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Abstract

Benchmarks can be a useful step toward the goals of the field (when the benchmark is on the critical
path), as demonstrated by the GLUE benchmark, and deep nets such as BERT and ERNIE. The case for
other benchmarks such as MUSE and WN18RR is less well established. Hopefully, these benchmarks are
on a critical path toward progress on bilingual lexicon induction (BLI) and knowledge graph completion
(KGC). Many KGC algorithms have been proposed such as Trans|DEHRM], but it remains to be seen
how this work improves WordNet coverage. Given how much work is based on these benchmarks, the
literature should have more to say than it does about the connection between benchmarks and goals. Is
optimizing P@10 on WN18RR likely to produce more complete knowledge graphs? Is MUSE likely to
improve Machine Translation?
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1. Introduction

Many (perhaps most) papers in top conferences these days propose methods and test them on
standard benchmarks such as General Language Understanding Evaluation (GLUE)* (Wang et al.
2018), Multilingual Unsupervised and Supervised Embeddings (MUSE)® (Conneau et al. 2017),
and wordnet 18 reduced relations (WN18RR) (Dettmers et al. 2018). Some of these methods
(Bidirectional Encoder Representations from Transformers (BERT) Devlin et al. 2019, enhanced
representation through knowledge integration (ERINE) Sun et al. 2020) not only do well on
benchmarks but also do well on tasks that we care about.© Unfortunately, despite large num-
bers of papers with promising performance on benchmarks, there is remarkably little evidence
of generalizations beyond benchmarks.

In my last Emerging Trends column (Church 2020), I complained about reviewing. Reviewers
do what reviewers do. They love papers that are easy to review. Reviewers give high grades to
boring incremental papers that do slightly better than SOTA (state of the art) on an established
benchmark. No one ever questions whether the benchmark is still relevant (or whether it was ever
relevant). Generalizing beyond the benchmark is of little concern. Precedent is good (and simple
to review). Impact is too much work for the reviewers to think about.

Benchmarks have a way of taking on a life of their own. Benchmarks tend to evolve over
time. When the benchmark is first proposed, there is often a plausible connection between the

2https://super.gluebenchmark.com/.

bhttps://github.com/facebookresearch/MUSE.
“https://www.blog.google/products/search/search-language-understanding-bert/.
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benchmark and a reasonable goal that is larger than the benchmark. But this history is quickly for-
gotten as attention moves to SOTA numbers, and away from sensible (credible and worthwhile)
motivations.

2. The goal

Before discussing some of the history behind MUSE and WN18RR, benchmarks for bilingual
lexicon induction (BLI) and knowledge graph completion (KGC), it is useful to say a few words
about goals. It is important to remember where we have been, but even more important to be clear
about where we want to go.

I do not normally have much patience for management books, but “The Goal” (Goldratt 1984)
is an exception. The point is that one should focus on what matters and avoid misleading internal
metrics. Goldratt invents a fictional factory to make his point. The fictional factory is losing money
because of misleading internal metrics. They should be focused on end-to-end profit, a combina-
tion of three factors: (1) throughput (sales), (2) inventory costs, and (3) operational expense. But in
the story, they introduced a misleading metric (output per hour), which appeared to be moving in
the right direction when they introduced automation (robots), but in fact, the robots were increas-
ing cost, because most of the output was ending up in inventory. The moral of the story is that we
need to focus on what matters (end-to-end results). It can be helpful to factor a complicated system
into simpler units that are easier to work with (unit testing is often easier and more actionable than
system testing), but we need to make sure the simplification is on the critical path toward the goal.

Another example® is a jewelry business. Unlike the fictional factory, this is a real example. This
jewelry business has lots of products (and consequently, lots of inventory). Products have a long
tail. Some products sell faster than others. The right metrics helped the business focus on key
bottlenecks. Two simple process improvements increased sales:

1. The business had been prioritizing too many products, but better metrics encouraged them
to prioritize products by sales. Make sure that shelves are stocked with fast movers, before
stocking shelves with other products.

2. Inaddition, if a product has been in a store for a while and has not sold, rotate it to another
store. Some products sell better in some markets and other products sell better in other
markets.

