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Abstract

It is shown that (n being an integer) any non-trivial finite linear space with n2 - 1 points, all
of degree at most n + 1, is embeddable in a finite projective plane of order n. This generalizes a
theorem of Bose and Shrikhande and settles the unsolved case n = 6.

1. Introduction

We shall follow the terminology and notation of several previous papers,
mentioned in the reference list. Nevertheless, it may be useful to recall the
meaning of a few important terms and symbols. By a finite linear space
( = FLS) is meant a finite set of p so-called points together with a set of q
subsets of points, called lines, such that every pair of distinct points is included
in precisely one line and every line contains at least two points. If there are at
least two lines, the FLS is said to be non-trivial. Professor Szekeres was one of
the first to show that q ^ p in any non-trivial FLS.

The number of points on a line x will be denoted by a(x) and called the
degree of x. Similarly, the number of lines through a point u will be denoted
by b(u) and called the degree of u. A k-line is a line of degree fe, and a
k-point is a point of degree k. If there is a line of degree p - 1, the FLS is
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called a near-pencil. If all lines are of degree two, the FLS is called a complete
graph. Two lines are said to miss each other if they are disjoint; they are
called parallel if they are equal or disjoint. Note that disjointness and
parallelism need not be transitive.

Let us also mention that most of the time the points and lines of an FLS
will be denoted by the symbols ua ( l S a S p ) and xa ( l S o - g q ) respec-
tively, introduced so that a S= /3 implies b{ua)= b(up) and er S x implies
a(xCT)g a(xT). For brevity's sake, we shall write ba for b(ua) and aa for a(x^).
In accordance with this, the expression fc, £ n + 1 will mean that there are no
points of degree > n + 1. The incidence number of a point ua and a line JCCJ,

defined as 1 if ua lies on x,, and as 0 if it does not, will be denoted by raa.

A finite projective plane ( = FPP) of order n ( g 2) is nothing but an FLS
such that p = q = n2+n + l and a,, = ba = n + 1 for all xa and ua; and a /ini'te
o^ine plane ( = FAP) o/ order n is an FLS such that p = q ~ n - n2 and
a,, = ba - 1 = n for all xa and ua.

By an s-curve in an FPP of order n will be meant any subset of s points
no three of which are collinear. It was shown by Bose (1947) that s ^ n + 2
and that s = n + 2 can only occur if n is even. Further basic properties were
given by Qvist (1952).

By the complement of an s-curve is meant the FLS obtained by removing
all its points from the FPP it is part of. It is not hard to show that the
complement of an s-curve in an FPP of order n satisfies the following
conditions (assuming that s § 1 if n = 2):
(A) There are p = n2+n + l-s points, all of degree n + 1.
(B) There are q = n2 + n + 1 lines, of which s(s - l)/2 are of degree n - 1,

s(n + 2 — s) of degree n, and the remainder of degree n + 1.
(C) If a point lies on t lines of degree n, then it lies also on n + 1 - (s + t)/2

lines of degree n + 1 and on (s — t)/2 lines of degree n — 1. Hence s g /
and s = / (mod 2).

It follows from (B) and (C) that t = 0 if s = n + 2. Consequently, the
complement of an (n + 2)-curve in an FPP of even order n ( g 4) satisfies the
following conditions:
(a) There are p = n2 —\ points, all of degree n + 1.
(b) There are q = n2 + n + 1 lines, of which (n + 2)(n + l)/2 are of degree

n - 1 and n{n - l)/2 of degree n + 1.
(c) Every point lies on n/2 lines of degree n + 1 and on (n + 2)/2 lines of

degree n — 1.

