝑝′1‖T𝐹2Ψ𝜆‖2

2 ‖𝑉
1/2 𝑗2‖−2

2 . (5.23)

The remainder of the proof follows the same ideas as the proof of [16, Lemma 4.11]. Since 𝑉 ≥ 0, we
have 𝑉 (0) > 0. Furthermore, the eigenvalue equation 𝑒𝜇𝑉1/2 𝑗2 = 𝑂𝜇𝑉

1/2 𝑗2 = 𝑉 𝑗2 (|𝑝 | =
√
𝜇)𝑉1/2 𝑗2

implies that 𝑉 𝑗2(|𝑝 | =
√
𝜇) = 𝑒𝜇 > 0. By continuity of 𝑉 and 𝑉 𝑗2 and since 𝜂(𝜆) → 0 for 𝜆 → 0 (see

Lemma 3.2(1)), there exist �̃� > 0, 0 < 𝛿 < 𝜇 and 𝑐1 > 0 such that for all
√
𝜇 − 𝛿 < 𝑝2 <

√
𝜇 + 𝛿, 𝑝2

1 <

4𝛿, 𝑝′2
1 < 4𝛿 and 𝜆 < �̃� we have

(𝑉 (𝑝1 − 𝑝′1, 0) +𝑉 (𝑝1 + 𝑝′1, 2𝜂))𝑉 𝑗2(𝑝)𝑉 𝑗2(𝑝
′
1, 𝑝2)𝜒𝑝2+𝑞2

1<2𝜇𝜒𝑝′2
1 +𝑝2

2+𝑞
2
1<2𝜇 ‖𝑉1/2 𝑗2‖−2

2 > 𝑐1.

(5.24)

Using the second part of Lemma 3.7 and the boundedness of 𝑉,𝑉 𝑗2, it follows that up to an error
of order 𝑂 (𝜆2(ln 𝜇/𝑇1

𝑐 )5/2) = 𝑂 (𝜆−1/2) we may restrict the domain of integration in equation (5.23) to
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√
𝜇 − 𝛿 < 𝑝2 <

√
𝜇 + 𝛿, 𝑝2

1 < 4𝛿, 𝑝′2
1 < 4𝛿. Since ‖T𝐹2Ψ𝜆‖2

2 = 1 −𝑂 (𝜆) ≥ 1
2 for small 𝜆, we obtain

〈T𝐹2Ψ𝜆, 𝑀𝜆T𝐹2Ψ𝜆〉 ≥
𝑐1
2

inf
|𝑞1 |/

√
𝜇< (𝑇 1

𝑐 /𝜇)𝛽
𝜆2

∫
R3
𝐵𝑇 1

𝑐
((𝑝1, 𝑝2), (𝑞1, 𝜂))

× 𝐵𝑇 1
𝑐
((𝑝′1, 𝑝2), (𝑞1, 𝜂))𝜒𝜇−𝛿<𝑝2

2<𝜇+𝛿
𝜒𝑝2

1<4𝛿 𝜒𝑝′2
1 <4𝛿d𝑝d𝑝′1 +𝑂 (𝜆−1/2). (5.25)

Using Lemma 3.7 once more, we may leave away the characteristic functions at the expense of an error of
order𝑂 (𝜆−1/2). Since 𝜂(𝜆) = 𝑂 (𝑇1

𝑐 (𝜆)), there is a 𝑐2 > 0 such that 𝜂2 + (√𝜇(𝑇1
𝑐 /𝜇)𝛽)2 ≤ 𝑐2

2𝜇(𝑇
1
𝑐 /𝜇)2𝛽

for 𝑇1
𝑐 < 𝜇. The following lemma, whose proof is given in Section 7.5, thus concludes the proof of

Lemma 1.10.

Lemma 5.2. Let 𝜇, 𝑐2 > 0, 0 < 𝛽 < 1 and 𝜖 := 𝑐2
√
𝜇(𝑇/𝜇)𝛽 for 𝑇 > 0. Then there are constants

𝑇0, 𝐶 > 0 such that

inf
|𝑞 |<𝜖

∫
R

(∫
R

𝐵𝑇 (𝑝, 𝑞)d𝑝1

)2
d𝑝2 ≥ 𝐶 (ln 𝜇/𝑇)3 (5.26)

for all 0 < 𝑇 < 𝑇0.

6. Proof of Theorem 1.6

This section is dedicated to the proof of Theorem 1.6, which states that the relative difference of𝑇2
𝑐 and𝑇0

𝑐

vanishes in the weak coupling limit. It has been shown in [16, Theorem 1.7] that the relative difference of
𝑇1
𝑐 and𝑇0

𝑐 vanishes in the weak coupling limit and we follow the same proof strategy here. We first switch
to the Birman–Schwinger picture. Recall the Birman–Schwinger operator 𝐴0

𝑇 corresponding to 𝐻Ω0
𝑇

defined in equation (2.10). Furthermore, recall the notation 𝑡, Ω̃2 and the representation of 𝑈𝐻Ω2
𝑇 𝑈† in

equation (4.2) from Section 5. The corresponding Birman–Schwinger operator 𝐴2
𝑇 : 𝐿2

s (Ω̃2) → 𝐿2
s (Ω̃2)

is given by

〈𝜓, 𝐴2
𝑇 𝜓〉 =

∫
R4
𝐵𝑇 (𝑝, 𝑞)

����∫
Ω̃2

1
(2𝜋)2 𝑡 (𝑝1, 𝑞1, 𝑟1, 𝑧1)𝑡 (𝑝2, 𝑞2, 𝑟2, 𝑧2)𝑉1/2(𝑟)𝜓(𝑟, 𝑧)d𝑟d𝑧

����2d𝑝d𝑞, (6.1)

and it follows from the Birman–Schwinger principle that sgn inf 𝜎(𝐻Ω2
𝑇 ) = sgn(1/𝜆 − sup𝜎(𝐴2