The moral, again, is to focus on the right metrics. Without focus, there is a tendency to optimize
everything. But most systems are constrained by a few bottlenecks. Optimize bottlenecks (and
nothing else). Misleading metrics are worse than useless because of opportunity costs. The wrong
metrics distract attention from what matters (addressing bottlenecks) and encourage wasted effort
optimizing steps that are not on the critical path toward the goal. Resist the temptation to optimize
everything (because most things are not on the critical path toward the goal).

What does this have to do with benchmarks? Benchmarks can be a useful step toward the goal
(when the benchmark is on the critical path), as demonstrated by the GLUE benchmark, and deep
nets such as BERT and ERNIE. The case for other benchmarks such as MUSE and WN18RR is less
well established. Survey articles (Nguyen 2017) mention many KGC algorithms: Trans[ DEHRM],
KG2E, ConvE, Complex, DistMult, and more (Bordes et al. 2013; Wang et al. 2014; Yang et al.
2015; Lin et al. 2015; Trouillon et al. 2016; Nguyen et al. 2017; Nickel, Rosasco, and Poggio 2019;
Sun et al. 2019). Many of these perform well on the benchmark, but it remains to be seen how this
work improves coverage of WordNet (Miller 1998). Will optimizing P@10 on WN18RR produce
more complete knowledge graphs? Has WordNet coverage improved as a result of all this work
on the KGC WN18RR benchmark? If not, why not? When should we expect to see such results?

dhttps://www.youtube.com/watch?v=2RVMgV370_k.
¢https://youtu.be/_COdSwmIDMY?t=641.
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3. Background: Rotation matrices, BLI and KGC

Rotation matrices play an important role in both BLI and KGC. Benchmarks in both cases pro-
vide various resources (embeddings Mikolov, Le, and Sutskever 2013; Pennington, Socher, and
Manning 2014; Mikolov et al. 2017) as well as test and train sets. In particular, MUSES provides
embeddings in 45 languages, as well as training and test dictionaries (in both directions) between
English (en) and 44 other languages: af, ar, bg, bn, bs, ca, cs, da, de, el, es, et, fa, fi, fr, he, hi, hr,
hu, id, it, ja, ko, It, Iv, mk, ms, nl, no, pl, pt, ro, ru, sk, s, sq, sv; ta, th, tl, tr, uk, vi, zh. In addition,
MUSE provides bilingual dictionaries for all pairs of six languages: en, de, es, fr, it, pt. (This paper
will use ISO 639-1 for languages).8

The training dictionaries are also known as seed dictionaries. Seed dictionaries, S, consist of
S| pairs of translation equivalents, < x;, y; >, where x; is a word in source language x and y;
is a word in target language y. These dictionaries are used to train a rotation. That is, we con-
struct two arrays, X and Y, both with dimensions |S| x K. Rows of X are vec(Ey, x;) and rows
of Y are vec(E), y;), where vec(Ey, x;) looks up the word x; in the embedding, Ey for language x.
Embeddings, Ex and E, have dimensions, V x K and V) x K, respectively, where V and V) are
the sizes of the vocabularies for the two languages.

The training process solves the objective:

min || XRyy — Y|I% where Ry,e RN (1)
Xy

Ry is a K x K rotation matrix that translates vectors in language x to vectors in language y. A

simple solution for R is the Orthogonal Procrustes problem.”

At inference time, we are given a new source word, x; in the source language x. The task is to
infer trans, (x;) = yj, where y; is the appropriate translation in target language y. The standard
method is to use Equation (2), where vec™! is the inverse of vec. That is, vec™! looks up a vector
in an embedding and returns the closest word.

transy,y(x;) ~ vec_l(Ey, vec(Ey, xi) Ryy) 2)

Much of the BLI literature improves on this method by taking advantage of constraints such as
hubness (Smith et al. 2017). Most words have relatively few translations, and therefore, the system
should learn a bilingual lexicon with relatively small fan-in and fan-out. Hubs are undesirable; we
do not want one word in one language to translate to too many words in the other language (and
vice versa).

