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SUMMARY

Community and hospital-acquired cases of human rotavirus are responsible for millions of

gastroenteritis cases in children worldwide, chiefly in developing countries, and vaccines are now

available. During surveillance activity for human rotavirus infections in Ireland, between 2006

and 2009, a total of 420 rotavirus strains were collected and analysed. Upon either PCR

genotyping and sequence analysis, a variety of VP7 (G1–G4 and G9) and VP4 (P[4], P[6], P[8]

and P[9]) genotypes were detected. Strains G1P[8] were found to be predominant throughout the

period 2006–2008, with slight fluctuations seen in the very limited samples available in 2008–2009.

Upon either PCR genotyping and sequence analysis of selected strains, the G1, G3 and G9

viruses were found to contain E1 (Wa-like) NSP4 and I1 VP6 genotypes, while the analysed G2

strains possessed E2 NSP4 and I2 VP6 genotypes, a genetic make-up which is highly conserved in

the major human rotavirus genogroups Wa- and Kun-like, respectively. Upon sequence analysis

of the most common VP4 genotype, P[8], at least two distinct lineages were identified, both

unrelated to P[8] Irish rotaviruses circulating in previous years, and more closely related to recent

European humans rotaviruses. Moreover, sequence analysis of the VP7 of G1 rotaviruses

revealed the onset of a G1 variant, previously unseen in the Irish population.
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INTRODUCTION

Group A rotaviruses are important human and

animal enteric pathogens. Infection by group A rota-

virus causes millions of childhood gastroenteritis cases

worldwide and 600000 child deaths annually, chiefly

in developing countries [1]. Group A rotaviruses are

classified antigenically and genetically, based on the

main antigenic determinants, the outer capsid proteins

VP7 and VP4, which specify the G and P serotypes/

genotypes, respectively [2]. At least 25 G genotypes

and 32 P genotypes have been documented to date

[3, 4]. The major human G types are G1, G2, G3, G4,

and G9 which, in combination with the P types P[8],

P[4] and P[6], account for over 80% of rotavirus-

associated gastroenteritis episodes worldwide [5, 6].
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A novel classification system has been adopted

recently for classification of the 11 segments of the

rotavirus genome [7]. This new system extends the

traditional genotype-based system which made use

of rotavirus gene segments encoding VP7 and VP4

proteins to all 11 rotavirus genome segments, apply-

ing nucleotide cut-off values, to distinguish genotypes.

VP6, the inner capsid layer, was previously classified

into four antigenic subgroups using monoclonal

antibodies or into two major genogroups, based on

sequence analysis [8]. The NSP4 is a non-structural

protein involved in viral replication and possessing

enterotoxic activity [9]. Based on amino-acid sequence

comparison, the NSP4 was formerly classified into

six genotypes, A–F [8]. Under the new classification

system the VP6 and NSP4 genes are classified into at

least 15 I and 12 E genotypes, respectively [3, 7, 10].

Rotavirus infection is more common in infants

and young children but it can also occur in adults,

especially those that are in close contact with young

children, adult travellers, and institutionalized or

hospitalized elderly patients [11].

Two rotavirus vaccines are currently available,

RotaTeq and Rotarix. RotaTeq (Merck & Co. Inc.,

USA) is a live, oral pentavalent human/bovine re-

assortant rotavirus vaccine [12–14], containing the

more common human rotavirus (HRV) VP7 and VP4

antigens (G1, G2, G3, G4, and P[8]). Rotarix

(GlaxoSmithKline Biologicals, Belgium), is a mono-

valent vaccine based on an attenuated human G1P[8]

rotavirus strain [15, 16]. Both vaccines have been

proven to be safe and effective in protecting children

against rotavirus disease [15–17]. Although Rotarix

and Rotateq have been licensed in Ireland since 2006,

their use has only been in the private market paedia-

tric sector [18]. As the vaccine is not in widespread use

it is difficult to elucidate the effect the vaccine will

have on the rotavirus epidemiology in Ireland.