𝑇 )). Let
𝑎
𝑗
𝑇 = sup𝜎(𝐴 𝑗𝑇 ). For 𝜆 → 0 asymptotically 𝑎0

𝑇 = 𝑒𝜇 ln(𝜇/𝑇) +𝑂 (1), see for example, [16, Section 6].
It is a straightforward generalization of [12, Lemma 4.1] that the claim (1.4) is equivalent to

lim
𝑇→0

(𝑎0
𝑇 − 𝑎2

𝑇 ) = 0, (6.2)

and we refer to [12] for the proof.
To verify equation (6.2), the first step is to argue that 𝑎2

𝑇 ≥ 𝑎0
𝑇 for all𝑇 > 0. Lemma 1.1 together with

[16, Lemma 2.3] imply that inf 𝜎(𝐻Ω2
𝑇 ) ≤ inf 𝜎(𝐻Ω0

𝑇 ) for all 𝜆,𝑇 > 0. Using the Birman–Schwinger
principle, it follows that 𝑎2

𝑇 ≥ 𝑎0
𝑇 for all 𝑇 > 0. For details, we refer to the proof of [16, Theorem 1.7].

It remains to show that lim𝑇→0 (𝑎0
𝑇 −𝑎

2
𝑇 ) ≥ 0. We decompose 𝐴2

𝑇 in the same spirit as we decomposed
𝐴1
𝑇 (𝑞2) in equation (2.16). For 𝐴1

𝑇 , the decomposition consisted of the ‘unperturbed’ term 𝐴0
𝑇 and the

‘perturbation term’ 𝐺𝑇 , where the first components of the momentum variables were swapped. For 𝐴2
𝑇 ,

we additionally get the terms arising from swapping the variables in the second component, which leads
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to four terms in total. Let 𝜄 : 𝐿2 (Ω̃2) → 𝐿2 (R4) be the isometry

𝜄𝜓(𝑟, 𝑧) = 1
2

(
𝜓(𝑟, 𝑧)𝜒Ω̃2

(𝑟, 𝑧) + 𝜓(−𝑟1, 𝑟2,−𝑧1, 𝑧2)𝜒Ω̃2
(−𝑟1, 𝑟2,−𝑧1, 𝑧2)

+ 𝜓(𝑟1,−𝑟2, 𝑧1,−𝑧2)𝜒Ω̃2
(𝑟1,−𝑟2, 𝑧1,−𝑧2) + 𝜓(−𝑟,−𝑧)𝜒Ω̃2

(−𝑟,−𝑧)
)
. (6.3)

Using the definition of 𝑡 and evenness of V in 𝑟1 and 𝑟2, we rewrite equation (6.1) as

〈𝜓, 𝐴2
𝑇 𝜓〉 =

∫
R4
𝐵𝑇 (𝑝, 𝑞)

���12 ( 𝜄�𝑉1/2 𝜓(𝑝, 𝑞) ∓ 𝜄�𝑉1/2 𝜓((𝑞1, 𝑝2), (𝑝1, 𝑞2))

∓ 𝜄�𝑉1/2 𝜓((𝑝1, 𝑞2), (𝑞1, 𝑝2)) + 𝜄�𝑉1/2 𝜓(𝑞, 𝑝))
���2d𝑝d𝑞. (6.4)

Define the self-adjoint operators 𝐺1
𝑇 , 𝐺

2
𝑇 and 𝑁𝑇 on 𝐿2 (R4) through

〈𝜓, 𝐺1
𝑇 𝜓〉 =

∫
R4
𝐹1𝑉1/2𝜓((𝑞1, 𝑝2), (𝑝1, 𝑞2))𝐵𝑇 (𝑝, 𝑞)𝐹1𝑉

1/2𝜓(𝑝, 𝑞)d𝑝d𝑞, (6.5)

〈𝜓, 𝐺2
𝑇 𝜓〉 =

∫
R4
𝐹1𝑉1/2𝜓((𝑝1, 𝑞2), (𝑞1, 𝑝2))𝐵𝑇 (𝑝, 𝑞)𝐹1𝑉

1/2𝜓(𝑝, 𝑞)d𝑝d𝑞, and (6.6)

〈𝜓, 𝑁𝑇 𝜓〉 =
∫
R4
𝐹1𝑉1/2𝜓(𝑞, 𝑝)𝐵𝑇 (𝑝, 𝑞)𝐹1𝑉

1/2𝜓(𝑝, 𝑞)d𝑝d𝑞. (6.7)

We slightly abuse notation and write 𝐹2 for the Fourier transform in the second variable also when
the second variable has two components, that is, 𝐹2𝜓(𝑟, 𝑞) = 1

2𝜋

∫
R2 𝑒

−𝑖𝑞 ·𝑧𝜓(𝑟, 𝑧)d𝑧. It follows from
equation (6.4) and 𝐵𝑇 (𝑝, 𝑞) = 𝐵𝑇 ((𝑞1, 𝑝2), (𝑝1, 𝑞2)) = 𝐵𝑇 (𝑞, 𝑝) that

𝐴2
𝑇 = 𝜄†(𝐴0

𝑇 − 𝐹†
2 𝑅𝑇 𝐹2)𝜄, (6.8)

where 𝑅𝑇 = ±𝐺1
𝑇 ± 𝐺2

𝑇 − 𝑁𝑇 . Let 𝐵𝑇 (·, 𝑞) : 𝐿2 (R2) → 𝐿2 (R2) denote multiplication by 𝐵𝑇 (𝑝, 𝑞) in
momentum space and define the function 𝐸𝑇 (𝑞) on R2 through

𝐸𝑇 (𝑞) := 𝑎0
𝑇 − ‖𝑉1/2𝐵𝑇 (·, 𝑞)𝑉1/2‖s, (6.9)

where ‖·‖s denotes the operator norm of the operator restricted to even functions. Note that 𝑎0
𝑇 =

sup𝑞∈R2 ‖𝑉1/2𝐵𝑇 (·, 𝑞)𝑉1/2‖s and therefore 𝐸𝑇 (𝑞) ≥ 0. For 𝜓 ∈ 𝐿2 (R4), let 𝐸𝑇 𝜓(𝑟, 𝑞) = 𝐸𝑇 (𝑞)𝜓(𝑟, 𝑞).
We get the operator inequality 𝑎0

𝑇 I − 𝐴
0
𝑇 ≥ 𝐹†

2 𝐸𝑇 𝐹2, where I denotes the identity operator on 𝐿2
s (R4).