Consider random walks over MUSE dictionaries. If we start with bank in English, we can trans-

late that to banco and banca in Spanish. From there, we can get back to bank in English, as well as
bench.

bank — banco|banca — bank|bench (3)

Table 1 shows that most words (in the MUSE challenge) have very limited fan-out. In fact, most
words are disconnected islands, meaning they back-translate to themselves and nothing else (via
random walks over 45 language pairs).

Taking advantage of hubness clearly improves performance on the MUSE challenge, but why?
Hopefully, the explanation is the one above (most words have relatively few translations), but
it is also possible that hubness is taking advantage of flaws in the benchmark such as gaps in
MUSE (most words should have many more translations than those in MUSE (Kementchedjhieva,
Hartmann, and Segaard 2019)).

fhttps://github.com/facebookresearch/MUSE.
Shttps://docs.oracle.com/cd/E13214_01/wli/docs92/xref/xqisocodes.html.

Phttps://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem.
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Table 1. Fan-out for 168k English words in MUSE, most of which (115k) are
disconnected islands that back-translate to themselves (and nothing else).
The majority of the rest back-translate to five or more words

0 1 2 3 4 5+

1209 115,178 4172 1269 540 45,587

3.1 Knowledge Graph Completion (KGC)

KGC benchmarks (WN18RR) are similar to BLI mechmarks (MUSE). Many of these KGC algo-
rithms (and evaluation sets) are now available in pykg2vec (Yu et al. 2019), a convenient Python
package.! The goal of KCG, presumably, is to improve coverage of knowledge graphs such as
WordNet.

KGC starts with < h, r, t > triples, where h (head) and ¢ (tail) are entities (words, lemmas, or
synsets) connected by a relation . For example, the antonymy relationship < inexperienced, #,
experienced>, is a triple where h is inexperienced, r is # and t is experienced. Heads and tails
are typically represented as vectors, and relations are represented as rotation matrices. Thus, for
example, antonymy could be modeled as a regression task: vec(inexperienced) ~ vec(experienced),
where the slope of this regression is a rotation matrix. In this case, the rotation matrix is an
approximation of the meaning of negation.

Benchmarks such as WNI18RR are incomplete subsets of WordNet. WN18RR consists of 41k
entities (WordNet synsets) and 11 relations, though just 2 of the relations cover most of the test
set. We can model triples as graphs, G, = (V, E), one for each relation r, where V is a set of vertices
(h and t), and E is a set of edges connecting h to t. WN18RR splits edges, E, into train, validation
and test randomly, with 60% in train, and 20% in each of the other two sets. At training time, we
learn a model from the training set. At inference time, we apply that model to a query from the test
set, < h,r,? > or <?,r,t >. The task is to fill in the missing value. N-best candidates are scored by
precision at ten (P@10).

This setup is more meaningful when edges are iid, though WordNet makes considerable use
of equivalence relations (synonyms), apartness relations (antonyms), partial orders (is-a, part-of),
and other structures that are far from iid.

Unstructured: Edges are iid. If we tell you there is (or is not) an edge between h and ¢, we have
provided no information about the rest of the graph.

Structured: Edges are not iid. Examples: equivalence classes and partial orders.

WN18RR is an improvement over an earlier benchmark, WN18, which suffered from infor-
mation leakage (Dettmers et al. 2018). WordNet documentation’ makes it clear that various links
come in pairs (by construction). If a car is a vehicle, for example, then there will be both a hyper-
nym link in one direction, as well as a hyponym link in the other direction. Similar comments
apply to other relations such as part-of. WN18 originally had 18 relations, but the 18 were reduced
down to 11 in WN18RR.

