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Ineffective diffusivity
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An important problem in passive scalar transport is to parametrize the effect of a
fluctuating component of the flow, in order to overcome a limited resolution. A local
effective diffusivity is one such parametrization, and over the years there have been
many different suggestions for ‘closures’ that relate the advective flux to gradients of the
mean concentration. Souza et al. (J. Fluid Mech., 2023, in press) introduce a stochastic
framework where the local effective diffusivity is replaced by an exact effective diffusivity
operator. By computing this operator for various examples, they quantify deviations from
the local approximation, which can suggest areas of improvement and novel closure
models.
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1. Introduction

Heat flows from hot to cold: it is the (second) law. This common-sense observation can be
put into mathematical terms with the formula

f = −κ ∇θ. (1.1)
That is, the heat flux vector f is proportional and opposite to the gradient of the
temperature field θ(x, t), with proportionality constant given by the thermal diffusivity
of the medium. Equation (1.1) applies in solids and quiescent fluids, and also to scalar
quantities other than heat, such as the concentration of a pollutant; in that case (1.1) is
known as Fick’s law and κ is simply a diffusivity, without the adjective ‘thermal’.

Everyday experience suggests that (1.1) can not be quite right, since the thermal
diffusivity of air is minuscule, and yet we can still heat our houses in the winter. The
reason is that heat is transported predominantly by the motion of the fluid – small air
currents in a room, driven by buoyancy and other processes, lead to a much more rapid
homogenization of temperature than expected. In fact, it almost seems as though

〈 f 〉 = −κeff ∇〈θ〉, (1.2)
that is, the average heat flux is linear in gradients of the average temperature, with an
effective diffusivity κeff that can be much, much larger than the molecular value κ .
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(The meaning of the average in (1.2) will be discussed below.) The ansatz (1.2), which
dates back to the early days of turbulence theory, expresses the beautiful dream that
turbulence functions as a random process similar to molecular collisions, only with a
much longer effective mean free path. And indeed, this viewpoint has proved immensely
successful in many physical systems; the problem is that real flows, and real turbulence,
contain a mixture of scales and processes, including waves, coherent structures, boundary
effects and eddies, all of which can lead to correlations locally and globally. (See the
lectures by Young (1999) for a nice introduction, or the reviews by Ottino (1990) and
Warhaft (2000).)

For modern applications, a model such as (1.2) is needed in any computer code for
the simulation of large-scale ocean and atmospheric processes. We do not have access to
measurements of the smallest scales in the ocean, and even if we did we would not have
the capacity to simulate their effect. Therefore, all modern computer codes parametrize the
small scales in a flow in some effective manner, with the crudest being (1.2). This approach
will work well if there is a clear scale separation: if we can see where the large-scale ends,
and where the small scales begin. And even then, we have to properly take into account
the couplings between the scales.

What Souza et al. propose is to do away with this ad hoc scale separation, and instead
view the effective diffusivity as an operator,

〈 f 〉 = −
∫

K(x | x0) · ∇0〈θ0〉 dx0, (1.3)

where K is a tensorial kernel, allowing for anisotropic diffusion. They use a series of
increasingly complex examples where they can compute K explicitly or numerically. The
structure of K then tells us much about the nature of transport in the system. For example,
if K is a delta function, or close to it, then a description using a local effective diffusivity
will work well.

2. The closure problem

Let us briefly review the mathematical model used in Souza et al.. The concentration
field θ(x, t) of a passive scalar, advected by a random velocity field u(x, t), with constant
scalar diffusivity κ and a source s(x), obeys the advection–diffusion equation

∂tθ + ∇ · (u θ − κ ∇θ) = s(x). (2.1)

We can average this equation over realizations of the random field u, and obtain an
equation for the average 〈θ〉(x, t),

∂t〈θ〉 + ∇ · (〈uθ〉 − κ ∇〈θ〉) = s(x). (2.2)

The average here is an ensemble average over realizations of u. The closure problem arises
because in general we don’t know how to deal with the term 〈uθ〉: (2.2) is not a closed
equation for 〈θ〉. The goal of a closure is to rewrite

〈uθ〉 = O[〈θ〉], (2.3)

where O is a linear operator, in general an integro-differential operator.
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We isolate the issue by rewriting θ and u in terms of their ensemble mean and
fluctuations:

θ = 〈θ〉 + θ ′, u = 〈u〉 + u′. (2.4a,b)

Then, subtracting (2.1) from (2.2), we find

∂tθ
′ + ∇ · (u′θ ′ − 〈u′θ ′〉 + 〈u〉 θ ′ − κ ∇θ ′) = −∇ · (u′〈θ〉). (2.5)

This last equation should be interpreted with care: on the left-hand side is a linear operator
acting on θ ′, including the ensemble average 〈u′θ ′〉, which can be expressed as

〈u′θ ′〉 =
∫

u′
ωθ

′
ω dμω, (2.6)

where now we explicitly denote ensemble members by a subscript ω, and the probability
measure μω gives the relative weight of the ensemble member ω. Equation (2.6)
indicates that the left-hand side of (2.5) is an integro-differential operator involving
the variables (ω, x, t), where ω itself could be countable to indicate an atlas of fixed
velocity fields, or perhaps a continuous multidimensional variable that parametrizes
the velocity field. Assuming that this operator is invertible (i.e. it admits a Green’s
function Gωω0(x, t | x0, t0)), then the solution to (2.5) is