This leads to the question whether a sort of converse holds. More
precisely, does the assumption that an FLS satisfies the conditions (A) (B) (C)
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with n g 2 imply that an FPP of order n exists and that the FLS is embeddable
in one? A positive answer in the case of (a) (b) (c) with n^ 6 was found by
Bose and Shrikhande (1973); see also p. 65 of Bose (1973). Remarkably
enough, they had to apply a well-known theorem on the characterization of
the line graphs of the complete graphs Km, which occurs in Harary (1969) as
Theorem 8.6, for m/8. The main purpose of this paper is to settle the
exceptional case n = 6, which is rather intriguing in view of Tarry's theorem
on the nonexistence of FPP's of order six. It will be shown that no FLS
satisfies the conditions (a) (b) (c) when n = 6 (cf. Theorem 1 in Section 4). In
fact, we shall also prove that these conditions suffer from a considerable
degree of redundancy (cf. Corollaries 1 and 2 and Theorem 2 in Section 4).
The corollaries do not involve much novel work, but Theorem 2 requires two
particular cases, stated in Section 3 as P7 and P8, of the following embedding
result: / / n is an integer s 2 and !£ a non-trivial FLS such that p S n2 and
ftiSn + 1, then it is embeddable in an FPP of order n. Note that P7 is nothing
but the finite case of Kepler's extension of affine planes to projective planes,
based on his celebrated invention of points "at infinity" lying on a line "at
infinity".

An immediate consequence of Theorem 2 and the above embedding
result is the

THEOREM: // n is an integer g 2 and !£ a non-trivial FLS such that
p g n2 — 1 and d . g n + l, then i? is embeddable in an FPP of order n.

This shows that a positive answer can always be given to the italicized
question above, whatever the values of H ( 2 2), S, ( in the superabundant
conditions (A) (B) (C). In looser terms, a small amount of well-chosen
information about the complement of an s-curve always allows the recon-
struction of the s-curve itself.

The theorem just obtained also bears upon another problem of linear
geometry, of which I only became aware after completing the first draft. It is
well known that a non-trivial FLS with b, § n + 1 satisfies p § n ! + n + l and
that this maximum is reached only in the case of the triangle and of an FPP of
order n. This suggests the question what the maximal number of points is
when the integer n (=£ 6) is not the order of any FPP. Denoting it by po(n), we
see that the above theorem implies p o (« )=n 2 -2 . Both these results have
already been obtained by Vanstone (1974) except when n = 6. His proof is
cast in the language of "(r, A)-designs" or "regular pair-wise balanced
designs". As to n = 6, he only got po(6)S n2 - 1 = 35. But he also observed
that p<>(6) § 31 in view of the existence of an FPP of order five, and he showed
by a long calculation that pa(6)/33, 34. The main new contribution of the
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present paper to this problem is therefore the result p,,(6) / 35, leaving us with
only two conceivable values for p,,(6).

It will be shown by rather elementary means (in Corollary 4 of Section 4)
that (n being an integer) any FLS with p g n 2 - l and M n + 1 satisfies
q S n2 + n + 1. That n 2 - l S p g q S n 2 + n + l implies d, g n + l in general,
on the other hand, turns out to be a great deal more difficult. A substantial
advance on the present results is therefore made in a forthcoming paper
establishing the embeddability of most FLS's with n 2 - l g p s ^ s
n2 + n + 1.

I should like to thank Dr Scott Vanstone for having supplied me with a
copy of his thesis, Dr Jim Totten and the referee for some useful suggestions,
and my wife for her material and spiritual help.

2. Prerequisites from graph theory

We assume that all graphs are finite, without loops or multiple edges, but
not necessarily nonempty. The characterization theorem referred to above
may be stated as follows. Let m be a natural number and G a graph satisfying
the four following conditions:
I. there are m(m - l)/2 vertices;
II. every vertex has 2(m - 2 ) neighbours;
III. every two adjacent vertices have m —2 common neighbours;
IV. every two non-adjacent vertices have four common neighbours.
Then G is the line graph of the complete graph Km or one of three exceptional
graphs, all with m = 8.

This theorem is easy for m S 4. It is due to W. S. Connor for m g 9, to S.
S. Shrikhande for m = 5, 6, to A. J. Hoffman for m =7, and to Chang
Li-chien and A. J. Hoffman for m = 8. For a complete proof, see Chang
(1959, 1960). As Chang's papers are not easily available in general, descrip-
tions of the three exceptional graphs may be of some use.