WNI18RR addresses some of the leakage, but there is more. Most of the test set is dominated
by 2 of the 11 relations, hyperym and derivationally related forms. The former is a partial order
(is-a) and the latter is (nearly) an equivalence relation, combining aspects of morphology with
synonymy. We recently submitted a paper questioning the use of iid assumptions for equivalence
relations. It turns out that one can do very well on the benchmark (without addressing the goal of
improving WordNet coverage) because much of the test set can be inferred from random walks
(and transitivity) from triples in the training set.

thttps://github.com/Sujit-O/pykg2vec.
Thttps://globalwordnet.github.io/gwadoc/.
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Table 2. Five synsets in two (of 29) languages

Synset en fr

bank.n.01 bank banque, rive
bank.n.03 bank banque
bank.n.04 bank NA
bank.n.05 bank banque
bank.n.06 bank banque, rive

4. WordNet is incomplete because it is too English-centric

The missing at random model does not pay enough respect to Miller, an impressive researcher
(and Chomsky’s mentor). One is unlikely to improve his work much by the kinds of methods that
have been discussed thus far such as rotation matrices and random walks. To make meaningful
progress, we need to bring something to the table (such as more languages) that goes well beyond
the topics that Miller was thinking about.

Miller was focused on English. WordNets are now available in German (Hamp and Helmut
1997), Chinese (Dong, Dong, and Hao 2010), and many other languages.X The Natural Language
Toolkit (NLTK) interface to WordNet' supports 29 languages: ar, bg, ca, da, el, en, es, eu, fa, fi,
fr, gl, he, hr, id, it, jp, ms, nb, nl, nn, pl, pt, qc, sl, sq, sv, th, zh.™ Coverage varies considerably by
language. Few languages have as much coverage as English. Some have considerably less.

Table 2 illustrates glosses in English (en) and French (fr) for five synsets of bank. All five synsets
have a single gloss in English. Two synsets have two glosses in French, and one has none.

The basic framework was developed for English. As WordNet becomes more and more multi-
lingual, it needs to move away from viewing English as a pivot language toward a more language
universal inter-lingua view of world knowledge. Ultimately, the knowledge completion goal
should aim higher than merely capturing what is already in WordNet (English-centric knowledge)
to something larger (world knowledge). Benchmarks such as WN18RR distract us away from the
larger goal (capturing world knowledge that goes beyond the English-centric view that Miller was
working with), to something smaller than what Miller was thinking about (how to capture subsets
of English from other subsets of English).

Other languages bring new insights to the table. We recently submitted a paper proposing a
new similarity metric, backsim (back-translation similarity). Backsim uses bilingual dictionaries
in MUSE to find 316k pairs of words like similarly and likewise that have similar transla-
tions in other languages. We suggested that many (271k) of these pairs should be added to
WordNet under four relations: M (morph), S (synonym), H (hypernym), and D (derived form).
In this way, other languages help us move from our own view of our language toward world
knowledge.

4.1 Comparisons of WordNet and MUSE

We have an embarrassment of riches now that WordNet is available in 29 languages, and MUSE is
available in 45 languages. Comparisons of the two (Tables 3-5) suggest WordNet has remarkably

Khttps://globalwordnet.org/resources/wordnets-in-the-world/.

Ihttps://www.nltk.org/howto/wordnet.html.
M™We use 2-letter codes for languages (ISO639-2); WordNet uses 3-letter codes. Two of the 29 languages are not defined in
www.loc.gov/standards/is0639-2/php/code_list.php: zsm, qcn. We use ms for zsm.
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Table 3. Vocabulary Sizes (excluding disconnected islands). Numbers are
larger for WordNet than MUSE, suggesting WordNet has better coverage.
Numbers are also larger for English (en) than other languages, suggesting both
WordNet and MUSE have better coverage of English than other languages

Source Pivot language (MUSE)

Language en es fr it pt
en 19,296 20,159 14,700 15,478
es 23,335 588 8173 9422
fr 22,727 1056 9465 11,549
it 17,948 1697 1161 942
pt 21,418 1699 4306 721

Source Pivot language (WordNet)

Language en es fr it pt
en 46,574 77,145 46,041 58,920
es 24,627 18,499 11,157 13,670
fr 39,946 20,359 22,715 30,920
it 33,225 17,334 28,056 22,888
pt 41,743 21,995 37,234 24,242

good coverage, probably better than MUSE. Researchers in BLI would be well advised to consider
WordNet in addition to (or perhaps as a substitute for) the bilingual dictionaries in MUSE.