Using equation (6.8), the above inequality and that ‖𝐹2𝜄𝜓‖2 = ‖𝜓‖2 we obtain

𝑎0
𝑇 − 𝑎2

𝑇 ≥ inf
𝜓∈𝐿2

𝑠 (Ω̃2) , ‖𝜓 ‖2=1
〈𝐹2𝜄𝜓, (𝐸𝑇 + 𝑅𝑇 )𝐹2𝜄𝜓〉 ≥ inf

𝜓∈𝐿2 (R4) , ‖𝜓 ‖2=1
〈𝜓, (𝐸𝑇 + 𝑅𝑇 )𝜓〉. (6.10)

Therefore, it suffices to show that lim𝑇→0 inf 𝜎(𝐸𝑇 + 𝑅𝑇 ) ≥ 0. The proof relies on the following three
lemmas.

Lemma 6.1. Let 𝜇 > 0 and let V satisfy Assumption 1.2. Then sup𝑇 >0‖𝑅𝑇 ‖ < ∞.

Lemma 6.2. Let 𝜇 > 0 and let V satisfy Assumption 1.2. Let I≤𝜖 act on 𝐿2 (R4) as I≤𝜖𝜓(𝑟, 𝑞) =
𝜓(𝑟, 𝑞)𝜒 |𝑞 | ≤𝜖 . Then lim𝜖→0 sup𝑇 >0‖I≤𝜖 𝑅𝑇 I≤𝜖 ‖= 0.

Lemma 6.3. Let 𝜇 > 0 and let V satisfy Assumption 1.2. Let 0 < 𝜖 <
√
𝜇. There are constants

𝑐1, 𝑐2, 𝑇0 > 0 such that for 0 < 𝑇 < 𝑇0 and |𝑞 | > 𝜖 we have 𝐸𝑇 (𝑞) > 𝑐1 | ln(𝑐2/𝑇) |.

The first two lemmas are extensions of [16, Lemma 6.1 and Lemma 6.2] and proved in Sections 7.6
and 7.7, respectively. The third lemma is contained in [16, Lemma 6.3].
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With these lemmas, the claim follows completely analogously to the proof of [12, Theorem 1.2 (ii)]
and we provide a sketch for completeness. Using that 𝐸𝑇 (𝑞) ≥ 0, we write

𝐸𝑇 + 𝑅𝑇 + 𝛿 =
√
𝐸𝑇 + 𝛿

(
I + 1

√
𝐸𝑇 + 𝛿

𝑅𝑇
1

√
𝐸𝑇 + 𝛿

)√
𝐸𝑇 + 𝛿 (6.11)

for any 𝛿 > 0. It suffices to prove that for all 𝛿 > 0 the norm of the second term in the bracket vanishes
in the limit 𝑇 → 0. With the notation from Lemma 6.2, we estimate for all 0 < 𝜖 < √

𝜇%%%% 1
√
𝐸𝑇 + 𝛿

𝑅𝑇
1

√
𝐸𝑇 + 𝛿

%%%% ≤
%%%%I≤𝜖 1

√
𝐸𝑇 + 𝛿

𝑅𝑇
1

√
𝐸𝑇 + 𝛿

I≤𝜖

%%%%
+
%%%%I≤𝜖 1

√
𝐸𝑇 + 𝛿

𝑅𝑇
1

√
𝐸𝑇 + 𝛿

I>𝜖

%%%% + %%%%I>𝜖 1
√
𝐸𝑇 + 𝛿

𝑅𝑇
1

√
𝐸𝑇 + 𝛿

%%%% . (6.12)

Lemma 6.3 and 𝐸𝑇 ≥ 0 imply

lim
𝑇→0

%%%% 1
√
𝐸𝑇 + 𝛿

𝑅𝑇
1

√
𝐸𝑇 + 𝛿

%%%% ≤ sup
𝑇 >0

1
𝛿
‖I≤𝜖 𝑅𝑇 I≤𝜖 ‖ + lim

𝑇→0

2
(𝛿𝑐1 | ln(𝑐2/𝑇) |)1/2 ‖𝑅𝑇 ‖. (6.13)

The first term can be made arbitrarily small by Lemma 6.2, and the second term vanishes by Lemma 6.1.
Hence, Theorem 1.6 follows.

7. Proofs of Auxiliary Lemmas

7.1. Proof of Lemma 2.2

Proof of Lemma 2.2. Using the Mittag–Leffler series (as in [12, (2.1)]), one can write

𝑓 (𝑝, 𝑞, 𝑥) = 2𝑇
∑
𝑛∈Z

Ξ−1
𝑛

[
(2𝑞2 + 𝑥) (2𝜇 − 2𝑞2 − 2𝑝2 − 𝑥2 + 2(𝑝2 − 𝑞2)𝑥)

+ 2𝑝2 (4𝑝 · 𝑞 − 2𝑖𝑤𝑛 + 2(𝑝2 − 𝑞2)𝑥 − 𝑥2)
]
, (7.1)

where

Ξ𝑛 =
(
(𝑝 + 𝑞 + (0, 𝑥))2 − 𝜇 − 𝑖𝑤𝑛

) (
(𝑝 − 𝑞 − (0, 𝑥))2 − 𝜇 + 𝑖𝑤𝑛

)
×

(
(𝑝 + 𝑞)2 − 𝜇 − 𝑖𝑤𝑛

) (
(𝑝 − 𝑞)2 − 𝜇 + 𝑖𝑤𝑛

)
(7.2)

and 𝑤𝑛 = (2𝑛 + 1)𝜋𝑇 . Continuity of f follows from dominated convergence. For 𝑥 > √
𝜇/4, the bound

on f follows from the bound on 𝐵𝑇 in (2.2). Let 𝑄2 = 𝑄1 +
√
𝜇/4. For 𝑥 < √

𝜇/4, we have

| 𝑓 (𝑝, 𝑞, 𝑥) | ≤ sup
|𝑞2 | ≤𝑄2

| 𝜕
𝜕𝑞2

𝐵𝑇 (𝑝, 𝑞) | = sup
|𝑞2 | ≤𝑄2

| 𝑓 (𝑝, 𝑞, 0) |. (7.3)