Group A rotaviruses are highly heterogenous gen-

etically. Rotavirus evolution is a dynamic process,

driven by various mechanisms, including accumu-

lation of point mutations, reassortment, recombi-

nation and inter-species transmission [19]. The

introduction of human rotavirus vaccines has raised

the question of whether the vaccines can alter the

epidemiology of these viruses. The strong population

vaccine-derived immunity could trigger/enhance evol-

utive mechanisms already observed in other viruses

[20] and select novel/unusual strains.

Epidemiological surveillance in the Republic of

Ireland reported 2520 cases of acute gastroenteritis in

2007, of which 2326 (92%) were associated with rota-

virus infection. Children aged 0–4 years appeared

to be most affected (n=2255/2326, 96.9% of cases),

followed by children aged 5–9 years (n=45/2326,

1.9%) [21].

Rotavirus surveillance in the Republic of Ireland

has been conducted almost uninterrupted since 1997

[22–24]. In this study, the distribution of human rota-

virus G and P types in 2006–2009 was investigated. In

addition, the genetic make up of selected strains was

assessed in more detail by analysing the VP6 and

NSP4 gene segments.

MATERIALS AND METHODS

Specimen collection

Rotavirus-positive faecal samples (n=420) were col-

lected regularly from October to September each year

(2006–2007, n=139; 2007–2008, n=268; 2008–2009,

n=13) from children aged<5 years from hospitals in

the Munster region of Ireland. The hospitals included

in the study were Cork University Hospital (CUH),

Bon Secours Hospital, Cork, Mercy University

Hospital, Cork, and Waterford Regional Hospital.

Initial identification of rotavirus

Rotavirus identification was performed in the hos-

pitals’ microbiology laboratories by use of immuno-

chromatographic strips (Coris BioConcept, Belgium).

To confirm the results obtained by the antigen detec-

tion method the genomic RNA was run and visual-

ized on 1.5% (w/v) agarose gel, which by virtue of the

presence of the 11 dsRNA confirmed the presence of

rotavirus.

Nucleic acid extraction and analysis

Viral RNA was extracted from the supernatant of

10% stool samples by SDS and proteinase K (Sigma-

Aldrich, Ireland) digestion and phenol chloroform

extraction, followed by precipitation with 100%

ethanol overnight. Nucleic acid was resuspended in

100 ml nuclease-free water and stored atx80 xC, prior

to use. The RNA extracts were examined by electro-

phoresis in 1.5% (w/v) agarose gels and 10% (w/v)

polyacrylamide gels. Polyacrylamide gel electro-

phoresis (PAGE) was performed according to the

Laemmli system [25], with a substitution of Long

Ranger Gel solution (Cambrix Biosciences, UK)
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for acrylamide/bis. Electrophoresis was performed

at 200 V for 5 h in 1rTBE (Tris-borate EDTA).

Following electrophoresis, the RNA bands were

stained with ethidium bromide and visualized under

UV light.

Reverse transcriptase–polymerase chain reaction

(RT–PCR)

RT–PCR of VP7 and G genotyping

Amplification and G genotyping of the VP7 gene

was performed using RT–PCR and a nested multiplex

PCR with type-specific primers (see Supplementary

Table S1, available online) [26, 27]. Briefly, prior

to RT–PCR, 3 ml dsRNA was denatured in 3.5 ml

DMSO at 95 xC for 5 min. The RT–PCR reactions

were performed in 50 ml reaction volumes with the

following reagents : 5 ml of 10r reaction buffer, 1.5 ml

of 50 mM MgCl2 (Euroclone, Life Sciences Division,

Italy), 8 ml dNTP mix (consisting of 1.25 mM each

dNTP), 0.5 ml of 40 U/ml ribonuclease inhibitor,

0.2 ml of 10 U/ml AMV-RT (Promega, USA), 0.25 ml

of 5 U/ml Taq polymerase (Euroclone), and 2 ml of

Beg 9 and End 9 primers (50 pmol) [26].

DNAse treatment with AMP-D1 DNAse 1 (Sigma-

Aldrich Ireland Ltd) of samples was performed where

necessary (i.e. samples which failed to generate a

RT–PCR product on the first attempt were DNAse

treated, to exclude any possible contamination of

DNA from the RNA sample). All amplifications were

performed in a Biometra T3000 thermocycler.