EXCEPTIONAL GRAPH I:

vertex

1
2

3
4
5
6
7
8
9

2 3

1 3

1 2

1 2

1 2

1 2

1 2

1 2

1 3

4
4
4
3
3
4
5
6
4

its

5
5

5
5

4
7
6
7
6

twelve

6
6
9
6
7
8
8
11
10

neighbours

7
7
10
9
10
9
10
12
11

8
8
11
12
13
12
13
13
12

9
14
14
14
14
17
17
16
19

10
15
15
15
15
18
18
17
20

11
16
16
21
21
22
24
18
22

12
17
19
22
24
23
25
27
23

13
18
20
23
25
26
26
28
26
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

1
1
1
1
2
2
2
2
2
3
3
4
4
4
5
5
6
8
8

3
3
4
5
3
3
3
6
6
9
9
5
6
6
7
7
7
11
11

EXCEPTIONAL GRAPH II:

vertex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

2
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
3
3
4
4
5
5
6
6
7
8

3
3
2
2
2
2
2
2
3
3
3
4
4
3
3
3
5
6
5
9
6
9
7
8
7
8
9
9

5
8
6
7
4
4
8
7
7
10
10
12
9
9
10
10
9
12
12

4
4
4
3
3
4

5
5
4
5
5
6
6
4
4
4
7
7
10
10
12
12
10
11
10
11
10
11

Paul de

7
9
8
8
5

5
11
8
8
11
11
13
12

12
13
13
10
13
13

9
10
9
10
15
14
14
14
15
14
15
14
14

15
14
15
17
14
15

its twelve

5
5
5
6
7
7
6
6
10
7
8
7
8
5
6
9
8
8
11
11
13
13
12
13
12
13
12
13

6
6
9
9
8
8
8
7
11
9
9
9
9
15
14
14
14
15
14
15
14
14
14
14
15
15
16
16

Witte

11
12
11
11
16
16
15
16
16
16
16
15
17

18
17
18
18
16
16

13
13
13
12
17
18
17
18
17
17
18
22
19

20
19
20
19
17
18

neighbours

7
7
10
12
10
12
10
11
12
11
10
10
11
16
16
15
16
16
15
16
15
16
17
17
18
18
17
17

8
8
11
13
11
13
12
13
13
12
13
13
12
17
18
17
18
17
20
18
19
17
19
19
19
19
18
18

19
16
21
21
19
20
18
19
20
20
19
23
21

21
21
21
20
19
20

9
14
14
14
14
15
17
17
16
19
19
21
21
19
19
18
22
20
21
19
22
21
21
21
20
20
20
20

20
19
22
24
21
21
19
22
23
22
23
24
23

22
22
23
22
21
21

10
15
15
15
17
18
18
18
20
20
20
22
22
21
20
20
23
25
23
25
23
23
22
22
21
21
22
22

24
20
23
25
22
23
20
24
25
24
25
25
24

25
25
24
23
22
23

11
16
16
16
19
21
23
24
22
23
24
23
24
22
21
22
24
26
24
26
24
24
24
23
23
24
23
24

25
27
27
27
24
25
27
26
26
26
26
27
26

26
26
26
24
24
25

12
17
19
21
23
25
25
26
27
25
26
25
26
23
25
27
27
27
25
27
25
27
25
26
26
25
25
26

[51

26
28
28
28
27
28
28
27
28
27
28
28
27

28
27
28
25
28
27

13
18
20
22
24
26
27
28
28
27
28
27
28
24
26
28
28
28
26
28
26
28
27
28
27
28
28
27
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EXCEPTIONAL GRAPH III:

Applying the permutation (3,7) (4,8) (10,12,15) (9,17,14,18,16,13)
(22,24,28) (19,23,26,21,27,20,25) to Chang's original numbering of the
vertices, we obtain a more economical description, with the vertices 3 to 8 and
19 to 28 having the same sets of neighbours as in graph II. For the twelve
remaining vertices, the situation is as follows:

