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The main objective of this work is to develop a unified framework that can be used as
a lens to quantitatively assess and augment a wide range of coarse-grained models of
turbulence, namely large eddy simulations (LES), hybrid Reynolds-averaged/LES methods
and wall-modelled (WM)LES. Taking a turbulent channel flow as an example, optimality
is assessed in the wall-resolved limit, the hybrid RANS—LES limit and the WMLES limit,
via projections at different resolutions suitable for these approaches. These optimal a
priori estimates are shown to have similar characteristics to existing a posteriori solutions
reported in the literature. Consistent accuracy metrics are developed for scale-resolving
methods using the optimal solution as a reference, and evaluations are performed. We
further characterise the slip velocity in WMLES in terms of the near-wall under-resolution
and develop a universal scaling relationship. Insights from the a priori tests are used
to augment existing slip-based wall models. Various a posteriori tests reveal superior
performance over the dynamic slip wall model. Guidance for the development of improved
slip-wall models is provided, including a target for the dynamic procedure.

Key words: turbulence modelling, turbulence simulation

1. Introduction

Simulation of turbulent flows remains a challenge because of the disparate range of
spatial and temporal scales that need to be resolved (Pope 2000). An alternate to
directly solving the Navier—Stokes equations is to solve its reduced complexity versions.
Reynolds-averaged Navier—Stokes (RANS) models solve for the ensemble average or
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time-average of the true solution. Large eddy simulations (LES) (Germano et al. 1991;
Meneveau, Lund & Cabot 1996; Nicoud & Ducros 1999; Codina 2002; Vreman 2004;
Bazilevs et al. 2007; Codina et al. 2007; You & Moin 2007; Gravemeier et al. 2010; Wang
& Oberai 2010; Masud & Calderer 2011; Nicoud et al. 2011; Parish & Duraisamy 2017)
resolve the spatiotemporal dynamics of the large scales. The cost of LES is, however,
still prohibitive near the wall. To alleviate the need of mesh refinement near the wall,
boundary conditions are imposed weakly in a wall-modelled (WM)LES (Piomelli &
Balaras 2002; Bose & Moin 2014; Bae et al. 2019). Alternate approaches to WMLES
are hybrid RANS-LES (HRLES) techniques (Strelets 2001; Menter & Egorov 2005;
Frohlich & Von Terzi 2008; Sagaut, Terracol & Deck 2013; Shur et al. 2015; Menter
2016) such as detached eddy simulation (DES) (Spalart 2009) and improved delayed
detached eddy simulation (IDDES) (Shur et al. 1999), where the inner layer is solved
using RANS and the rest using LES. As a consequence, the cost associated with resolving
the near-wall structures in the stream-wise and span-wise direction is no longer present.
The cost associated with resolving the wall-normal gradient is still present in the HRLES
approaches.

Over the past few decades, various contributions have been made in the development
and application of these methods to highly complex problems (e.g. Park & Moin 2016;
Goc, Bose & Moin 2020; Iyer & Malik 2020; Lozano-Duran, Bose & Moin 2020;
Goc et al. 2021; Kiris et al. 2022). Our view is that because all of the scale-resolving
methods are coarse-grained from the Navier—Stokes equations, there must exist a unified
view. The partially-averaged Navier Stokes (PANS) approach brings together several
turbulence closures of various modelled-to-resolved scale ratios ranging from RANS to
Navier—Stokes (direct numerical simulations (DNS)) into one formulation (Girimaji &
Abdol-Hamid 2005). The behaviour of the PANS equations can be varied smoothly from
the RANS equations to the Navier—Stokes (DNS) equations by changing the filter-width
control parameters. The unified RANS-LES approach (Heinz 2007; Gopalan, Heinz &
Stollinger 2013) is an optimal HRLES framework that uses different time scales to switch
between the RANS and LES approaches. In pursuit of similar unified models and in an
effort to augment existing frameworks, we propose a filtering technique using optimal
finite-element projections which: (i) offers a unifying perspective through a common
coarse-graining strategy; (ii) provides optimal solutions for the existing coarse-grained
methods to improve upon.