RT–PCR protocol for the amplification of the VP7

gene consisted of 45 xC for 30 min, 70 xC for 4 min,

followed by 35 cycles of 94 xC for 1 min, 57 xC for

30 s, 68 xC for 2 min with a final extension time of

68 xC for 5 min. G typing reactions consisted of 2 ml of

a 1:200 diluted VP7 RT–PCR product as the template

for the subsequent typing reaction which consisted of

95 xC for 5 min, followed by 25 cycles of 95 xC for

1 min 52 xC for 2 min, 72 xC for 2 min with a final

extension step of 68 xC for 5 min.

Amplified products were resolved by conventional

agarose gel electrophoresis [1.5% (w/v)] at 100 V for

60 min in 1rTAE buffer (Tris-acetate EDTA),

stained with ethidium bromide and visualized by UV

light.

Amplification of VP4 and P genotyping

Primers used in the amplification and P typing of the

VP4 gene can be seen in Supplementary Table S1

(online) [28–30]. Thermal reactions and conditions

similar to those described above were performed

using the primer pairs Con2/Con3 and VP4F/VP4R

allowing for the amplification of the VP4 gene at an

annealing temperature of 52 xC for 30 s. The semi-

nested multiplex P typing reaction consisted of 2 ml of

a 1:100 diluted VP4 RT–PCR product as the template

for the subsequent typing reactions which were: 95 xC

for 5 min, followed by 25 cycles of 95 xC for 1 min

54 xC for 2 min, 72 xC for 2 min with a final extension

step of 68 xC for 5 min.

Amplification of VP6 and NSP4 and NSP4 genotyping

The reverse-transcribed NSP4 PCR products were

generated using 151/152 consensus primers [31],

resulting in a 750-bp PCR product. A subsequent

multiplex PCR assay was used to identify the three

HRV major NSP4 genotypes E1–E3, previously

known as Wa-like, KUN-like and AU1-like, respect-

ively. This assay was performed under conditions

previously described [31]. The amplicons were sub-

jected to electrophoresis on agarose gels and stained

with ethidium bromide. Amplification products of

647, 201 and 547 bp indicated the presence of geno-

types E1, E2 and E3, respectively.

VP6 gene segments were amplified as previously

described [32] using the primer pair VP6F/VP6R at a

annealing temperature of 54 xC for 30 s, the resulting

RT–PCR products were subjected to sequence analy-

sis to determine the typing profile of VP6 gene seg-

ments of differing G and P types. Primers used in the

amplification of VP6 and NSP4 products can be seen

in Supplementary Table S2 (online).

Nucleotide sequencing and phylogenetic analysis

Subsets of all RT–PCR products from samples rep-

resenting each type were selected for sequencing.

The first-round PCR products were purified using a

QIAquick PCR purification kit (Qiagen Ltd, UK),

and sequenced commercially by Eurofins MWG

Operon (MWG-biotech, Germany). Evaluation of

all sequencing data was performed initially using

DNAStar software (www.dnastar.com), and com-

pared to those in the current GenBank database

using BLAST analysis. Subsequent analysis was per-

formed using Clustal W alignment (www.ebi.ac.uk/

clustalw), and Mega4.0 (www.megasoftware.net)

for phylogentic tree construction. Accession numbers

representing the different gene segments analysed

and sequences submitted to Genbank are VP7
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(G types) : HM126593–HM126600, HM560972

(ranging in size from 724 bp to 921 bp); VP4 (P types) :

HM126602–HM126605 (561–798 bp), HQ667789–

HQ667791 (560–561 bp); NSP4 (E types) :

HM137003–HM137011 (597–653 bp with one sample

at 418 bp), and VP6 (I types) : HM137012–HM137018

(255–322 bp).

RESULTS

PAGE

A total of 110 samples were examined using PAGE.

The resulting electrophorotypes were visualized under

UV light using the DNR Bio Imaging system. For all

viruses, the banding pattern was in a 4, 2, 3, 2 for-

mation, which is characteristic of group A rotavirus.