vertex

1
2
9
10
11
12
13
14
15
16
17
18

2
1
1
2
1
1
2
2
1
2
1
2

3
3
3
3
3
4
4
3
3
3
5
6

4
4
4
5
5
6
6
4
4
4
7
7

its

5
5
11
7
8
7
8
5
6
9
8
8

twelve

6
6
12
14
9
9
14
10
9
10
9
10

neighbours

7
7
15
16
15
15
16
13
11
13
11
13

8
8
16
18
17
17
18
16
12
14
12
16

9
10
17
19
19
21
21
19
19
18
22
20

11
13
20
20
20
22
22
21
20
20
23
25

12
14
22
23
24
23
24
22
21
22
24
26

15
16
27
25
26
25
26
23
25
27
27
27

17
18
28
27
28
27
28
24
26
28
28
28

The proof of Theorem 1 in Section 4 will be based on the fact that these
three exceptional graphs contain subgraphs that are not realizable in our
geometric context. In exceptional graph I, the vertices 13 and 28 are adjacent;
their six common neighbours induce the subgraph shown in Fig. 1. In
exceptional graphs II and III, the vertices 1 and 2 are adjacent; their six
common neighbours induce the subgraph shown in Fig. 2. Moreover, the

27 Fig. 1

Fig. 2
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Fig. 3

vertices 22, 23, 24, 27, 28 induce the subgraph shown in Fig. 3. We shall also
need the fact that, among the vertices 1 to 8, only 4 is a neighbour of vertex
22, only 7 one of vertex 27, only 8 one of vertex 28, only 5 and 7 are
neighbours of vertex 23 and only 5 and 8 neighbours of vertex 24.

3. Prerequisites from linear geometry

The following results PI to P5 are basic and well-known properties of
FLS's; for proofs, see — for instance — de Witte (1975a). Both P6 and the
embedding result, mentioned in Section 1 and of which P7 and P8 are
particular cases, will be found in de Witte (1975b). A good idea about the way
to prove them can be obtained from Section V.I of Totten (1974). The
embedding result has also been found by Vanstone (1974), who announced it
shortly after a first and weaker version of de Witte (1975b) was circulated
under the title 'On the embeddability of restricted linear spaces' (Waterloo,
April-May 1973). The two lemmas have been "distilled" from
Bose-Shrikhande (1973): redundant assumptions have been cut out and the
proofs have been adapted accordingly.

PI. For all ua, we have p = 1 + 1.crr,ra(a,, ~ 1).

P2. Any line xa meets 1 + S,,rfm(b,, - 1) lines, itself included.

P3. If ua lies outside xir, then ba - a,T counts the number of lines passing
through ua and missing xa. Hence, if b, = n + 1 §? 2, then a , S n + l and any
(n + l)-line meets every (other) line.

P4. If b, = a, = n + 1, then q t^ n~ + n + 1 and equality holds iff all points
are of the same degree.

P5. If a,r = a for all *„, then ba = b for all «„, with b = (p - l)/(a - 1).
Moreover, if b = a + m, then a divides m(m — 1). In particular, if m =2 , then
a = 2 and p = 5, i.e. the FLS is the complete graph on five points.
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P6. If ba = n + 1 for all ua, q = n2 + n + 1 and p = n2 - 1, then
Y.a(aa-n)2= q.

P7. Any FAP is embeddable in an FPP of the same order.

P8. Any non-trivial FLS such that p = n2, ba = n + 1 for all ua and
a, = a2 = n + 1 is embeddable in an FPP of order n ( S 3 ) .

LEMMA 1. In any FLS with q = n 2 + n + 1 a n d £)„ = n + 1 for all ua, the
following properties hold:
(1) any (n - I)-line misses 2n lines;
(2) if two (n - l)-lines miss each other, then there are n lines missing them
both;
(3) if two distinct (n - l)-lines meet each other, then there are four lines missing
them both.

PROOF. By P2, any (n — l)-lihe xa misses

q - 1 - 2 r<™{ba ~ 1) = n2 + n - naa = In

lines. Next, let the (n - l)-lines x and y miss each other. By P3, through each
point of AC there is still one other line missing y. Hence, of the 2n lines missing
y there are n that meet x and so n that miss x. Finally, let the distinct
(n - l)-lines x and y both pass through w. By P3, through each point / w of
x there are two lines missing y. Hence, of the 2n lines missing y there are
2(n - 2) that meet x and so four that miss x. Q.E.D.