The use of filtered DNS data to perform a priori analysis of closure models for RANS
and LES is indeed not new. LES models such as the scale similarity or Smagorinsky
models have also been frequently evaluated against sub-grid stresses obtained from
filtered DNS data (Vreman, Geurts & Kuerten 1995; Meneveau & Katz 2000; Girimaji
& Abdol-Hamid 2005; Bou-Zeid et al. 2008). In most prior studies, filtering is either
performed in the Fourier space using the sharp spectral cutoff or Gaussian filters when
the problem has periodic directions or the box filter in more complex problems. In case
of filters that are applied in spectral space, the filter width remains the same along the
periodic directions in which it is applied. However, as observed in most coarse-grained
simulations, the filter width can vary considerably. In fact, filter sizes define these methods.
For example, in case of a LES of channel flow that is performed on a structured grid, the
filter size in the span-wise and stream-wise directions scale with the wall units and can
be a constant. However, the filter width in the wall-normal direction can vary from a few
wall units near the wall to 0.16 at the centre of the channel or the edge of the boundary
layer. In the traditional WMLES, the filter width is approximately of the order of 0.1§
throughout in all directions. For HRLES approaches (such as DES and IDDES), the filter
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width is of the order of 0.1§ in the span-wise and stream-wise directions, and similar
to LES in the wall-normal direction. The non-uniform filtering requirement in LES and
HRLES methods stems from the fact that in both the cases, the wall stress is resolved
which requires a near-wall grid that scales with wall units. In addition to the filter size,
the type of filter can also change the nature of the solution. For example, both the box
and spectrally (sharp) filtered DNS both qualify as synthetic LES solutions. In the case
of finite-element projections, the quality of the filter is linked to the order of polynomial
used to filter the solution. In this work, we aim to address some of these issues by using
finite-element projections which allow for variation in the filter width in the domain and
also provide the required flexibility to change the quality of the filter by changing the order
of the polynomial.

The idea of projection is at the core of the variational multiscale method (VMS) (Hughes
et al. 1998; Codina 2002; Bazilevs et al. 2007; Codina et al. 2007; Gravemeier et al.
2010; Wang & Oberai 2010; Masud & Calderer 2011; Parish & Duraisamy 2017). In VMS,
projections are used to formally distinguish the coarse scales from the fine scales. The
coarse-scale (filtered) solution that is obtained after the projection operation represents the
‘best’ coarse-grained solution u on the coarse space based on some optimality condition,
for example, the L,-optimality condition. The sharp spectral filter obtained by truncation in
Fourier space is also based on the idea of L,-projection onto the Fourier basis functions. In
this work, we perform L-projections on finite-element basis functions. It is also pertinent
to mention that the current idea of optimal projections should not be confused with optimal
LES (Langford & Moser 1999). Our work optimally represents the DNS solution « on a
finite-dimensional coarse space, whereas optimal LES is an ideal LES model that targets
accurate single-time multi-point statistics of the coarse solution.

Projected DNS data have been previously used to improve both existing finite-element
methods (Pradhan & Duraisamy 2021) and turbulence models (Vreman et al. 1995;
Meneveau & Katz 2000; Girimaji & Abdol-Hamid 2005; Bou-Zeid et al. 2008). An
important question is whether the applicability of the present filtering method is only
restricted to the finite-element method because the functions that are used for projection
are the finite-element basis functions. In this paper, however, we employ them as an
alternative to the traditional filters for assessing all kinds of methods and not just
finite-element methods. As discussed previously, the present approach has advantages
in cases where the filter length is anisotropic, varies rapidly or when non-homogeneous
directions are present, as in wall-bounded flows. The filtering strategy that has some
similarities to the present approach is the differential filter (Germano 1986; Najafi-Yazdi,
Najafi-Yazdi & Mongeau 2015), which consists of a filtering length scale ,. This length
scale [, can be varied along the domain to have a similar effect.

In the past few years, several efforts have been made to train sub-grid models using
machine learning approaches both in an offline and model-consistent setting (Sarghini,
De Felice & Santini 2003; Gamahara & Hattori 2017; Maulik & San 2017; Maulik et al.
2018; Wang et al. 2018; Beck, Flad & Munz 2019; Maulik et al. 2019; Xie et al. 2019a,b;
Xie, Wang & Weinan 2020). Such data-driven LES models require a filtered form of the
DNS, which, in turn, will depend on the filter size. Similarly, in WMLES, the model
cannot be trained using the mean solution in the first few grid points where the influence
of the slip condition will be observed. By applying projections and obtaining statistics
from the optimal solution, one can obtain more reasonable targets to training the model
(Beck et al. 2019; Duraisamy, laccarino & Xiao 2019; Chung & Freund 2022) on more
complex problems. Note that this is a first step towards addressing model consistency
(Duraisamy 2021). Finite-element projections are not restricted to simple geometries and
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can be applied to more complex flows, and provide the additional flexibility of choosing
polynomial orders for the geometry and the solution independently.

The main objective of the present work is to develop a unified framework that can
be used as a lens to quantitatively assess, augment and calibrate a wide range of
coarse-grained models. Particular attention is paid to the behaviour of various models
in the proximity of the wall, and to ascertain whether scaling relationships exist.

In § 2 of this paper, we describe the procedure of performing L;-projection and provide
a discussion on the choice of coarse basis functions that will be used. In § 3, we compute
filtered solutions for the channel flow problem in the LES, WMLES and HRLES limit,
and compute the coarse-scale statistics in each of these cases. In § 4, we show that the
slip velocity in case of WMLES is a natural consequence of under-resolution in the
wall-normal directions and guiding principles for improved slip wall models are proposed.
In §5, we propose new slip-wall-based wall model forms and evaluate its performance
in comparison with traditional WMLES. Perspectives on improved slip-wall models are
provided in § 6. Finally, we conclude the work in § 7.