θ ′
ω(x, t) = −

∫
Gωω0(x, t | x0, t0)∇0 · (u′

0〈θ0〉) dx0 dt0 dμω0, (2.7)

where a zero subscript denotes a function of (ω0, x0, t0). Armed with (2.7), we can
compute the flux 〈u′θ ′〉. Souza et al. show that things simplify elegantly if we assume
that the fluid is incompressible, ∇ · u = 0 and that the statistics of u are stationary; in that
case, let

K(x | x0) =
∫

u′
ω ⊗ u′

ω0
Gωω0(x, t | x0, t0) dt0 dμω dμω0; (2.8)

then

〈uθ〉 = 〈u〉〈θ〉 −
∫

K(x | x0) · ∇0〈θ0〉 dx0 =: O[〈θ〉]. (2.9)

We have thus found the operator O for the closure (2.3), with an ‘effective diffusivity
operator’ given by

∫ K(x | x0) · •dx0. The case of an isotropic, purely local effective
diffusivity is recovered when K(x | x0) = κeff δ(x − x0) I, with I the identity tensor;
clearly in general there is no reason to expect such a simple kernel. In fact the general
kernel can even be non-symmetric, which indicates an induced drift, in addition to the
mean drift 〈u〉. Indeed, figure 1(a) depicts K(x | x0) for a simple model system. If the
effective diffusivity were purely local, the figure would show non-zero values only on
the diagonal. We can see abundant coupling away from the diagonal, and the kernel is
manifestly not symmetric.

As pointed out by Souza et al., a great benefit of (2.9) is that it is exact, given the model
assumptions. For many applications, the form of (2.9) is probably too complicated to be
of direct use. However, a proposed closure can now be couched as an approximation to K,
and having access to an exact expression should greatly help with validation. In an earlier
recent paper, some of the same authors used this formalism to numerically compute the
exact kernel K for a passive scalar in the ocean mixed layer (Bhamidipati, Souza & Flierl
2020).
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Figure 1. (a) A graphical representation of the kernel K(x, z | x0, z0) for a model flow, with (x, z) unwrapped
as a one-dimensional coordinate on each axis. (b) A comparison of the ensemble mean 〈θ〉 computed using the
exact equations, and with a local diffusivity approximation K, from (3.8). From Souza, Lutz & Flierl (2023).

3. A stochastic process and conditional means

In the present paper, Souza et al. probe the effective diffusivity kernel by computing
it exactly for some model problems. Inspired by Hopf (1952), their approach starts by
specifying the ensemble ω as arising from a stochastic process Ω(t), with a probability
density pα(t) = P(Ω(t) ∈ [α, α + dα]) that follows a master equation

∂tpα = Lα[pα] (3.1)

for some generator Lα . Then they show that the weighted conditional mean

Θα(x, t) = 〈θΩ(t) |Ω(t) = α〉 pα(t) (3.2)

obeys the equation

∂tΘα + ∇ · (uαΘα − κ ∇Θα) = s(x)pα + Lα[Θα]. (3.3)

The mean is then recovered with 〈θ〉 = ∫
Θα dμα , as is the advective flux 〈u θ〉. Note that

(3.3) itself is deterministic, even though there is an underlying random process, and is also
autonomous – time does not appear explicitly and we are looking for a steady solution.

As a simple example, Souza et al. look at a stochastic Rossby wave system from Flierl
& McGillicuddy (2002), where the velocity uα is given by a stream function

ψω = sin(x + ω) sin(πy), (x, y) ∈ [0, 1] × [0, 2π], (3.4)

where ω is a random phase angle, which obeys the stochastic process ω = Ω(t):

dΩ = c dt +
√

2ε dW. (3.5)

Here c is a constant angular velocity, and W(t) is a standard Brownian motion. The master
equation (3.1) is taken to be a Fokker–Planck equation

∂tp = ∂α(−cp + ε2 ∂αp). (3.6)

The Fokker–Planck equation (3.6) together with (3.3), with source

s(x, y) = sin(x) sin(πy)+ cos(2x) sin(πy), (3.7)

can then be solved in various ways, for instance by discretization of the flow pattern into
a finite set of states. Souza et al. extract an effective diffusivity operator, which can then
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be compared with the Taylor–Green–Kubo approximation for the local diffusivity (Taylor
1921),

K =
∫ ∞

0
〈u(x, t + τ)⊗ u(x, t)〉 dτ = 1

4

[
π2 cos2(πy) −π cos(πy) sin(πy)

π cos(πy) sin(πy) sin2(πy)

]
.

(3.8)

Figure 1 compares the ‘exact’ (numerically obtained) mean 〈θ〉 with the mean obtained
using the local diffusivity approximation (3.8). Indeed, there are visible deviations,
indicating that the local approximation is flawed.

Of course, there remains an important problem: how to take a real time-dependent
velocity field, either observed or numerically simulated, and model it as a series of random
states. The authors discuss this by showing that what are essentially Koopman modes
(Budišić, Mohr & Mezić 2012) can be used to break up a system into a discrete set of
states. (Souza (2023) explores this idea further in a new preprint.) The strength of the
current paper is that it builds a strong mathematical foundation for further study – after
all, experience shows that ad hoc models are short lived and easily replaced, whereas
models grounded in mathematics, even if imperfect, are revisited over and over again
and eventually lead to significant breakthroughs. A precise definition of the effective
diffusivity operator should help clarify the quality of a closure approximation, by testing
in simple cases and then in more complex ones. Finally, a precise definition opens the way
to more refined mathematical analysis, either by allowing a systematic use of asymptotics
to derive closure models, or by providing an impetus for rigorous mathematical work.
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