To bound | 𝑓 (𝑝, 𝑞, 0) |, first note that for 𝑥 = 0 with the notation 𝑦 = (𝑝 + 𝑞)2 − 𝜇, 𝑧 = (𝑝 − 𝑞)2 − 𝜇 and
𝑣 = max{(|𝑝1 | + |𝑞1 |)2 + (|𝑝2 | − |𝑞2 |)2 − 𝜇, 0},

|Ξ𝑛 | =
(
𝑦2 + 𝑤2

𝑛

) (
𝑧2 + 𝑤2

𝑛

)
≥

(
𝑣2 + 𝑤2

𝑛

) (
max{(|𝑝2 | − |𝑞2 |)2 − 𝜇, 0})2 + 𝑤2

𝑛

)
. (7.4)
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Furthermore,

sup
(𝑝,𝑞) ∈R4 , |𝑞2 | ≤𝑄2

���� 4𝑖𝑤𝑛𝑝2

max{(|𝑝2 | − |𝑞2 |)2 − 𝜇, 0})2 + 𝑤2
𝑛

����
≤ sup

(𝑝,𝑞) ∈R4 , |𝑞2 |<𝑄2

4|𝑝2 |√
max{(|𝑝2 | − |𝑞2 |)2 − 𝜇, 0})2 + 𝑤2

0

=: 𝑐1 < ∞. (7.5)

There is a constant 𝑐2 > 𝜇 depending only on 𝜇 and𝑄2 such that |𝑝2 |2 ≤ 4(min{𝑦, 𝑧}+𝑐2) for |𝑞2 | ≤ 𝑄2
and all 𝑝1, 𝑞1 ∈ R. One obtains that for |𝑞2 | ≤ 𝑄2

| 𝑓 (𝑝, 𝑞, 0) | ≤ 2𝑇
∑
𝑛∈Z

2𝑄2 |𝑦 + 𝑧 | + 4
√

min{𝑦, 𝑧} + 𝑐2 |𝑦 − 𝑧 |
(𝑦2 + 𝑤2

𝑛) (𝑧2 + 𝑤2
𝑛)

+ 2𝑇
∑
𝑛∈Z

𝑐1

𝑣2 + 𝑤2
𝑛

. (7.6)

Since the summands are decreasing in n, we can estimate the sums by integrals. The second term is
bounded by

4𝑇𝑐1

[
1

𝑣2 + 𝑤2
0
+
∫ ∞

1/2

1
𝑣2 + 4𝜋2𝑇2𝑥2 d𝑥

]
= 4𝑇𝑐1

[
1

𝑣2 + 𝑤2
0
+

arctan
(
𝑣
𝜋𝑇

)
2𝜋𝑇𝑣

]
<

𝐶

1 + 𝑝2
1 + 𝑞

2
1 + 𝑝

2
2

(7.7)

for some constant C independent of p and 𝑞1 since sup(𝑝,𝑞) ∈R4 , |𝑞2 | ≤𝑄2

1+𝑝2
1+𝑞

2
1+𝑝

2
2

1+𝑣 < ∞. The first term
in equation (7.6) is bounded by

16𝑇 (𝑄2 + 2
√

min{|𝑦 |, |𝑧 |} + 𝑐2) max{|𝑦 |, |𝑧 |}
[

1
(𝑦2 + 𝑤2

0) (𝑧2 + 𝑤2
0)

+
∫ ∞

1/2

1
(𝑦2 + 4𝜋2𝑇2𝑥2) (𝑧2 + 4𝜋2𝑇2𝑥2)

d𝑥

]
. (7.8)

Note that 𝑦 + 𝑧 + 2𝜇 + 1 = 1 + 2𝑝2 + 2𝑞2. The claim thus follows if we prove that for 𝑐3 > 0

sup
𝑦>𝑧>0

(1 + 𝑦 + 𝑧) (1 +
√
𝑧 + 1)𝑦

[
1

(𝑦2 + 1) (𝑧2 + 1)
+
∫ ∞

𝑐3

1
(𝑦2 + 𝑥2) (𝑧2 + 𝑥2)

d𝑥

]
< ∞. (7.9)

The supremum over the first summand is obviously finite. The supremum over the second summand is
bounded by

sup
𝑦>𝑧>0

(1 + 2𝑦)𝑦
𝑦2 + 𝑐2

3

1 +
√
𝑧 + 1

(𝑧2 + 𝑐2
3)1/4

∫ ∞

𝑐3

1
𝑥3/2 d𝑥 < ∞. (7.10)

�

7.2. Proof of Lemma 3.7

Proof of Lemma 3.7. Using the inequality (3.22) and substituting 𝑝1±𝑞1 → 𝑝1, 𝑝
′
1±𝑞

′
1 → 𝑝′1, we have∫

R3
𝐵𝑇 (𝑝, 𝑞)𝐵𝑇 ((𝑝′1, 𝑝2), 𝑞′)d𝑝1d𝑝′1d𝑝2 ≤ 1

4

∫
R3
(𝐵𝑇 ((𝑝1, 𝑝2 + 𝑞2), 0) + 𝐵𝑇 ((𝑝1, 𝑝2 − 𝑞2), 0))