2. Finite-element projection

The goal of this section is to construct a generalised filtering approach that can be used to
assess various coarse-grained simulations in problems using localised bases applicable to
non-periodic boundary conditions. Further, the meshes can contain anisotropic elements
along with the possibility of grid stretching. As a first step, however, we obtain
high-resolution data for filtering. For our purpose, we use the channel flow DNS data
at friction Reynolds numbers of Re; ~ 1000 and Re; ~ 5200 from the Johns Hopkins
Turbulence Database (JHTDB) (Li et al. 2008; Lee & Moser 2015) and a smaller channel
Re; ~ 950 case form the Texas turbulence file server (Hoyas & Jiménez 2006). To this
end, consider the decomposition of the full-order (DNS) solution u into coarse and fine
scales as

u=up+u, 2.1

where u, € Vj, and «’ € V' as shown in figure 1. The vector space of functions V = L?(£2)
is the space of square-integrable functions. This space is decomposed as

V=VieV, (2.2)

where @ represents a direct sum of 1, and V. Let us also define 7, to be a tessellation of
domain §2 into a set of non-overlapping elements, K, each having a sub-domain §2x and
boundary I'k. The functional space V is infinite dimensional and must be approximated by
a finite-dimensional approximation V. The domain and boundary of an element marked
by £2, and I, respectively. In the case of the continuous Galerkin (CG) method, the coarse

space basis functions Vj, € C? N L?(£2) have C” continuity everywhere including element
boundaries. In the case of the discontinuous Galerkin (DG) methods, the coarse space V),
is defined as

Vi 2 {uely2):ulg € PYK), K € Tp), (2.3)

where the space of polynomials up to degree k is denoted as P*. Defining V) in this
manner allows for discontinuities in the solution across element boundaries. The DG
space is a more richer space in comparision to the space if both the number of elements
and polynomial order are kept fixed. Irrespective of the choice of basis functions used
(CG or DG), given u from the high-fidelity simulation, our goal is to find the optimal
representation of u in the coarse sub-space V. In our case, we use the L?-projection
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Figure 1. Schematic of the projection of the DNS solution u on coarse finite-element spaces V), to obtain the
Ly-optimal LES, WMLES or HRLES solution uy,.

to obtain u, which minimises the value of |u — uh||%. This problem is equivalent to the
problem of finding u;, € V} such that

(u, wp) = (up, wp) VYwy, € V. 2.4)

where (-, -) denotes the L; inner product and wy, denotes a coarse-space weighting function.
In the case of CG basis functions, the mass matrix is global and a large matrix needs to
be inverted to obtain the final filtered solution. The DG mass matrix on the other hand is
local to the element and lends itself to easy parallelisation.

As uy, and wy, are finite dimensional, their inner product can be computed precisely
using quadrature rules. Here (u, wy) requires special care because u is extremely high
dimensional in comparison with wy. The high-dimensionality of u is restricted by the size
of DNS which exists on a very fine mesh capable of resolving the Kolmogorov scales
O(n). To compute this term precisely, we interpolate the coarse-scale basis functions and
the DNS solution on a very fine mesh of the size of O(n) and apply numerical integration
to compute the inner products. The size of the numerical integration mesh is adjusted
until the final projected solution is independent of the numerical integration mesh size.
Additional details on the method to compute the L,-procedure are given in Appendix A.

The final comment is on the imposition of the near-wall behaviour of the coarse
space. There are two choices: (i) project on a space which strongly satisfies the boundary
condition at the nodal points; or (ii) keep the boundary degrees-of-freedom (DOFs) free
and make no such assumptions. The second choice appears more reasonable because when
the solution is coarse grained in the wall-normal direction, the solution might no longer
satisfy the no-slip boundary conditions strongly. This is especially true for WMLES where
the coarse-grained solution no longer satisfies the no-slip boundary condition and slip is
observed. However, as the grid is refined near the wall, the no-slip boundary condition is
naturally satisfied.

3. Application to channel flow

As a first step towards obtaining the projected DNS solution for the channel flow problem,
we discuss the effect of the choice of the coarse-space basis functions on the coarse-scale
solution obtained after the projection operation. Depending on the coarse-space basis,
the projected solution can be either a low-dimensional compressed representation of the
original solution or a spatially filtered version of it. The low-dimensional compressed
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representation is obtained when the coarse basis is tailored using data or existing analytical
solutions. To ensure that the projection step leads to a more general spatial filtering
approach, non-tailored basis functions commonly used in the finite-element method are
used. The projection operation onto these coarse finite-element grids will lead to filtering.