G and P typing

Of the 420 samples collected from the selected hospi-

tals in the Munster region, 306 were G-typed and 244

were successfully P-typed. A total of 215 samples were

successfully characterized in both the VP4 and VP7

genes (Table 1). To confirm the accuracy of the typing

assays, the sequence of selected strains of differing G

and P types were determined and analysed using

BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The

most widely detected rotavirus strain types identified

were G1P[8] (n=153/215, 71.2%), G3P[8] (n=26/

215, 12.1%) and G2P[4] and G9P[8] with an equal

number of infections (n=9/215, 4.2%), mixed infec-

tions of G1+G3P[8] accounted for n=7/215 (3.3%)

(Table 1). The majority of G2P[4] and G1+
G2P[4+8] infections identified over the 3 years were

found in the first year (2006) of the study. While no

G4 single infection was detected in the Irish popu-

lation, mixed infections involving G1+G3+G4P[8]

were identified in two samples over the 2006–2009

study period (Table 1). In total, eight VP7 sequences,

representing G types 1, 2, 3, and 9 were used to create

phylogenetic trees seen in Figures 1–3#.

Within G1 samples, Irish sequences were found to

cluster within lineages I and II (Fig. 1). Within lineage

I, Irish samples were previously found to cluster

within sublineage Ic [22], this report identifies for the

first time an Irish isolate (CIT-H57) that clusters

within sublineage Ia.

The Irish G3 strains appeared to be less heterogen-

eous, as all G3 VP7 sequences were found to cluster

within G3 lineage I. The Irish G9 sample CIT-H382

was found to cluster within lineage IIId (Figs 2, 3).

The predominant P type found during the course of

this study, in combination with both single and mixed

G types was P[8] (n=200/215, 93.0%). Other P types

found included P[4] (n=9/215, 4.2%) P[6] (n=1/215,

0.5%), P[8+9] (n=1/215, 0.5%) P[4+8] (n=4/215,

1.9%) (Table1). Upon sequence analysis, three P[8]

strains (CIT-H190, CIT-H247, CIT-H282) were

shown to cluster within lineage III (Fig. 4). Although

previous strains identified from the same region of

Ireland (R114, R115 and R386, isolated between 2003

and 2006) also cluster within lineage III, the recent

Irish strains CIT-H190, CIT-H247 and CIT-H282

were found to cluster more closely with P[8] strains

isolated from Italy and Russia. Another strain, CIT-

H245, clustered within lineage IV (Fig. 4). This

lineage had not previously been shown to be present

in circulating strains within Ireland [22–24].

Analysis of P[4] strains was initially hampered

slightly by mistyping of the degenerate genotyping

primer P[8] to an area of complementarity in the 3’

end of P[4] isolates, yielding a product size similar to

P[8] isolates (P[8] 245 bp instead of P[4] 378 bp). As

G2 isolates are commonly found in combination with

P[4] and not P[8], all isolates were re-examined using

sequencing analysis, a small representative proportion

of which can be seen in Figure 4. Other P types

identified in this study include P[6] and P[9], with no

evidence of mistyping detected.

NSP4 and VP6 analysis

NSP4 analysis was performed on 103 samples, selec-

ted based on each G type detected. Of the 103 samples

selected, 92 samples were typed as E1, and 11 samples

were typed as E2. None of the samples were typed as

E3. Of the 92 samples subjected to typing, 17 were

selected for sequence analysis based on their NSP4

typing characteristics, from this, nine representative

sequences were selected for inclusion in the phylo-

genetic tree (Fig. 5). The E- and G-type combinations

identified were in agreement with previously reported

# In Figures 1–6 evolutionary relationships of VP7, VP6, VP4 and
NSP4 sequences were inferred using the Neighbour-Joining meth-
od. The bootstrap consensus tree inferred from 100 replicates is
taken to represent the evolutionary history of the taxa analysed.
Branches corresponding to partitions reproduced in <70% boot-
strap replicates are collapsed. Irish sequences are in bold. Figures 1,
2 and 3 represent the VP7 sequences analysed, with each tree out-
lining the different lineages of each sequence. Figure 4 represents
VP4 P[8] sequences, and Figures 5 and 6 outline NSP4 and VP6
sequences, respectively. Phylogenetic analyses were conducted in
Mega4.0 [55].
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type combinations [31], in which G2 typing strains

were found to have an E2 NSP4 profile, while G1, G3

and G9 strains displayed an E1 NSP4 profile.