× (𝐵𝑇 ((𝑝′1, 𝑝2 + 𝑞′2), 0) + 𝐵𝑇 ((𝑝
′
1, 𝑝2 − 𝑞′2), 0))d𝑝1d𝑝′1d𝑝2. (7.11)
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One can bound this from above by

sup
𝑞2 ,𝑞

′
2∈R

∫
R

(∫
R

𝐵𝑇 ((𝑝1, 𝑝2 + 𝑞2), 0)d𝑝1

) (∫
R

𝐵𝑇 ((𝑝′1, 𝑝2 + 𝑞′2), 0)d𝑝
′
1

)
d𝑝2

≤ sup
𝑞2∈R

∫
R3
𝐵𝑇 ((𝑝1, 𝑝2 + 𝑞2), 0)𝐵𝑇 ((𝑝′1, 𝑝2 + 𝑞2), 0)d𝑝1d𝑝′1d𝑝2

=
∫
R3
𝐵𝑇 ((𝑝1, 𝑝2), 0)𝐵𝑇 ((𝑝′1, 𝑝2), 0)d𝑝1d𝑝′1d𝑝2, (7.12)

where in the second step we used the Schwarz inequality in 𝑝2. The latter expression is of order
𝑂 (ln(𝜇/𝑇)3) for 𝑇 → 0, as was shown in the proof of [16, Lemma 4.10].

To prove the second statement, we shall use that for fixed 0 < 𝛿 < 𝜇∫
R3
(1 − 𝜒𝜇−𝛿<𝑝2

2<𝜇
𝜒𝑝2

1<2𝛿 𝜒𝑝′2
1 <2𝛿)𝐵𝑇 (𝑝, 0)𝐵𝑇 ((𝑝′1, 𝑝2), 0)d𝑝1d𝑝′1d𝑝2 = 𝑂 ((ln 𝜇/𝑇)2) (7.13)

for 𝑇 → 0 as was shown in the proof of [16, Lemma 4.10]. We choose 𝛿2 and 𝛿 small enough such
that for all 𝑞2 < 𝛿2, if 𝑝2

1 > 4𝛿1 we have (𝑝1 + 𝑞1)2 > 2𝛿 and if 𝑝2
2 < 𝜇 − 𝛿1 or 𝑝2

2 > 𝜇 + 𝛿1 we have
(𝑝2 + 𝑞2)2 < 𝜇 − 𝛿 or (𝑝2 + 𝑞2)2 > 𝜇, respectively. Using the same inequality (3.22) as above, we have

sup
𝑞2 ,𝑞′2<𝛿2

∫
R3
(1 − 𝜒𝜇−𝛿1<𝑝

2
2<𝜇+𝛿1

𝜒𝑝2
1<4𝛿1

𝜒𝑝′2
1 <4𝛿1

)𝐵𝑇 (𝑝, 𝑞)𝐵𝑇 ((𝑝′1, 𝑝2), 𝑞′)d𝑝1d𝑝′1d𝑝2

≤ sup
𝑞2 ,𝑞′2<𝛿2

∫
R3
(1 − 𝜒𝜇−𝛿1<𝑝

2
2<𝜇+𝛿1

𝜒𝑝2
1<4𝛿1

𝜒𝑝′2
1 <4𝛿1

)𝐵𝑇 (𝑝 + 𝑞, 0)𝐵𝑇 ((𝑝′1, 𝑝2) + 𝑞′, 0)d𝑝1d𝑝′1d𝑝2.

(7.14)

Note that 1 − 𝜒𝜇−𝛿1<𝑝
2
2<𝜇+𝛿1

𝜒𝑝2
1<4𝛿1

𝜒𝑝′2
1 <4𝛿1

≤ 𝜒𝜇−𝛿1>𝑝
2
2
+ 𝜒𝜇+𝛿1<𝑝

2
2
+ 𝜒𝑝2

1>4𝛿1
+ 𝜒𝑝′2

1 >4𝛿1
. Using the

Schwarz inequality in 𝑝2 we bound equation (7.15) above by

sup
𝑞2<𝛿2

∫
R3
(𝜒𝜇−𝛿1>𝑝

2
2
+ 𝜒𝜇+𝛿1<𝑝

2
2
)𝐵𝑇 ((𝑝1 + 𝑞1, 𝑝2 + 𝑞2), 0)𝐵𝑇 ((𝑝′1 + 𝑞1, 𝑝2 + 𝑞2), 0)d𝑝1d𝑝′1d𝑝2

+ 2 sup
𝑞2 ,𝑞′2<𝛿2

( ∫
R3
𝐵𝑇 ((𝑝1 + 𝑞1, 𝑝2 + 𝑞2), 0)𝐵𝑇 ((𝑝′1 + 𝑞1, 𝑝2 + 𝑞2), 0)𝜒𝑝2

1>4𝛿1
𝜒𝑝′2

1 >4𝛿1
d𝑝1d𝑝′1d𝑝2

)1/2

×
( ∫
R3
𝐵𝑇 ((𝑝1, 𝑝2 + 𝑞2), 0)𝐵𝑇 ((𝑝′1, 𝑝2 + 𝑞2), 0)d𝑝1d𝑝′1d𝑝2

)1/2
. (7.15)

Substituting 𝑝 𝑗 + 𝑞 𝑗 → 𝑝 𝑗 and by choice of 𝛿2 and 𝛿, this is bounded above by∫
R3
(𝜒𝜇−𝛿>𝑝2

2
+ 𝜒𝜇<𝑝2

2
)𝐵𝑇 (𝑝, 0)𝐵𝑇 ((𝑝′1, 𝑝2), 0)d𝑝1d𝑝′1d𝑝2

+ 2
( ∫
R3
𝐵𝑇 (𝑝, 0)𝐵𝑇 ((𝑝′1, 𝑝2), 0)𝜒𝑝2

1>2𝛿 𝜒𝑝′2
1 >2𝛿d𝑝1d𝑝′1d𝑝2

)1/2

×
( ∫
R3
𝐵𝑇 (𝑝, 0)𝐵𝑇 ((𝑝′1, 𝑝2), 0)d𝑝1d𝑝′1d𝑝2

)1/2
. (7.16)

By equation (7.14) and the first part of this lemma, this is of order 𝑂 ((ln 𝜇/𝑇)2) +
𝑂 ((ln 𝜇/𝑇) (ln 𝜇/𝑇)3/2) = 𝑂 ((ln 𝜇/𝑇)5/2). �
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7.3. Proof of Lemma 3.8

Proof of Lemma 3.8. For 𝑝2, 𝑞2 ∈ R let 𝐵𝑇 ((·, 𝑝2), (·, 𝑞2)), denote the self-adjoint operator on

𝐿2 ((−
√

2𝜇,
√

2𝜇)) acting as 〈𝜓, 𝐵𝑇 ((·, 𝑝2), (·, 𝑞2))𝜓〉 =
∫ √2𝜇

−
√

2𝜇

∫ √2𝜇

−
√

2𝜇
𝜓(𝑝1)𝐵𝑇 (𝑝, 𝑞)𝜓(𝑞1)d𝑝1d𝑞1.