The resulting coarse solution after filtering might be considerably different from the
DNS solution due to truncation of the high-frequency components present originally in
the DNS solution. In the near-wall region, the effect of projection can vary with the size
of the filter in each direction. One manifestation of under-resolution in the wall-normal
direction is the occurrence of a slip velocity. This slip-velocity can, in fact, be tracked
down to the mean profile itself. To resolve the mean solution, a near-wall grid spacing of
Ayt & 1 is required in the wall-normal direction. However, if a grid size of Ay ~ 0.15 is
used, even the mean solution can no longer be resolved and a slip velocity at the wall will
be observed. This is true unless the solution is artificially forced to go from a large value
to zero over just one grid point. A solution to make the coarse-scale solution satisfy the
no-slip boundary condition is to enrich the coarse space with a tailored basis (Krank &
Wall 2016). As a consequence, the tailored basis mimics the mean profile between the wall
and the first grid point and ensures that the no-slip is satisfied collectively by the coarse
non-tailored basis and the enriched tailored basis.

To define the coarse space, we first construct a finite-element mesh and chose the
polynomial order of the basis functions. The idea here is that by selecting the grid and
the polynomial order of the basis functions, we are enforcing our desired filter size
distribution. A variety of coarse spaces have been generated as listed in table 1. The
‘A’-type grids are the DNS grids on which the high-resolution solution u exists. Two
different DNS solutions at friction Reynolds numbers of Re; & 950 and Re; =~ 1000 are
used and their corresponding grids are marked as A1 and A2, respectively. The Re; =~ 950
solution (Del Alamo et al. 2004; Hoyas & Jiménez 2006) is obtained from a relatively
smaller domain having a stream-wise size of L, ~ 27§ and a span-wise sizes of L, & 7§,
whereas the Re; ~ 1000 solution (Perlman et al. 2007; Li et al. 2008; Lee & Moser 2015)
is obtained as a cutout from a simulation performed on a larger domain.

The ‘B’-type grids, on the other hand, are tailored for performing wall-resolved LES
(figure 2). As a result of the size of the largest energy containing eddies scaling with
the distance from the wall (Yang & Griffin 2021) outside the viscous sub-layer, a mesh
resolution of Ay & 0.15—0.254 is used for the ‘B’-type grids at the centre of the channel.
Similarly, the ‘C’-type grids are tailored for performing WMLES simulations using the
wall-stress- or the slip-wall-based approaches. The ‘D’-type grids are more suitable for
assessing the WMLES branch of the HRLES methods (Shur er al. 2008). For ‘D’-type,
the resolution in the stream-wise and the span-wise direction is similar to the ‘C’-type
grid. However, in the wall-normal direction, a grid spacing similar to ‘B’-type grid has
been assumed, i.e. Ay" &~ 0.1-1 in the near-wall region and Ay = 0.16-0.258 at the
centre of the channel. The ‘E’-type grid is an extremely coarse grid with resolutions
of Ax = 0.356, Ay~ (0.3346 and Az =~ (0.35§ in the stream-wise, span-wise and the
wall-normal directions, respectively. For all the grid types, the mesh is uniform in the
stream-wise and the span-wise directions. However, in the wall-normal direction, the mesh
has been stretched geometrically for cases ‘B’ and ‘D’. In case of ‘C’- and ‘E’-type grids,
uniform mesh is assumed in the wall-normal directions as well. For each type of grid, two
different polynomial orders p = 1, 2 are used to construct the projection coarse-space. The
stretch rates (SRs) and the polynomial orders for different cases have been summarised in
table 1.
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Case Re; NyxNyxN, p SR A} A/S Af Ay/8 AY AL/
Al 1000 512 x 512 x 512 Sp. — 1224 0.0122 0.016-6.14 1.65 x 1075-0.006  6.12 0.006
A2 950 512 x384x512 Sp. — 1147 0.0122 0.031-7.64 3.35 x 1075-0.008  5.73 0.006

Bl 1000 121 x41 x81 1 133 39.11 0.0391 1.10-248.45 0.001-0.248 39.11 0.039
B2 950 121 x 41 x 81 1.33 36.71 0.0393 1.03-232.55 0.001-0.248 36.71 0.039
B3 950 121 x 81 x 81 1.33 36.71 0.0393 0.51-116.27 5.54 x 1074-0.124 36.71 0.039
B4 950 121 x 97 x 81 1.10 36.71 0.0393 0.97-85.80 0.001-0.091 36.71 0.039

Cl 1000 61 x41 x 31 1.00 104.3 0.1045 49.90 0.05 104.3  0.1045
C2 950 61 x 41 x 31 1.00 97.91 0.1048 46.7 0.05 97.91 0.1048
C3 950 61 x 81 x 31 1.00 9791 0.1048 23.3 0.025 97.91 0.1048
C4 950 61 x97 x 31 1.00 97.91 0.1048 19.46 0.021 97.91 0.1048