NOTE. If a,, = n ± 1 for all xm then P3 implies that all the missing lines
mentioned in Lemma 1 are of degree n — 1.

LEMMA 2. Let J£ be an FLS with ba = n + 1 for all ua, aa = n ± 1 for all x^
and with the graph defined on the set of (n — \)-lines by the disjointness relation
equal to the line graph of the complete graph K, (s g 2). Then i£ is embeddable
in an FPP of even order n ( = 4). Moreover, s = n + 2 and p = n2 - 1.

PROOF. Since s g 2, the line graph of Ks is nonempty. Hence there are
(n - l)-lines, and so n is an integer g 3. It is then clear that there is a bijection
between the(n - l)-lines and the pairs{(',/} where i and / are distinct integers
from 1 to s, in such a manner that two (n - l)-lines are disjoint iff the
corresponding pairs have one integer in common.

Then !£ can be extended as follows. For each integer i from 1 to s, a new
point up+, is introduced, and to each (n - l)-line two new points are added,
namely wp^ and MP+/ to the line (corresponding to the pair) {/,;'}. The
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(n + l)-lines are left untouched, and no new lines are introduced. We claim
that the resulting structure if* is an FPP of order n. Clearly all its lines are of
degree n + 1 (=£ 4); so we need only show that (a) every pair of distinct points
is included in at least one line and that (b) every two distinct lines have
precisely one point in common.
(a) This requires proof only if at least one of the points is new. If both are
new, up+i and up+i say, then they belong to the extended line {i, j}. If one is old
and one new, ua and up+i say, and ua did not lie on the (n — l)-line {/,/}, then
we know from P3 that there were two (n - 1)-Iines through ua that missed the
line {i,j}. They correspond to pairs {i,k} and {/,k'} with k^ k'. Clearly both
ua and up+l belong to the extended line {i,k}.

(b) If at least one of the lines was an (n + l)-line in if, then it met every other
line in one point of if. Now no new points have been added to it. If both were
(n — l)-lines in if, corresponding to {i,/} and {/', k} say, then consider
E = {i,j}n{i',k}. If E is empty, then the lines {/,/} and {i',k} met in one
point of if and their extensions cannot meet in any new point. If £ is a
singleton, say i = i', then the lines {i,j} and {i, k} were disjoint in if and their
extensions meet in one new point, namely up^,.

Hence if is an FLS with p = n2+n + \~ s points. Now the n + \ lines of
if* passing through up^s must all be extensions of (n - l)-lines in if and all
new points /• up^s must lie on precisely one of them; so n + 1 = s — 1 and
p = n2 — 1.

Finally, it will follow from Lemma 3 that the number of (n + 1)-Iines
through any point equals n/2; so n must be even. Q.E.D.

4. Results and proofs

THEOREM 1. Let i? be an FLS satisfying the Bose-Shrikhande conditions
(a) (b) (c). Then if is embeddable in an FPP of even order n (S4).

PROOF. It is not difficult to see that n must be an even integer & 3. In
view of Lemma 1, the note following it, and the assumption about the number
of (n - l)-lines, all four conditions of the characterization theorem in Section
2 are satisfied for m = n + 2 by the graph G defined on the set of (n - l)-lines
by the disjointness relation. If G is the line graph of the complete graph JC+2,
then Lemma 2 implies that iE is embeddable in an FPP of order n. If G is not
the line graph of Kn+2, then n = 6 and G is one of the three exceptional
graphs. We must prove that this is impossible.

1. Since n = 6, if has thirty-five points, any 7-line meets every (other)
line, and there are three 7-lines and four 5-Iines through any point of if. This
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implies that, if x and y are disjoint 5-lines and u is a point lying outside both x
and y, then the four 5-lines through u show one of the following patterns:
(a) two meet both x and y, and two miss both x and y;
(b) one meets both x and y, one misses both x and y, one meets x and misses
y, and one misses x and meets y.
(c) two meet x and miss y, and two miss x and meet y.
From this it follows that, if points u and v show patterns (a) and (c)
respectively, then the line uv cannot be a 5-line.