Enlarging the domain of integration for (𝑞1, 𝑝2) from a disk to square, we have

‖𝐵𝑒𝑥,2𝑇 (𝜉)‖ ≤ sup
‖𝜓 ‖2=1

∫
(−
√

2𝜇,
√

2𝜇)4
𝜓(𝑝′1)𝐵𝑇 ((𝑝

′
1, 𝑝2), (𝑞1, 𝜉))𝐵𝑇 (𝑝, (𝑞1, 𝜉))𝜓(𝑝1)d𝑝1d𝑝′1d𝑞1d𝑝2

= sup
‖𝜓 ‖2=1

∫ √
2𝜇

−
√

2𝜇
〈𝜓, 𝐵𝑇 ((·, 𝑝2), (·, 𝜉))2𝜓〉d𝑝2. (7.17)

By the triangle inequality,

‖𝐵𝑒𝑥,2𝑇 (𝜉)‖ ≤
∫ √

2𝜇

−
√

2𝜇
‖𝐵𝑇 ((·, 𝜉), (·, 𝑝2))‖2d𝑝2. (7.18)

For fixed 𝑝2, 𝑞2, we derive two bounds on ‖𝐵𝑇 ((·, 𝑝2), (·, 𝑞2))‖2. For the first bound, we estimate the
Hilbert–Schmidt norm using the bounds on 𝐵𝑇 (2.2):

‖𝐵𝑇 ((·, 𝑝2), (·, 𝑞2))‖2 ≤ ‖𝐵𝑇 ,𝜇 ((·, 𝑝2), (·, 𝑞2))‖2
HS

≤
∫ √

2𝜇

−
√

2𝜇

∫ √
2𝜇

−
√

2𝜇

1
max{|𝑝2

1 + 𝑞
2
1 + 𝑝

2
2 + 𝑞

2
2 − 𝜇 |2, 𝑇2}

d𝑝1d𝑞1

≤ 2𝜋
∫ 2√𝜇

0

𝑟

max{|𝑟2 + 𝑝2
2 + 𝑞

2
2 − 𝜇 |2, 𝑇2}

d𝑟 ≤ 𝜋

∫
R

1
max{𝑥2, 𝑇2}

d𝑥 =
4𝜋
𝑇
,

(7.19)

where we first switched to angular coordinates and then substituted 𝑥 = 𝑟2 + 𝑝2
2 + 𝑞

2
2 − 𝜇.

For the second bound, the idea is to apply [16, Lemma 6.5]. For 𝜇1, 𝜇2 ∈ R, let 𝐷𝜇1 ,𝜇2 be the operator
on 𝐿2 (R) with integral kernel

𝐷𝜇1 ,𝜇2 (𝑝1, 𝑞1) =
2

| (𝑝1 + 𝑞1)2 − 𝜇1 | + |(𝑝1 − 𝑞1)2 − 𝜇2 |
. (7.20)

It was shown in [12, Lemma 4.6] that

𝐵𝑇 (𝑝, 𝑞) ≤
2

| (𝑝 + 𝑞)2 − 𝜇 | + |(𝑝 − 𝑞)2 − 𝜇 |
. (7.21)

In particular, we have ‖𝐵𝑇 ((·, 𝑝2), (·, 𝑞2))‖ ≤ ‖𝐷𝜇−(𝑝2+𝑞2)2 ,𝜇−(𝑝2−𝑞2)2 ‖ and

‖𝐵𝑒𝑥,2𝑇 (𝜉)‖ ≤
∫ √

2𝜇

−
√

2𝜇
min

{4𝜋
𝑇
, ‖𝐷𝜇−( 𝜉+𝑞2)2 ,𝜇−( 𝜉−𝑞2)2 ‖2

}
d𝑞2. (7.22)

According to [16, Lemma 6.5], for 𝜇1, 𝜇2 ≤ 𝜇 there is a constant 𝐶 > 0 such that

‖𝐷𝜇1 ,𝜇2 ‖ ≤ 𝐶 + 𝐶𝜇1/2

| min{𝜇1, 𝜇2}|1/2

[
1 + 𝜒min{𝜇1 ,𝜇2 }<0<max{𝜇1 ,𝜇2 } ln

(
1 + max{𝜇1, 𝜇2}

| min{𝜇1, 𝜇2}|

)]
. (7.23)

https://doi.org/10.1017/fms.2024.145 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.145


36 B. Roos and R. Seiringer

The condition 𝜇−(|𝑞2 | + |𝜉 |)2 < 0 < 𝜇−(|𝑞2 | − |𝜉 |)2 can only be satisfied for √𝜇− |𝜉 | ≤ |𝑞2 | ≤
√
𝜇+ |𝜉 |.

We get the bound

sup
|𝜉 |<𝑐𝑇

‖𝐵𝑒𝑥,2𝑇 (𝜉)‖ ≤ 𝐶
( ∫

| |𝑞2 |−
√
𝜇 |<2𝑐𝑇

1
𝑇

d𝑞2

+ sup
|𝜉 |<𝑐𝑇

∫ √
2𝜇

−
√

2𝜇
𝜒 | |𝑞2 |−

√
𝜇 |>2𝑐𝑇

[
1 + 1

|𝜇 − (|𝑞2 | + |𝜉 |)2 |1/2

]2
d𝑞2

)
≤ �̃� (1 + ln 𝜇/𝑇).