1.33 39.11 0.1045 1.10-248.45 0.001-0.248 104.3  0.1045
1.33 9791 0.1048 1.03-232.55 0.001-0.248 97.91 0.1048
1.33 9791 0.1048 0.51-116.27 5.54 x 1074-0.124 97.91 0.1048
1.10 9791 0.1048 0.97-85.80 0.001-0.091 97.91 0.1048
1.00 326.3 0.3500 311.27 0.334 3263 0.35

DI 1000 61 x 41 x 31
D2 950 61 x 41 x 31
D3 950 61 x 81 x 31
D4 950 61 x 97 x 31
El 1000 19 x 7 x 10

[SCR S S RSN\ Y SO VG S

Table 1. Summary of mesh parameters. Here, A, Al and Aj are the effective grid sizes in different
directions Ay, Ay and A, normalised with wall units, § is the half-channel height, Ny, Ny and N, represent
the number of DOFs in the stream-wise, wall-normal and span-wise directions respectively, p is order of
polynomial used, SR is the stretching ratio used to generate the grid. The effective grid sizes Ay, Ay and A,
for the finite-element grid are defined as Ay = A{/p, Ay = A{/p and A; = A{/p, respectively. The quantities
A%, Af and A7 represent the actual element sizes in the finite-element mesh.

Case B Case C Case D

Figure 2. Near-wall grids used for cases B, C, D and E.

Figure 3 shows the mean and second-order statistics computed using the projected
solution for the cases B1, C1, D1 and E1. The goal is to compare the optimal solutions for
different grids that correspond to different coarse-grained approaches, except for E1, which
is an extremely coarse mesh and is not suitable for any existing method. From figure 3(a),
it can be observed that the mean velocity is well-resolved for cases B1 and D1. For case
C1, which represents an optimal WMLES solution, the mean velocity is well-resolved
only after the first grid point, i.e. y/8 > 0.05. As can be observed in figure 3(a), case
El is extremely coarse and fails to resolve the mean velocity until the outer limit of
the log-layer is reached. For these cases with wall-normal under-resolution, the effect
of under-resolution results in slip velocity ug at the wall, which can be calculated by
evaluating ), at the wall. The magnitude of the mean stream-wise slip velocity (ug)™ was
found to increase with the under-resolution, i.e. (i)™ ~ 6 for case C1 to (us)™ &~ 12 for
case El. It can also be observed that all the methods except E1 resolve the second-order
statistics outside the inner layer. Inside the near-wall region, only Bl is capable of
accurately resolving the turbulence stresses. Among the second-order statistics, the effect
of filtering is most strongly felt on the wall-normal fluctuations. It can be observed for
cases Cl and DI that the wall-normal fluctuations far away from the inner layer are
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20 0O Case Bl
—Case Cl
15 s Case D1
+ -v--Case E1
[ T e ——

102 10" 100 10" 102 103

102 1070 100 10! 107
¥ 8 v
Figure 3. Comparison of mean and second-order statistics for cases B1, C1, D1 and E1. The symbols in all the
plots correspond to the value at the nodal point. In (@), the solutions for cases C1 (WMLES) and E1 (extremely
coarse), are interpolated to the DNS mesh using the coarse finite element basis functions near the wall to show
the slip effects.

under-represented even when stream-wise and the span-wise fluctuations as close to the
DNS solution.

Figure 4 shows the stream-wise velocity energy spectra of the projected solution in
the span-wise and stream-wise directions for cases A2, B4, C2 and D4 at two different
wall-normal locations. The choice of cases plotted here is based on the most suitable mesh
sizes for the various methods. As can be seen from figures 4(a) and 4(b), the large scales
are well-represented at the centre of the channel (y/é & 1.0) both in the stream-wise and
the span-wise directions, for all the methods. However, as can be seen in figure 4(c), the
large scales are not represented accurately by the C2 (WMLES) and D4 (HRLES) cases
in the near-wall region (y© ~ 15). However, in the span-wise direction (figure 4d), the
large scales are relatively well represented in D4 in comparison with C2. In the following
section, the effect of the projection is discussed individually for each type of mesh.

3.1. The wall-resolved LES limit

Coarse-scale statistics for B2, B3 and B4 are provided in the top row of figure 5. It can be
observed that all the cases perform well in resolving the mean profile. Similar trends are
observed in figures 5(b) and 5(c), where the cases B3 and B4 only slightly outperform the
case B2 in resolving the second-order statistics. This suggests that the sensitivity of the
coarse-scale statistics to the wall-normal SR is not as high as the sensitivity to the mesh
resolution in the stream-wise and the span-wise directions.