2. With respect to any set S of 5-lines all parallel to at least one 5-line,
the weight of a point will be defined as the number of lines in S passing
through it. Since no three lines in S can pass through the same point
(necessarily of degree seven), the weight of a point will equal 0, 1 or 2. We
shall talk of null points, single points and double points respectively.
Denoting the number of lines in S by s, the number of pairs of disjoint lines in
S by t, and the number of points of weight i by p, (i = 0,1,2), we have

Po + Pi + Pi = p = 35,

p, + 2p2 = 5s,

p2+t = s(s-l)f2.

Hence

It is obvious that S corresponds to a subgraph of G with s vertices and t
edges.

Since any 7-line meets every (other) line, the sum of the weights of the
points lying on it equals s. In particular, if s = 7, then the number of double
points on a 7-line equals the number of null points on it.

3. If G is the exceptional graph I, let S be the set of 5-lines corresponding
to the vertices 8, 11, 12, 13, 21, 27, 28. Clearly s = 7, t = 1 + 2.5 + 8 = 19, and
the lines in S are all parallel to lines 13 and 28. So (*) yields po = p2

 = 2. But,
for any double point, there must be at least one null point on each of the three
7-lines passing through it. So p 2 = l implies p o g 3 . This contradicts
pa = p2 = 2.

4. / / G is the exceptional graph II or III, let S be the set of 5-lines
corresponding to the vertices 1, 2, 3, 4, 5, 6, 7, 8. Clearly s = 8, t =
1 + 2.6 + 8 = 21, and the lines in 5 are all parallel to lines 1 and 2. So (*) yields
p0 =2 , p2 = 7. Moreover, all points on lines 1 and 2 are single points. With
respect to these two disjoint 5-lines, the double points show pattern (a) and
the null points pattern (c). For the null points, this follows from the fact that
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all lines missing both lines 1 and 2 are members of S. Any line connecting a
double point to a null point must therefore be a 7-line. Now any 7-line meets
both lines 1 and 2 (in single points). So, counting the sum of the weights of its
points, we see that any 7-line contains either one double point and six single
points, or two double points, four single points and one null point, or three
double points, two single points and two null points. Consequently, the line
connecting the two null points must be a 7-line and contain three double
points. (Consider how a null point could be joined to the double points.)

It follows from Fig. 2 that the corresponding 5-lines and the seven double
points are situated as in Fig. 4, where we have denoted the double points in an
obvious fashion by 36, 37, 38, 45, 47, 48, 56. There are only two ways for a
7-line to pass through three of these double points: either through 56, 37, 48
or through 56, 38, 47. Before distinguishing these two cases, we still should
notice that a 5-line not in S and missing at most one line of S (as is the case for
lines 22, 27, 28) must pass through at least two double points. Similarly, if
it misses at most two lines of 5 (as is the case for lines 23, 24), it must pass
through at least one double point.

First, let 56, 37, 48 lie on a 7-line. Since line 22 misses line 4, it must join
the double points 56 and 38. Since line 23 misses lines 5, 7 and 22, it must pass
through 36 or 48. Since line 27 misses lines 7 and 22, it must pass through 36
and 45 or 48. But lines 23 and 27 are disjoint; so line 27 joins 36 and 45.
Consider now line 28, which misses lines 8, 22 and 27. The only double points
left for it are 37 and 47, which cannot be used together since they are already
joined by line 7.

To derive a contradiction when 56, 38, 47 are on a 7-line, it suffices to
permute the roles of lines 7 and 8, 23 and 24, and 27 and 28.

This completes the proof of Theorem 1.

LEMMA 3. Let !£ be an FLS with ba = n + 1 for all ua and aa = n ±\ for
all xa. Then every point lies on (p - n2 + n + l)/2 lines of degree n + 1 and on
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n2 + n + 1 - p)/2 lines of degree n - 1. Moreover, if 5£ has at least one line but
s not the complete graph on five points, then q = n2+n + l, with
pn + p - n3 + l)/2 lines of degree n + 1 and (n2 + n + 1 - p) (n + l)/2 lines of
degree n - 1.