Table 3 compares MUSE and WordNet vocabulary sizes after removing disconnected islands.
Let My, be a sparse matrix with a non-zero value in cell 4,j if there is a translation from x;
to yj, where x; is a word in language x and y; is a word in language y. We then form M, , =
M, yM, . This matrix, My ,, tells us how words in language x can back-translate via the pivot lan-
guage y. Most words back-translate to themselves and nothing else. We refer to these words as
disconnected islands. We are more interested in words with more translation possibilities.

Table 3 suggests WordNet has better coverage than MUSE since numbers are larger for
WordNet than MUSE. In addition, the table suggests that both WordNet and and MUSE have
better coverage of English (en) than other languages.

Some of the numbers in Table 3 are embarrassingly small, especially for MUSE. Numbers under
10k are suspiciously low. In MUSE, some languages have only 1k words with more than one back
translation (= 1% of the total vocabulary). In other words, some of the MUSE dictionaries are
close to a substitution cipher. This may explain why hubness has been so effective for MUSE.
But if this is the explanation, it may cast doubt on how effective hubness methods will be for
generalizing beyond the benchmark.

Tables 4-5. dive deeper into French glosses. These tables show the number of glosses for nearly
18k English words that have at least 1 gloss in both collections. Of these, there are 10,330 words
with more French glosses in WordNet, and 2266 with more in MUSE, and 5125 with the same
number of French glosses in both collections.

In addition to simple counts, we would like to know if we are covering the relevant distinc-
tions. One motivation for word senses is translation. Bar-Hillel (1960) left the field of machine
translation because he could not see how to make progress on word sense disambiguation (WSD).
The availability of parallel corpora in the early 1990s created an opportunity to make progress on
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Table 4. WordNet (WN) has more French glosses

than MUSE

Word WN MUSE
resolve 14 2
peel 7 2
recommend 4 2
ortolan 4 1
genre 3 2
transducer 2 1
leper 2 1
celibacy 2 1
armory 2 1
rind 1 1

Table 5. WordNet has more French glosses than MUSE. Each cell, /,j, counts the number of
words with i glosses in WordNet and j glosses in MUSE

Glosses in MUSE

Glosses in WordNet 1 2 3 4 5

1 3880 1021 304 163 50
2 2305 877 342 151 40
3 1394 652 266 118 27
4 854 440 187 83 36
5 578 331 152 66 19
6 326 198 119 62 28
7 269 165 90 43 12
8 175 135 64 36 17
9 129 85 50 32 6

10+ 381 384 297 195 68

585

Bar-Hillel’s concerns. WSD could be treated as a supervised machine learning problem because
of an interaction of word senses and glosses, as illustrated in Table 6 (Gale, Church, and Yarosky

1992).

How effective are WordNet and MUSE on examples such as those in Table 62 Unfortunately,
WordNet glosses both bank.n.01 and bank.n.06 with banque, even though the definitions and
examples make it clear that bank.n.01 is a river bank, and bank.n.06 is a money bank. Similarly,
WordNet glosses for drug mention drogue but not médicament, possibly because this legal/illegal
distinction is less salient in English. It is well known in lexicography that monolingual concerns
are different from bilingual concerns. One should not expect a taxonomy of English synsets to
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Table 6. Interaction between word sense (English) and glosses (French)

English Sense French Sense French
bank money banque river banc

drug illegal drogue legal médicament
sentence judicial peine grammatical phrase

duty tax droit obligation devoir

land property terre country pays
language medium langue style langage
position place position job poste

generalize very well to all the worlds’ languages. Thus, we see gaps across languages as a better
opportunity to improve WordNet than gaps within English. Miller already thought quite a bit
about coverage within English, but not so much about coverage across languages.