3.2. The WMLES limit

Coarse-scale statistics for C2, C3 and C4 are provided in the middle row of figure 5. In
cases C2, C3 and C4, the mesh resolutions in wall units is much larger than unity and
cannot resolve the mean velocity profile accurately near the wall. As a consequence, a slip
velocity uy is observed for all the cases after the projection step. It was also observed that
the magnitude of the mean slip velocity (u;)™ is highest for the case with the maximum
wall-normal under-resolution, i.e. C2. This magnitude goes down as the wall-normal mesh
is refined from C2 to C3 or C2 to C4. As expected, the second-order coarse-scale statistics
are only accurate outside the inner layer towards the centre of the channel. It can also
be observed that the stream-wise and span-wise velocity fluctuations computed using the
coarse solution do not go to zero near the wall. The wall-normal velocity fluctuations,
however, go to zero at the wall. This near-wall behaviour of the coarse scales is consistent
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Figure 4. Comparison of the energy spectra for the stream-wise velocity component at the near-wall region
and the centre of channel for cases A2, B4, C2 and D4.

with existing WMLES simulations in the literature, e.g. Wang, Hu & Zheng (2020) and
Kawai & Larsson (2012).

3.3. The HRLES limit

Cases D2, D3 and D4 represent the grids for HRLES methods such as IDDES (Shur et al.
2008). Coarse-scale statistics for D2, D3 and D4 are provided in the bottom row of figure 5.
The mean profile is resolved accurately. The second-order statistics in the region outside
of 10-20 % of the boundary layer is almost identical to that of the ‘C’-type grids in the
middle row. However, near the wall, unlike the ‘C’-type WMLES cases, all the velocity
fluctuations go to zero due to the no-slip condition being satisfied by the HRLES cases, and
they are under-represented when compared with ‘B’-type LES cases. These observations
are consistent with previous results from the literature (Friess & Davidson 2020).

In this section, we have used the labels LES, WMLES and HRLES to distinguish
between the various methods. However, the difference between the latter two is subtle.
The traditional WMLES method essentially uses RANS knowledge to compute the wall
stress at the wall and can also be called a HRLES approach. Similarly, the HRLES
approaches (such as IDDES) by virtue of solving the RANS equations near the wall reduce
the computational cost associated with resolving the wall and can also be considered a
WMLES. However, the context in which the labels WMLES and HRLES have been used
in this paper is based on whether these models integrate to the wall or not inside a single
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Figure 5. Comparison of optimal projections: (a—c) wall-resolved cases; (d—f) WMLES; (g—i) HRLES.

domain, in other words if the size of the filter in the wall-normal direction is large or not
in wall units.

It is worthwhile to mention that the results presented in this section appear to be more
accurate in comparison with those in the literature. For instance, a large stretching ratio of
1.33 has been used for some of the meshes which do not induce a significant error in the
filtered solution, however, this SR is more than the suggested limit for many methods. In
addition, no log-layer mismatch (LLLM) was observed in any of these cases. The resolution
considered here for WMLES and HRLES is of the order of 10 points per semi-channel
height § in the stream-wise and the span-wise directions, which is coarse compared with
the guidelines for these approaches. A comparison between the optimal solution for the C3
case and a WMLES solution using the traditional wall-stress-based approach computed on
the same grid is presented in figure 6. The mean solution for both cases begins to deviate
from the DNS at similar locations. The resolved turbulent shear stress is under-represented
near the wall, starting almost identically, however, differing in their peaks. Similarly, the
wall-normal velocity fluctuations are almost identical. On the other hand, the velocity
inside the first element is slightly under-predicted in the traditional WMLES approach in
comparison to projected DNS. In addition, both the stream-wise and span-wise velocity
fluctuations reveal an overshoot near the second off-wall grid point in the traditional
WMLES method.

One possible reason for the discrepancies between the results from the true simulation
and the filtered DNS is the lack of accurate closures. With a poor model, the LLM may
persist until a DNS-like resolution is reached. This is, in principle, similar to attributing
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Figure 6. Comparison of projected DNS and solution from the traditional WMLES method at similar
resolutions.

inaccuracies in a wall-resolved LES with a standard Smagorinsky model when a dynamic
Smagorinsky model might yield near-optimal performance. However, using the optimal
projection framework presented here, it is now possible to perform an analysis of the
closure terms and evaluate modelling errors. By reducing the modelling errors, the goal
is to force the solution to reach a near-optimal state. Ideally, we would have wanted
to improve all three approaches using our optimal projection framework. However, to
have a compact presentation, we only consider evaluating the modelling errors in the
slip-wall-based WMLES models and improve its a posteriori performance.