PROOF. Denoting the number of (n + l)-lines through ua by sa ( l i « S

v), we find from PI that

p = 1 + nsa + (n - 2) (n + 1 - sa),

whence sa = (p - n2 + n + l)/2. Moreover, if !£ has at least one line but is not
the complete graph on five points, then P5 implies a, = n + 1. By P4, we get
q = n2+n + \. Besides, any (n + l)-line meets 1 + (n + l)(sa - 1) =
[pn + p - n* + l)/2 lines of degree n + 1. By P3, this gives the full number of
(n + l)-lines. Q.E.D.

COROLLARY 1. Let S£ be an FLS with ba = n + 1 for all ua, a,, = n ± 1 for
all xa, with at least one line, and with (n +2){n + l)/2 lines of degree n - 1.
Unless i? is the complete graph on five points, the Bose-Shrikhande conditions
(a) (b) (c) all hold and Z£ is embeddable in an FPP of even order n ( § 4 ) .

PROOF. If !£ is not the complete graph on five points, then the assump-
tions of Lemma 3 are satisfied. So

(n + 2)(n + l)/2 = (n2 + n + 1 - p)(n + l)/2,

whence p = n2- \. Then everything follows at once from Lemma 3 and
Theorem 1.

COROLLARY 2. Let i£ be an FLS with p = n2—l,ba = n + \ for all ua and
a, = n + 1, but without any n-line. Then the Bose-Shrikhande conditions (a)
(b) (c) all hold and i£ is embeddable in an FPP of even order n ( g 4).

PROOF. By P4, we have q = n2 + n + 1. Hence P6 yields £„ (aa - n)2 = q.
Since there is no n-line, this implies (a^ - nf = 1 i.e. «„ = n ± 1, for all x,T.
Moreover p^5. Then everything follows at once from Lemma 3 and
Theorem 1.

LEMMA 4. Let n be an integer and !£ a non-trivial FLS such that
p 15 n2 - 1, b, g n + 1 and a, S= n. Then p S= n2 and i£is either an FAP of order
n or a punctured FAP of order n (i.e. with one point removed).

PROOF. Clearly n S 2. By PI, we have

n2 - 1 § p = 1 + ^ rm {aa - 1)

g 1 + ( a , - l ) k § i + ( n - l ) ( n + l ) = n 2 .

https://doi.org/10.1017/S1446788700020061 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020061


76 Paul de Witte [13]

If p = n2, all inequalities are flattened out to equalities, yielding aa = ba - \ =
n for all x^ and ua. Hence if is an FAP of order n. If p = n2 - 1, the result is
obvious for n = 2. So suppose n § 3. If 6O § n, the above formula would imply
n 2 - 1 g 1 + (n - l)n, and so n S 2. Hence all points are of degree n + 1.
Denoting the number of n-lines through «„ by sa and the number of
(n - l)-lines through ua by /„, we find from PI that

n 2 - l S l + (« -l)sa + {n~2)ta + (n -3 ) (n + 1 - so - f a )

= 2so + ta + n2-2n-2,

whence In + 1 ^ 2sa + ( , § s , + n + l, and so $„ =£ n. Now *„ = « 4-1 would
imply p = 1 + (n - 1) (n + 1) = n2, which is false. Hence sa = n, and so /a = 1.
This ensures that there are no lines of degree S n - 2 and that the
(n - l)-lines partition the points of !£. Hence the number of (n - l)-lines
equals p/(n — 1) = n + 1. Introducing one new point and adding it to each of
these (n - 1)-Iines, we obtain an FLS, as can be easily verified. All its lines are
of degree n and all its points are of degree n + 1. So it is an FAP of order n.
Clearly i? can be obtained from it by removing one point. Q.E.D.

COROLLARY 3. A non-trivial FLS is an affine plane iff both (b, — I)2 § p
and a2^p hold.

PROOF. In one direction, the result is obvious. To prove the other
direction, it suffices to define n as the integral part of the positive square root
of p and to apply Lemma 4.

NOTE. Other characterizations of FAP's have recently been given in de
Witte (1974) and Totten (1975).

COROLLARY 4. Let n be an integer and Z£ an FLS such that p g n ! - l and

/>, § n + 1. Then X satisfies q S n2 + n + 1.