Analysis of the VP6 gene of rotavirus was also

performed on selected samples of differing G types. A

total of 11 samples comprising of four G1, one G9,

two G3 and four G2 genotypes were analysed as pre-

viously described [31]. The G1, G3 and G9 samples

clustered into the VP6 I1 genotype, while the G2P[4]

samples clustered within VP6 I2. The corresponding

NSP4 typing profile identified samples with a I1 VP6

profile to have a E1 NSP4 profile and those with I2

VP6 to have a E2 NSP4 profile (Figs 5, 6).

DISCUSSION

Rotavirus is responsible for over 100 million cases of

gastroenteritis worldwide, with over 600 000 deaths

occurring annually [1, 33]. The predominant human

G and P types circulating worldwide are G1–G4, G9

and P[8], P[4], P[6], with the majority of rotavirus

cases reporting G1P[8] as the dominant strain. Over

the past few years, new virus genotypes have emerged

and become dominant types in certain parts of the

world, e.g. G12 was first detected in the Philippines in

1988 [34]. Since then, its global coverage has increased

and G12 has been detected in various parts of Asia,

Table 1. Distribution of G- and P-type combinations circulating in Ireland, from 2006–2009

2006–2007 samples
collected (n=139)

2007–2008 samples
collected (n=268)

2008–2009 samples
collected (n=13) Total

n % n % n % n %

G1P[8] 52 66.7 98 76.6 3 33.3 153 71.2
G2P[4] 6 7.7 2 1.6 1 11.1 9 4.2

G3P[6] 0 0.0 1 0.8 0 0.0 1 0.5
G3P[8] 10 12.8 14 10.9 2 22.2 26 12.1
G4P[8] 0 0.0 0 0.0 0 0.0 0 0.0
G9P[8] 2 2.6 7 5.5 0 0.0 9 4.2

G1G2P[4+8] 3 3.8 0 0.0 0 0.0 3 1.4
G1G3P[8] 1 1.3 3 2.3 3 33.3 7 3.3
G1G3G4P[8] 1 1.3 1 0.8 0 0.0 2 0.9

G1G9P[8] 2 2.6 0 0.0 0 0.0 2 0.9
G1G9P[8+9] 1 1.3 0 0.0 0 0.0 1 0.5
G1G3G9P[8] 0 0.0 1 0.8 0 0.0 1 0.5

G2G3P[4+8] 0 0.0 1 0.8 0 0.0 1 0.5
78 100 128 100 9 100 215 100

Individual G types detected out of 420 samples collected

G1 67 48.2 137 51.1 3 23.1 207 49.3

G2 8 5.8 3 1.1 2 15.4 13 3.1
G3 16 11.5 23 8.6 2 15.4 41 9.8
G9 2 1.4 13 4.9 0 0.0 15 3.6
G1+2 3 2.2 1 0.4 0 0.0 4 1.0

G1+3 2 1.4 9 3.4 3 23.1 14 3.3
G1+9 3 2.2 2 0.7 0 0.0 5 1.2
G1+3+4 1 0.7 2 0.7 0 0.0 3 0.7

G1+3+9 0 0.0 2 0.7 0 0.0 2 0.5
G2+3 0 0.0 0 0.0 1 7.7 1 0.2
G2+9 0 0.0 1 0.4 0 0.0 1 0.2

G typing total 102 73.4 193 72.0 11 84.6 306 72.9

Individual P types detected out of 420 samples collected

P[4] 6 4.3 2 0.7 1 7.7 9 2.1
P[6] 0 0.0 1 0.4 0 0.0 1 0.2

P[8] 78 56.1 142 53.0 9 69.2 229 54.5
P[4+8] 3 2.2 1 0.4 0 0.0 4 1.0
P[8+9] 1 0.7 0 0.0 0 0.0 1 0.2
P typing total 88 63.3 146 54.5 10 76.9 244 58.0
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North and South America, as well as some parts of

Europe [35–39]. It has become one of the most widely

detected G types in India, along with G1 and G2 [27].