4. Analysis of slip-based wall models

The slip velocity at the wall in WMLES is related to under-resolution in the wall-normal
direction. In this section, we seek to quantify this slip velocity to ensure that the resulting
model generalises well to different Reynolds numbers. To understand the Reynolds number
dependence, DNS from two different friction Reynolds numbers of Re; ~ 1000 and Re,; ~
5200 are used. As mentioned earlier, the computation of the 3-D projection of the Re; ~
5200 case by sequential 1-D projections in the wall-normal, stream-wise and span-wise
directions is computationally expensive. To ensure computational efficiency and utilising
the fact that this is a near-wall phenomenon, we project the DNS solution on uniform
elements of size A, with polynomial basis functions. This is equivalent to performing a
full 3-D projection on a DG finite-element solution space. The element shares its bottom
face with the wall of the channel to mimic a near-wall grid. By moving the position of this
element on the wall surface, different realisations of the slip velocity and coarse solution
gradients in the wall-normal direction can be obtained. This is possible due to the statistical
homogeneity present in the stream-wise and span-wise directions.

For each realisation, the projection of the DNS solution on the finite-dimensional DG
space leads to filtering of the DNS solution as shown in figure 7. Figure 7(a) shows the
contour of the DNS solution of the stream-wise velocity component for a sample 3-D
element. The projected DNS solution for the same element is shown in figure 7(b). The
projected DNS solution does not satisfy the no-slip boundary condition at the wall and
does not contain the fine-scale information present in the original DNS solution. The goal
is to assess the slip-wall-based wall model proposed by Bose & Moin (2014) and Bae et al.
(2019)

duy,
ug = CpyA—o, 4.1)

on
and obtain an estimate of the model coefficient C,,. The coarse field u;, can be obtained by
either projecting the stream-wise, the span-wise or the wall-normal velocity fields. As a
result, the value of C,, obtained is tied to the velocity component that is used for projection.
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Figure 7. Filtered solution inside an sample element obtained by 3-D projection of near-wall Re; =~ 5200
channel data.

The computation of C,, using (4.1) requires the computation of u; and the pre-multiplied
gradient A(duyp/dn). The slip velocity uy is obtained by evaluating the coarse-scale
solution at the wall as shown in figure 7(c). The pre-multiplied gradient A(duy/0on) is
obtained by computing the derivatives of the coarse scale in the wall-normal direction and
multiplying with the normalised resolution A = A,/p as shown in figure 7(d). However,
this results in an over-determined system for C,,. In general, the value of C, is also
expected to change with the filter size A used for the projection operation. The problem
of this system being over-determined is solved by performing a least-squares minimisation
over many such realisations until convergence in the estimates of C,, was obtained. To
solve the problem of the model coefficient C,, being dependent on the filter size A, we
perform dimensional analysis. Other parameters that could affect C,, are (a) the order
of polynomial used for projection p, the viscosity v and (b) the wall stress t,,. After
non-dimensionalisation, the following model form for C,, can be obtained: C,, = g,(A™),
where g, is a function of the grid resolution normalised with wall units A™ and the
subscript p denotes the coarse space polynomial order used for projection. The parameter
AT can be considered to be an indicator of the near-wall grid resolution. Similarly, the
order of the numerical method can be encoded in p. Higher p implies that a more accurate
numerical method has been used to compute the LES solution. However, this implies that
for every polynomial order p we have to learn a new function. In addition, the numerical
methods used to perform LES might work sub-optimally and the exact order might not be
preserved. Hence, it is necessary that the effect of the numerical method be parameterised
through a model constant similar to the Smagorinsky model coefficient Cs;.

Before investigating the slip velocity due to the full 3-D projection of the DNS solution,
it is important to consider the contribution from the mean stream-wise velocity profile
itself. As a first step, we apply 1-D projection to the Reichardt profile (Reichardt 1951)
which describes the mean profile in the inner layer. As the mean solution is invariant in
the stream-wise and span-wise direction for a channel, the 3-D projection is reduced to a
1-D projection in the wall-normal direction only. Figure 8(a) shows the estimates for C,,
obtained from the Reichardt profile for different orders of projection. It can be observed
that the C,, profiles for different orders are distinct even after normalisation of the element
size A, by p to obtain A = A, /p.

Inspired by the Smagorinsky model, which consists of a model constant C; that
pre-multiplies the grid size in the final model form, we introduce a new model constant
A which in its inverted form, i.e. 1/4 pre-multiplies the grid-size in our proposed model.
Figure 8(b) shows the estimated valued for C,, , for different polynomial orders along
with the A values for which all the curves collapse to the p = 1 curve with 4 = 1. As a
result, it is possible to learn just one curve and parameterise it with an additional factor
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Figure 8. (a) The model coefficient C,, computed using Reichardt profile by projecting on different
polynomial basis; (b) A-normalised version of Reichardt profiles; (¢) A-normalised C,,, i.e. C), » computed by
3-D projection of DNS on different polynomial spaces compared with 1-D projection of the Reichardt profile.

A to obtain the C,, curves for different cases, i.e. C,, = Cy. /A = g1(AT/A)/A, where
Cy.a = Apug/ A (dup/0n). It is also important to check if similar relations also hold true
for the 3-D projected solution.