In short, spot checks are not encouraging; the coverage of glosses in WordNet and MUSE are
probably inadequate for WSD applications, at least in the short term, where other approaches to
WSD are more promising. Longer term, we see WSD applications, especially in a bilingual con-
text, as an opportunity to test KGC, with less risk of leakage than benchmarks such as WN18RR.
That is, the task is not to predict held-out edges but to predict translations of polysemous words
into other languages. There is no shortage of testing and training material for this task, given
how much text is translated, and how many of those words are polysemous. For a task like this,
one might expect methods based on Machine Translation (Wu et al. 2016) and/or BERT/ERNIE
Transformers (Devlin et al. 2019; Sun et al. 2020) to offer stronger baselines than traditional KGC
methods.

4.2 WordNet as a database: Unifying BLI and KGC

Thus far, we have been treating bilingual lexicons and knowledge representation as separate
problems, but there are aspects of both in WordNet, which become more salient when we view
WordNet as a simple database. The proposed database view factors some facts into tables that
depend on language, and other facts into tables that are language universal.

This database view of WordNet combines various aspects of both MUSE and WN18RR.
WordNet has glosses over multiple languages (like MUSE), as well as relations over entities (like
WNI18RR). The schema is a bit more complicated than both MUSE and WN18RR because there
are multiple tables (some depend on language and some do not), and three types of entities:
synsets, lemmas, and strings (glosses, examples, and definitions).

1. Synset relations: < h, r, t > where h (head) and ¢ (tail) are synsets and r is a member of a
short list of relations on synsets (e.g., is-a, part-of).

Definitions: maps 118k synsets to definitions (English strings).
Examples: maps 33k (of 118k) synsets to examples (English strings).
Synset2lemmas: maps synset to 0 or more lemmas in 29 languages

Lemma Glosses: maps lemma objects to glosses (strings) in 29 languages

AR

Lemma Relations: < h, 1, t, lang >, where h and ¢ are lemmas and r is a member of a short
list of relations on lemmas (e.g., derivationally related forms, synonyms, antonyms, and
pertainyms), and lang is one of 29 languages.
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Table 7. Sizes of WordNet tables

Table Rows Schema Universal?

Synset Relations 198k < head, rel, tail > Universal
Definitions 118k synset — def (str) Currently, English
Examples 33k synset — {example(str)} Currently, English
Synset2lemmas 118k synset x 29 lang — {lemmay} Language Specific
Lemma Glosses 459k lemma x 29 lang — {gloss(str)} Language Specific
Lemma Relations 2.9M < head, rel, tail, lang > Language Specific

Sizes of these tables are reported in Table 7. This view was extracted using a very simple
program based on the NLTK interface to WordNet.”

It would be worthwhile to move some relations from the language-specific Lemma Relations
table to the language universal Synset Relations table, but doing so would require refactoring
WordNet in ways that probably require considerable effort. For example, there are many more
antonyms in English than in other languages, not because English has more antonyms, but because
the community has not yet made the effort to port antonym relations to other languages. It
would be even better, perhaps, to move antonym relations from the language-specific Lemma
Relations table to the language universal Synset Relations table, but that is likely to be a substantial
undertaking.

In short, while WordNet is far from complete, and remains, very much, a work in progress, it is,
nevertheless, an amazing resource. In comparison to benchmarks such as MUSE and WN18RR,
WordNet has a number of advantages. In addition to coverage, the schema reflects that fact that
considerable thought went into WordNet. WordNet is not only Miller’s last (and perhaps greatest)
accomplishment, but it has also benefited by years of hard work by a massive team working around
the world in many languages. There are undoubtedly ways for machine learning to contribute,
but such contributions are unlikely to involve simple techniques such as rotations and transitivity.
There are likely to be more opportunities for machine learning to capture generalizations across
languages than within English because Miller was thinking more about English and less about
other languages.

5. History and motivation for BLI and MUSE benchmark

The previous section proposed a unified view of BLI and KGC, where WordNet can be viewed as
combining aspects of both literatures. Obviously, the two literatures have quite different histories.

BLI has received considerable attention in recent years (Mikolov et al. 2013; Irvine and
Callison-Burch 2013; Irvine and Callison-Burch 2017; Ruder, Vuli¢, and Segaard 2017; Artetxe,
Labaka, and Agirre 2018; Huang, Qiu, and Church 2019), though the idea is far from new
(Rapp 1995; Fung 1998). BLI starts with comparable corpora (similar domains, but differ-
ent language and different content), which are easier to come by than parallel corpora (literal
sentence-for-sentence translations of the same content).