Similarly, G9 emerged as a dominant G type both in

Ireland [23] and worldwide, [40–43] and is now con-

sidered to be the fifth most dominant strain detected

in humans. In Ireland, G9 peaked in the 2001–2002

season (n=25/83, 30%) [23] and is still commonly

detected in samples, albeit at much lower rates, with

only 12 isolates (n=12/288, 3.6%) detected in

2003–2006 [24], and nine (n=9/215, 4.2%) in the

current study (2006–2009).

The main genotypes identified in this study were

G1P[8] (n=153/215, 71.2%) G3P[8] (n=26/215,

12.1%) G2P[4] and G9P[8], the latter were detected

with an equal number of infections (n=9/215, 4.2%),

followed by G1+G3 mixed infection (n=7/215,

3.3%). The majority of G2 samples were detected in

the first year of the study with (n=6), followed by a

reduced detection rate of n=2 and n=1 in the second

and third years of the study, respectively (Table 1).

Moreover, the common genotype G4 was not de-

tected as a single infection, but was found only in

combination with G1+G3P[8] in two mixed infection

 Dhaka8-02/HUM/IND/AY631049

 CMH042/HUM/CHI/EF199713

 CIT-H57/HUM/HM560972

 Thai-1604/HUM/THA/DQ512981

 VN-751/HUM/VIE/DQ512971

 CHI-83/HUM/CHI/DQ512996

 MVD9901/HUM/AF480277

 R479/HUM/IRL/EU033975

CIT-4RV/IRL/AF254138

CIT-313RV/HUM/IRL/AF254141

 AU64/HUM/JAP/AB081801

 HUM/KOR/AF083617

 K18/HUM/JAP/D16319

 J-4692/HUM/JAP/DQ512987

 J-6226/HUM/JAP/EF088835

 CHI-75/HUM/CHI/DQ512993

 CU308-NR/HUM/THA/GQ996871

 CU303-NR/HUM/THA/GQ996870

 CHI-45/HUM/CHI/U26371

 Egypt-7/HUM/EGY/U26373

 Ban-59/HUM/IND/U26366

 G192B/HUM/AUS/AF043678

 CIT-6RV/IRL/AF254137

 DC03/HUM/TAI/AF183859

 Cos-69/COS/U26369

 Cos-70/HUM/COS/U26370

 96TA2049/JAP/GU358443

 Hu/R495/IRL/EU033976

 PA2/HUM/ITA/DQ377598

 CIT-H55/HUM/126600

CIT-9772/IRL/HM126594

 Wa/HUM/USA/GU723327

 WA/HUM/UNK/K02033

 K54/HUM/USA/U26377

 Kor-64/HUM/KOR/U26378

 421/HUM/JAP/D16326

 7702DC73/USA/GU723345

 7901DC525/USA/GU723360

 Fin-220/HUM/FIN/Z80294

 Fin-308/HUM/FIN/Z80297

 C60/PO/VENL24164

 C95/PO/VEN/L24165

 T449/BOV/UNK/M92651

100

89

100

100

100

98

97

94

73

93

86

84

74

92

91

77

91

72

70

81

100

0·02

A 
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D 

E 

  VIII 
VII 

II 
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IV 

V 

XI 

G1 

Fig. 1. Phylogenetic analysis of G1 nucleotide sequences, constructed using Clustal W alignment program and Mega4.0
(lineages adapted from [56]).
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samples. This lack, or limited detection of G4 strains

has been seen elsewhere in studies performed in

Northern Ireland [44], Spain [45] and China [46]. The

epidemiological data gathered during this surveillance

period differs slightly from a pan-European study in

which 16 countries identified G1P[8], G9P[8] and

G2P[4] as the predominating strains in 2006–2007,

followed by G1P[8], G4P[8] and G9P[8] in 2007–2008

and G1P[8] and G4P[8] in 2008–2009 [47].