(7.24)

�

7.4. Proof of Lemma 5.1

Proof of Lemma 5.1. Applying the inequality (3.22), we have

sup
𝑞1

∫
R

𝐵𝑇 ,𝜇 ((𝑝1, 𝜉 (𝑇)), (𝑞1, 𝜉
′(𝑇)))d𝑝1

≤ 1
2

[∫
R

𝐵𝑇 ,𝜇 ((𝑝1, 𝜉 (𝑇) + 𝜉 ′(𝑇)), 0)d𝑝1 +
∫
R

𝐵𝑇 ,𝜇 ((𝑝1, 𝜉 (𝑇) − 𝜉 ′(𝑇)), 0)d𝑝1

]
. (7.25)

The first integral equals ∫
R

𝐵𝑇 ,𝜇−( 𝜉 (𝑇 )+𝜉 ′ (𝑇 ))2 (𝑝1, 0)d𝑝1, (7.26)

where here 𝐵𝑇 ,𝜇 is understood as the function defined through the same expression as 𝐵𝑇 in equation
(2.1) on R × R instead of R2 × R2. For the second integral, replace 𝜉 ′(𝑇) by −𝜉 ′(𝑇). The claim follows
from the asymptotics ∫

R

𝐵𝑇 ,𝜇 (𝑝1, 0)d𝑝1 =
2
√
𝜇
(ln(𝜇/𝑇) +𝑂 (1)) (7.27)

for 𝑇/𝜇 → 0; see, for example, [12, Lemma 3.5]. �

7.5. Proof of Lemma 5.2

Proof of Lemma 5.2. Let 𝛾 = 𝜇(𝑇/𝜇)𝛽/2. By invariance of 𝐵𝑇 (𝑝, 𝑞) under (𝑝 𝑗 , 𝑞 𝑗 ) → −(𝑝 𝑗 , 𝑞 𝑗 ) for
𝑗 ∈ {1, 2}, we may assume without loss of generality that 𝑞 ∈ [0,∞)2. For a lower bound, we restrict the
integration to 𝑝1, 𝑝2 > 0, 𝑝2

2 < 𝜇− 𝜖
2 − 𝛾 and 𝑝2

1 > (√𝜇 + 𝜖)2 +𝑇 − 𝑝2
2. For 𝑝, 𝑞 ∈ [0,∞)2 with |𝑞 | < 𝜖

and 𝑝2 > (√𝜇+ 𝜖)2 +𝑇 , we have (𝑝− 𝑞)2 − 𝜇 ≥ ||𝑝 | − |𝑞 | |2 − 𝜇 ≥ 0 and (𝑝 + 𝑞)2 − 𝜇 ≥ 𝑝2 + 𝑞2 − 𝜇 ≥ 𝑇 .
Therefore, in this regime

𝐵𝑇 (𝑝, 𝑞) ≥
1
2

tanh(1/2)
𝑝2 + 𝑞2 − 𝜇

. (7.28)

This is minimal if |𝑞 | = 𝜖 . Since for 𝑎 > 𝑏 > 0∫ ∞

𝑎

1
𝑝2

1 − 𝑏2
d𝑝1 =

artanh(𝑏/𝑎)
𝑏

=
1
𝑏

artanh
(√

1 − (𝑎2 − 𝑏2)/𝑎2
)
,
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the left-hand side of equation (5.26) is bounded below by

tanh(1/2)2

4

∫ √
𝜇−𝜖 2−𝛾

√
𝜇−𝛿

artanh
(√

1 − 2√𝜇𝜖 +2𝜖 2+𝑇
(√𝜇+𝜖 )2+𝑇 −𝑝2

2

)2

𝜇 − 𝜖2 − 𝑝2
2

d𝑝2. (7.29)

By monotonicity of artanh, the artanh term in the integrand is minimal for 𝑝2 =
√
𝜇 − 𝜖2 − 𝛾. Since∫ √𝜇−𝜖 2−𝛾

√
𝜇−𝛿

1
𝜇−𝜖 2−𝑝2

2
d𝑝2 = 1

𝜇−𝜖 2 (artanh(
√

1 − (𝜖2 + 𝛾)/𝜇) − artanh(
√

1 − 𝛿/𝜇)), the left-hand side of
equation (5.26) is bounded below by

tanh(1/2)2

4(𝜇 − 𝜖2)
artanh���

√
1 −

2√𝜇𝜖 + 2𝜖2 + 𝑇
2√𝜇𝜖 + 2𝜖2 + 𝑇 + 𝛾

�� 
2 [

artanh���
√

1 − 𝜖2 + 𝛾
𝜇

�� − artanh

(√
1 − 𝛿

𝜇

)]
. (7.30)

With artanh(
√

1 − 𝑥) = 1
2 ln(4/𝑥) + 𝑜(1) as 𝑥 → 0, we have for 𝑇 → 0

artanh���
√

1 −
2√𝜇𝜖 + 2𝜖2 + 𝑇

2√𝜇𝜖 + 2𝜖2 + 𝑇 + 𝛾
�� = 𝛽

4
ln(𝜇/𝑇) +𝑂 (1) (7.31)

and

artanh���
√

1 − 𝜖2 + 𝛾
𝜇

�� = 𝛽

4
ln(𝜇/𝑇) +𝑂 (1). (7.32)

Hence, the left-hand side of equation (5.26) is bounded below by tanh(1/2)2

43
𝛽3

𝜇 (ln 𝜇/𝑇)3 + 𝑂 (ln 𝜇/𝑇)2,
and the claim follows. �

7.6. Proof of Lemma 6.1

Proof of Lemma 6.1. According to [16, Lemma 6.1], sup𝑇 ‖𝐺
𝑗
𝑇 ‖ < ∞ for 𝑗 ∈ {1, 2} and it suffices to

prove sup𝑇 ‖𝑁𝑇 ‖ < ∞. We have ‖𝑁𝑇 ‖ ≤ ‖𝑁<𝑇 ‖ + ‖𝑁>𝑇 ‖, where

〈𝜓, 𝑁<𝑇 𝜓〉 =
∫
R4
𝐹1𝑉1/2𝜓(𝑞, 𝑝)𝐵𝑇 (𝑝, 𝑞)𝜒𝑝2 ,𝑞2<2𝜇𝐹1𝑉

1/2𝜓(𝑝, 𝑞)d𝑝d𝑞 (7.33)

and for 𝑁>𝑇 replace the characteristic function by 1 − 𝜒𝑝2 ,𝑞2<2𝜇.
To bound ‖𝑁>𝑇 ‖, we first use the Schwarz inequality to obtain