BLI is not on the critical path toward the goal when there are other methods that work better.
When we have parallel corpora, we should use them. The technology for parallel corpora (Brown
et al. 1993; Koehn et al. 2007) is better understood and more effective than the technology for

"https://github.com/kwchurch/Wordnet_tables.
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comparable corpora. The opportunity for comparable corpora and BLI methods should be a Plan
B. Plan A is to get what we can from parallel corpora, and Plan B is to get more from comparable
corpora.

Much of the recent BLI work focuses on general vocabulary, but the big opportunity for BLI
is probably elsewhere. It is unlikely that BLI will be successful going head-to-head with parallel
corpora on what they do best. Hopefully, terminology is a better opportunity for BLL

Comparable corpora were proposed in the 1990s, as interest in parallel corpora was beginning
to take off. It was clear, even then, that availability of parallel corpora would be limited to unbal-
anced collections such as parliamentary debates, (Canadian Hansards® United Nations,? Europarl
Koehn 2005). Lexicographers believe that balance is very important, as discussed in Section 6.1 of
Church and Mercer (1993). Fung proposed comparable corpora to address concerns with balance.
She realized early on that it will be easier to collect balanced comparable corpora than balanced
parallel corpora.

If one wants to translate medical terms such as MeSH,4 parliamentary debates are unlikely to
be helpful. It is better to start with corpora that are rich in medical terminology such as medi-
cal journals. There are some small sources of parallel data such as the New England Journal of
Medicine (NEJM)," and much larger sources of monolingual data such as PubMed.® At Baidu, we
can find some comparable monolingual data in Chinese (though it is difficult to share that data).

We would love to use BLI methods to translate the more difficult terms in PubMed abstracts.
Obviously, many of these terms are not well covered in parallel corpora mentioned above (NEJM is
too small, and parliamentary debates are too irrelevant). Unfortunately, technical terms are chal-
lenging for SOTA BLI methods, because BLI methods are more effective for more frequent words
(and technical terminology tends to be less frequent than general vocabulary, even in medical
abstracts).

Lexicographers distinguish general vocabulary from technical terminology. Dictionaries focus
on general vocabulary, the words that speakers of the language are expected to know. Dictionaries
avoid technical terms, because there are too many technical terms (too much inventory), and
the target market of domain experts is too small (insufficient sales). Only a relatively small set
of domain experts care about technical terms, but everyone cares about general vocabulary. The
marketing department can reasonably plan on selling a dictionary on general vocabulary to a large
market; it is harder to make the business case work for specialized vocabulary given the smaller
market (and larger inventory costs). If BLI could make a serious dent on inventory costs, that
might change the business case.

There is a need for a solution for specialized vocabulary. People are not very good at translating
terminology. Professional translators live in fear of terminology. Everyone in the audience knows
the subject better than the translators. Translators would rather not make it clear to the audience
that they do not know what they are talking about. Terminology mistakes are worse than typos.
With a typo, there is a possibility that the author knew how to spell the word but failed to do so.
On the other hand, terminology mistakes make it clear to all that the translator is unqualified in
the subject matter.

In computational linguistics, there is a tendency to gloss over the difference between special-
ized vocabulary and technical terminology. Benchmarks like MUSE make it easy to view the BLI
task as a simple machine learning task, with no need to distinguish specialized vocabulary from
general vocabulary. But students that study in America have more appreciation for the translators’
predicament. These students know they cannot give their job talk in their first language because
they do not know the terminology in their first language.