PROOF. The result is trivial if q § 1. So let if be non-trivial. If a, = n + 1,
the result follows from P4. Otherwise ax § n and Lemma 4 applies, whence
qSn2+n. Q.E.D.

THEOREM 2. Let n be an integer and i£ a non-trivial FLS such that
p = n2 - 1 and M n + 1. Then !£ is embeddable in an FPP of order n.

PROOF. If a, S n, the result follows at once combining Lemma 4 and P7.
So let a, = n + 1. Clearly n 2 — l = p & a , + l = n + 2 , whence n =£ 3.

First, let there be at least one n-line. It will be convenient to call a point
special if its degree ^ n + 1. P3 implies that all special points lie on x,. Let t
denote the number of special points. We claim that t =£ 2 is impossible for
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« g 4 . For it follows from P3 that t s 2 implies a2 = n. Applying PI at any
special point, we obtain n 2 - l § l + n + ( n - I)2, and so n § 3.

We now claim that there exists an n-line meeting x, in an (n + l)-point.
Suppose not. Then P3 would imply f § 1. By P3 again, no (n + l)-point on x,
:ould therefore lie on another (n + l)-line. But by hypothesis the (n + 1)-
points on Xi lie on no n-lines either. So PI yields n2—l3=l + n + ( n - 2)n,
whence n § 2. This contradiction implies t = n + 1 s 4. As we have seen, this
rannot happen if n g 4. So let n = 3. Clearly no special point is of degree two.
Hence P2 yields q = 1 + 2.4 = p + 1. It follows from the work of Bridges
;i972) that no such FLS exists; see also Section VI.1 of Totten (1974). Though
:here is no need to appeal to such a high-powered result! For clearly all eight
lines / x, are of degree three. So removing the four points of x,, we would be
left with an FLS consisting of four points and eight 2-lines, which is plainly
mpossible. This completes the proof of our second claim.

Consequently, all special points are of degree n. Let xa be an n-line
meeting x, in an (n + l)-point. Through any (n + l)-point on x, there is
precisely one line parallel to xm and it follows from P3 that any such parallel
neets X, in an (n + l)-point. No two such parallels can meet since their point
jf intersection would be of degree S n + 2. We introduce one new point, u *
>ay, and add it to each of these parallels. Moreover, for each n-point ua on x,
\e introduce the 2-line uau * — althogether t of them. We thus obtain an FLS,
'£* say, as can be easily verified. All its n2 points are of degree n + 1, and it
las at least two (n + l)-lines, namely x, and xtTU{u*}. By P8, i£* is
:mbeddable in an FPP of order n. Therefore so is if.

Next, let there be no n-lines in Z£. Then all points are of degree n + 1. For
jtherwise all lines outside up would be of degree S n - 1. At any other point
ua, PI would therefore yield n2 — lS=l + n + ( n - 2)n, whence n § 2 . Hence
"orollary 2 applies, and so i£ is embeddable in an FPP of even order n (=4).

This completes the proof of Theorem 2.

NOTE. It is possible to get additional information about =S? when it has
joth an (n + l)-line and an n-line. Note that q + t=n2+n + l, and so
j - p = n + 2 - t. We have already seen that t g l if n g 4 and that t^ 4 if
i = 3 . Once the embedding is obtained, it is not hard to exclude both f = 0 and
' g 3 if n = 3. The remaining values are all possible: / assumes the values 0
2nd 1 if n =£ 4 and the values 1 and 2 if n = 3. For it is obvious that, given any
FPP of order n g 4, it is possible to select and remove n + 2 points so as to
)btain FLS's of the above type with / = 0 and with t = 1. Applying these
:onstructions in an FPP of order three, we find examples with t = 1 and with
' = 2. For t = 1, remove five points forming an FLS with a, = 3, a2 = 2. The
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resulting FLS can be described in a simple intrinsic manner, making its unicity
(up to isomorphism) quite plain. For t = 2, remove five points forming an FLS
with a, = a2 = 3. The resulting FLS has been shown to be unique (up tc
isomorphism) in Section VI.3 of Totten (1974).
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