Over the course of the study period, the primer pair

Con2/Con3 [28] was found to lack sensitivity for the

amplification of the VP4 gene product. In order to

overcome this lack of sensitivity, a second primer set,

VP4F/VP4R [29], was included in the amplification of

the VP4 segment. The increased sensitivity of the

VP4F/VP4R primer pair is thought to be due to a

higher level of sensitivity to a wider diversity of rota-

virus strains [29]. The originally designed Con2/Con3

 CH-128/CHI/FJ598027

 VN-20/VIE/DQ904514

 H391/RUS/FJ919247

 CH-95/CHI/FJ598026

CIT-H60/IRL/HM126593

 CIT-H64/IRL/HM126595

 26-2003/HUM/ITA/DQ172854

 4372JB/HUM/SA/AY261346

 Bangla23/IND/EF690806

 R330/HUM/IRL/EU033977

 TF85/HUM/TAI/AF106299
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Fig. 2. Phylogenetic analysis of G2 and G3 nucleotide sequences, constructed using Clustal W alignment program and
Mega4.0 (lineages adapted from [57]).
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primer pair was derived from a limited number of cell

culture-adapted strains available in public databases

at the time of their design. The newer VP4F/VP4R

primers were designed through analysis of the VP4

gene, for regions of consensus derived from over 200

different human P-typing strains of rotavirus in the

last decade [29].

The majority of the samples for which the VP4

gene segment was successfully amplified and typed

were P[8] (n=200/215, 93.0%), P[6] (n=1/215, 0.5%)

and P[8+9] (n=1/215, 0.5%) mixed infection;

these samples were collected over a 3-year period

(2006–2009). Single and mixed infection P[4] isolates

(n=13/215, 6.0%) were initially typed as P[8], due to

an area of complementarity in the 3’ end of the P[8]

degenerate primer to P[4] isolates, as G2 isolates are

rarely seen in combination with P[8] genotypes, all P

types with a G2 genotype were subjected to sequence

analysis which confirmed the presence of P[4] isolates

in Irish samples, all P[4] isolates were identified in

lineage V (Fig. 4).

Sequence analysis of P[8] isolates revealed that 3/4

samples (CIT-H190, CIT-H247, CIT-H282) were

shown to be within lineage III, with the remaining

sample (CIT-H245) clustering within lineage IV

(Fig. 4). Lineage IV strains also referred to as OP354-

like strains or P[8] sublineage b were first identified in

Malawi in 1999 [48]. Since then it has been detected

in various countries around the world including

India [49], Thailand [50], Vietnam [51], Bangladesh

[52] and now Ireland, suggesting widespread distri-

bution around the world. Although incidence rates of

this lineage are low in number, its continued presence

in the global rotavirus population, may have an

interesting effect on the efficacy of the rotavirus vac-

cines which contain the more commonly found P[8]

genotypes and not lineage IV [53].

The emergence of new lineages and sublineages

within Irish rotavirus strains and the expansion of

strain diversity within previously identified G1P[8]

lineages suggests that rotaviruses are continuously

expanding their geographic range, which may offer

an explanation as to its global dominance. A similar

shift in the emergence of lineages previously unseen

in the Irish bovine population has also been re-

ported [54].
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Fig. 3. Phylogenetic analysis of G9 nucleotide sequences, constructed using Clustal W alignment program and Mega4.0

(lineages adapted from [58]).
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NSP4 genotyping analysis was performed on 103

samples, representing every G type found in the study;

all samples were found to be either E1, or E2, with no

E3 strains being identified. The results of the NSP4

typing were in accordance with trends seen elsewhere

[31], where strains with a G2P[4] genotype were found

to have an E2 (NSP4), I2 (VP6) profile and strains

with a G1P[8], G3P[8] and G9P[8] genotype demon-

strated an E1,I1 profile. Interestingly, BLAST

analysis performed on the partial VP6 region of CIT-

H60 and CIT-H64 indicated a possible reassortment

event between bovine sequences which can be seen in

Figure 6, suggesting the need for further surveillance

and genomic analysis to determine the possibility and

the extent of the reassortment between human and

bovine rotavirus.