°https://catalog.ldc.upenn.edu/LDC95T20.
Phttps://catalog.ldc.upenn.edu/LDC94T4A.
dhttps://www.nlm.nih.gov/mesh/meshhome.html.
"https://github.com/boxiangliu/med_translation.
Shttps://www.nlm.nih.gov/databases/download/pubmed_medline html.
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Table 8. MLI(monolingual lexicon induction) results for challenging
test set of 10k PubMed terms (ranks 50-60k). P@1 is disappointing
when embeddings are trained on relevant data (and worse when
trained on irrelevant data)

P@1 Mean Scorel
PubMed 0.425 0.49
Crawl 0.088 0.36
Wiki 0.039 0.33
GNews 0.016 0.34
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Figure 1. BLI technology is more effective for high-frequency words. Accuracy is better for high rank (top), large score;
(middle) and large gap between score; and score; (bottom).

Current BLI technology may be effective for general vocabulary (the top 50k words), but BLI
is less likely to be effective for relatively infrequent terminology as shown in Table 8. None of the
P@1 scores in Table 8 are encouraging. P@1 is better when embeddings are trained on relevant
data than irrelevant data, but P@1 is not particularly encouraging for difficult terms, even when
trained on relevant data.

Table 8 and Figure 1 are based on a method we call monolingual lexicon induction (MLI). MLI
is like BLI except that both the source and target embeddings are in the same language. In this case,
the two embeddings were trained on two samples of PubMed abstracts (in English). The task is to
learn the identity function. Can BLI methods discover that technical terms translate to themselves
(when the source and target language are the same)? If not, BLI methods are even less likely to
work when the source and target language are different. The plots in Figure 1 are smoothed with
a simple logistic regression model for clarity.
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The main point of Figure 1 is the decline of BLI effectiveness with rank. BLI is relatively effec-
tive for low-rank (high-frequency) words, but less effective for high-rank (low-frequency) words.
This may well be a fundamental problem for BLI. There may not be a sweet spot. BLI may not
be on the critical path toward any goal. For high-frequency words (general vocabulary), there are
better alternatives (parallel corpora), and for low-frequency words (specialized vocabulary), BLI
is relatively ineffective.

Figure 1 makes a couple of additional points: BLI is more effective when (a) score; is large and
(b) score; is not.

1. score;: cosine of query term and top candidate (appropriately rotated), and
2. scorey: cosine of query and next best candidate.

This might suggest a more promising way forward toward a reasonable goal. There is hope that
we could use features such as score; and score; to know which terms are likely to be translated
correctly and which are not. BLI might be useful, even with fairly low accuracy, if we knew when
it is likely to work, and when it is not. Unfortunately, benchmarks such as MUSE encourage opti-
mizations that are not on the critical path toward a reasonable goal and discourage work on more
promising tasks such as reject modeling.

Currently, machines are better than people for some tasks (e.g., spelling), and people are better
than machines for other tasks (e.g., creative writing). Machines have an unfair advantage over peo-
ple with spelling because machines can process more text. If BLI really worked, then terminology
would be more like spelling than creative writing.

To conclude, comparable corpora were introduced almost 30 years ago to address lexicogra-
phers’ concern with balance and translators’ concerns with terminology. Since then, the emphasis
has moved onto benchmarks and SOTA numbers. But this emphasis on numbers is probably not
addressing realistic goals such as the original motivations: balance and terminology.

BLI should not compete with parallel corpora on general vocabulary, where BLI is not on the
critical path (because parallel corpora work better than comparable corpora for general vocab-
ulary). BLI could be useful, if it returned to the original motivations. In particular, there may be
opportunities for BLI technology to play a role in terminology, especially in relatively modest glos-
sary construction tools (Dagan and Church 1994; Justeson and Katz 1995; Smadja, McKeown, and
Hatzivassiloglou 1996; Kilgariff et al. 2004).

6. Conclusions

Benchmarks have a way of taking on a life of their own. We have a tendency to take our
benchmarks too seriously. Feynman warned us not to fool ourselves:

The first principle is that you must not fool yourself—and you are the easiest person to fool

Benchmarks can be like the misleading internal metrics that Goldratt warned us about. Given
how much work has gone into developing methods based on the benchmarks, there should be
more concern in the literature about goals. Why do we believe that optimizing scores on MUSE
and WN18RR will bring us closer to larger goals like BLI and KGC? Is there evidence that systems
that do well on these benchmarks generalize to problems that we care about?
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