‖𝑁>𝑇 ‖ ≤ sup
𝜓∈𝐿2 (R4) , ‖𝜓 ‖2=1

∫
R4
𝐵𝑇 (𝑝, 𝑞) (1 − 𝜒𝑝2 ,𝑞2<2𝜇) |𝐹1𝑉

1/2𝜓(𝑝, 𝑞) |2d𝑝d𝑞. (7.34)

By the bound on 𝐵𝑇 in equation (2.2), there is a constant 𝐶 > 0 independent of T such that ‖𝑁>𝑇 ‖ ≤
𝐶‖𝑀 ‖, where 𝑀 := 𝑉1/2 1

1−Δ𝑉
1/2 on 𝐿2 (R2). The Young and Hölder inequalities imply that M is a

bounded operator [15].
To bound ‖𝑁<𝑇 ‖, we use that ‖𝐹1𝑉

1/2𝜓(·, 𝑞)‖∞ ≤ ‖𝑉 ‖1/2
1 ‖𝜓(·, 𝑞)‖2 by the Schwarz inequality and

the upper bound for 𝐵𝑇 in (7.22) to obtain

〈𝜓, 𝑁<𝑇 𝜓〉 ≤ 2‖𝑉 ‖1

∫
R4

‖𝜓(·, 𝑞)‖2‖𝜓(·, 𝑝)‖2

| (𝑝 + 𝑞)2 − 𝜇 | + |(𝑝 − 𝑞)2 − 𝜇 |
𝜒𝑝2 ,𝑞2<2𝜇d𝑝d𝑞. (7.35)
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Recalling the definition of the operator 𝐷𝜇1 ,𝜇2 from (7.21), this is further bounded by

2‖𝑉 ‖1

∫
R2
‖𝜓(·, (·, 𝑞2))‖2‖𝐷𝜇−(𝑝2+𝑞2)2 ,𝜇−(𝑝2−𝑞2)2 ‖‖𝜓(·, (·, 𝑝2))‖2𝜒𝑝2

2 ,𝑞
2
2<2𝜇d𝑝d𝑞. (7.36)

It follows from the bound on ‖𝐷𝜇1 ,𝜇2 ‖ in equation (7.24) that for any 𝛼 > 0 there is a constant 𝐶𝛼
independent of 𝑝2, 𝑞2 such that

‖𝐷𝜇−(𝑝2+𝑞2)2 ,𝜇−(𝑝2−𝑞2)2 ‖ ≤ 𝐶𝛼 (1 + |𝜇 − (|𝑝2 | + |𝑞2 |)2 |−1/2−𝛼).

Let �̃�𝛼 denote the operator on 𝐿2 ((−
√

2𝜇,
√

2𝜇)) with integral kernel

�̃�𝛼 (𝑞2, 𝑝2) = (1 + |𝜇 − (|𝑝2 | + |𝑞2 |)2 |−1/2−𝛼).

Then we have ‖𝑁<𝑇 ‖ ≤ 2𝐶𝛼‖𝑉 ‖1‖�̃�𝛼‖, and it remains to prove that ‖�̃�𝛼‖ < ∞ for a suitable choice of
𝛼. Applying the Schur test with constant test function gives

‖�̃�𝛼‖ ≤ sup
|𝑞2 |<

√
2𝜇

∫ √
2𝜇

−
√

2𝜇
(1 + |𝜇 − (|𝑝2 | + |𝑞2 |)2 |−1/2−𝛼)d𝑝2, (7.37)

which is finite for 𝛼 < 1/2. �

7.7. Proof of Lemma 6.2

Proof of Lemma 6.2. It was shown in [16, Lemma 6.2] that lim𝜖→0 sup𝑇 >0‖I≤𝜖𝐺
𝑗
𝑇 I≤𝜖 ‖= 0 for 𝑗 ∈

{1, 2}, and it remains to prove lim𝜖→0 sup𝑇 >0‖I≤𝜖 𝑁𝑇 I≤𝜖 ‖= 0. We use the Schwarz inequality twice to
bound

‖I≤𝜖 𝑁𝑇 I≤𝜖 ‖≤ ‖𝑉 ‖1 sup
𝜓∈𝐿2 (R4) , ‖𝜓 ‖2=1

∫
R4
‖𝜓(·, 𝑝)‖2𝐵𝑇 (𝑝, 𝑞)𝜒 |𝑝 |, |𝑞 | ≤𝜖 ‖𝜓(·, 𝑞)‖2d𝑝d𝑞

≤ ‖𝑉 ‖1 sup
𝜓∈𝐿2 (R4) , ‖𝜓 ‖2=1

∫
R4
𝐵𝑇 (𝑝, 𝑞)𝜒 |𝑝 |, |𝑞 | ≤𝜖 ‖𝜓(·, 𝑞)‖2

2d𝑝d𝑞 ≤ ‖𝑉 ‖1 sup
|𝑞 | ≤𝜖

∫
|𝑝 | ≤𝜖

𝐵𝑇 (𝑝, 𝑞)d𝑝.

(7.38)

Applying the bound on 𝐵𝑇 in equation (2.2), for 𝜖 <
√
𝜇/2 one can bound the right-hand side uniformly

in T by

‖𝑉 ‖1 sup
|𝑞 | ≤𝜖

∫
|𝑝 | ≤𝜖

1
𝜇 − 𝑝2 − 𝑞2 d𝑝, (7.39)

which vanishes as 𝜖 → 0. The claim follows. �
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