This study reports on rotavirus G and P types cir-

culating in Ireland between 2006 and 2009. Results

ITA-GIU22/ITA/EF150327

CIT-H190/IRL/HM126602

ITA-MAR12/ITA/EF150326

CIT-H282/IRL/HM126604

CIT-H247/IRL/HM126605

Nov09-D202/RUS/GU320762

 Nov09-D249/RUS/GU320763

Nov09-B28/RUS/GQ453419

Py00477/PAR/EU045227

 Hu/R386/IRL/EU033987

27B3/IND/EU016486

 Hu/R115/IRL/EU033992

 Hu/R114/IRL/EU033991

 BIA48/ITA/EF150312

Py00464/HUM/PAR/EU045223

Kagawa/90-513/JAP/AB039944

ITA-CIC2/ITA/EF150321

 ITA-BIA2/ITA/EF150317

MW258/MAL/AJ302143

OP511/MAL/AJ302151

CH55/HUM/JAP/AB008276

 Py9856/HUM/PAR/EU045216

 Wi61/HUM/USA/EF672619

 88-49/JAP/AB039934

 OP354/MAL/AJ302148

 MW670/MAL/AJ302146

 CIT-H245/IRL/HM126603

 WA/UNK/L34161

DK.V00-2138/DAN/AY509910

 6690/Jap

BP785/HUN/AJ605315

 R291/HUM/BRA/AY855067

 MW333/HUM/MAL/AJ278256

 Rv-5/HUM/AUS/M32559

 DS-1/HUM/USA/DQ141310

RJ5619/02/HUM/BRA/DQ857927

L26/HUM/PHI/EF672591

 HFF10/HUM/BRA/DQ369971

CIT-H300/HUM/IRL/HQ667790

CIT-H96/HUM/IRL/HQ667789

KMR757/HUM/SK/EF077337

Py1157ASR07/HUM/PAR/FJ941105

 CU81P4/HUM/THA/DQ235963

 Nov05-137/HUM/RUS/GU356610

 CIT-H4-35/HUM/IRL/HQ667791

Omsk07-83/HUM/RUS/FJ932740

 Omsk07-87/HUM/RUS/GQ117016

98

100

96

85

100

99

95

72

80

73

74

94

76

89

88

80

82

84

94

95

94

80

100

98

0·02

III 

II 

IV 

I 

P[8] 

  P[4] 

II 

 I 

III 

IV 

V 
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(lineages adapted from [59]).
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indicated that G1P[8], G3P[8], G2P[4], G9P[8], G1+
G3P[8], G1+G2P[4+8] and G1+G3+G4P[8] type

combinations were present in Irish strains. The find-

ings also highlighted the changes occurring in the

circulating strains. G4 genotypes had previously been

identified in the Irish population but were found to

only be present as part of mixed infections in this

study, although widely detected in other European

countries [47].

Partial typing of rotavirus strains was also

observed, in which the G genotype was identified

without the corresponding P genotype or vice versa,

in some cases failure to amplify either gene (VP7 and

VP4) was noted. The failure to amplify a RT–PCR

product and subsequent typing of samples may be due

to a number of issues relating to low viral load, poss-

ible presence of frame-shift mutations in the primer

binding site, or the presence of a co-infecting virus
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such as bocavirus which was identified in some

unamplifiable samples (data not shown).

This study offers a clearer picture into the diversity

of Irish rotavirus strains by not only highlighting the

circulating strains, but by identifying the lineages

from which these strains originate. Problems en-

countered in the last year of the study (2008–2009)

resulted in lower sample numbers being available for

analysis, these numbers are not a reflection of vaccine-

related efficacy or sampling bias merely technical

issues in which restructuring in hospital practices

meant samples were no longer available.

This is the first Irish study to report on NSP4 and

VP6 gene segment-type combinations, the results of

which mirror previously identified findings [31].

NOTE

Supplementarymaterial accompanies this paper on the

Journal’s website (http://journals.cambridge.org/hyg).
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