Figure 8(c) compares the C,, 4 curves obtained through the 3-D projection of DNS
solutions to that obtained using the Reichardt mean profile for two different projection
orders p = 1, 3. To obtain these curves, large variations in the element sizes have been
considered. We use element sizes with A, ~ 0.011§—0.285 for projecting the Re; =~ 1000
data and element sizes with A, &~ 0.0336—0.305 for projecting the Re; ~ 5200 data. The
effective filter sizes corresponding to these grids can be approximated by normalising
the element size with p to obtain A = A,/p . By re-using the A values from figure 8(b),
similar collapse in the C,, ; curves was also obtained for the 3-D projection cases for the
stream-wise and the span-wise velocity components. For each projection order, results
for two different friction Reynolds numbers of Re; ~ 1000 and Re; ~ 5200 are plotted.
The results indicate that for different polynomial orders, the C,, 4 estimates for different
Re; at a particular AT are same, suggesting that C,,  is a universal function of A*.
Further, the C,, ; values obtained through 1-D projections of the mean profile are already
good approximations to that obtained through the 3-D projections of the DNS solution at
moderate resolutions. However, at higher AT, there appears to be a minor discrepancy
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between the two profiles in the form of a constant shift. The C,, y for the span-wise
velocity component is found to be negative and has a slight A" dependence. Similar to
the stream-wise velocity, the C,, 1 curves for different Re; suggest a A* dependence in
the span-wise direction as well. The C,, in the wall-normal direction is approximately
zero, and does not depend on the mesh resolution. This suggests that the wall-normal slip
can be set to zero without the loss of any generalisability. This also suggests that the large
scales, which are typically resolved in a WMLES simulation, can only slide along the
wall but cannot penetrate it. Finally, to obtain a single model form that works for different
projection orders, we re-introduce the A factor. In the next section, we use the insights
gained in this section to improve the performance of the slip wall model by Bae et al.
(2019) and Bose & Moin (2014) on the channel flow problem.

5. Towards accurate slip-wall models

While the state-of-the-art dynamic slip-wall model by Bae ez al. (2019) is found to be better
in comparison with the case with no wall model, it is found to be lacking in accuracy when
compared with the traditional WMLES approach. In addition, the slip-wall model has
been reported to suffer from instability issues when used with certain high-order methods
(Carton de Wiart & Murman 2017). Thus, there is a need to improve the stability and
performance of slip-wall models on canonical turbulent flow problems before it can be
confidently used in more complex flows. Indeed, it is recognised that one disadvantage
of the traditional approach is that unlike the dynamic slip-wall model, it requires a priori
specification of tunable coefficients. The authors are of the opinion, however, that tunable
coefficients should not be used as a reason to replace the traditional WMLES approach
which has been shown to perform well across a wider range of problems. To this end, we
try to use data from existing WMLES simulations and our optimal projection techniques
to improve the performance of existing slip-wall models to the level of traditional WMLES
for the channel flow problem.

As we observed in § 3, if the grid resolution is sufficiently coarse, a slip velocity is
present at the wall. Hence, it is expected that even the solution from the traditional
wall-stress-based WMLES will have a slip velocity at the wall. Given the good
performance of the traditional WMLES approach for the channel flow problem, it is also
expected that the universal relationship given in figure 8 should also hold true for the
traditional WMLES approach.

Traditional WMLES solutions were computed using a DG solver with p =3
discretisation on different meshes using two different sub-grid models: (i) a constant
coefficient Smagorinsky model with Cy = 0.12; (i) Vreman (2004) model. Figure 9
shows the comparison of C,, ; computed using 1-D projection of the Reichardt profile
to that computed using the solutions obtained using the traditional WMLES approach. To
compute C,, for a traditional WMLES solution, the solution and its wall-normal gradients
are evaluated at the wall to obtain the slip velocity and the pre-multiplied wall-normal
gradient. Finally, a least-squares fit is performed to obtain a single value of C,,. While
computing C,,, the size of the element A, is required. However, for all the traditional
wall-model cases, the size of the element varies in each direction unlike the grids used
for projection of DNS. As a first attempt, A, is taken to be the size of the element in the
wall-normal direction. Finally, an optimal value of A is found such that the curves collapse
asymptotically. By changing the value of A only the slope of the asymptotic part of the Cy, 5
curve can be changed. However, when the slope of the C,, 1 curve in the asymptotic part
was made parallel to the C,, , curve obtained for the Reichardt profile by projecting on the
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Figure 9. The A-normalised C,, versus normalised grid-size A} /pA. The A-normalised C,, are computed by
1-D projection of the Reichardt profile and compared with the same obtained using the traditional WMLES
solution. The plots marked by ‘FGP’ use only the explicit sub-grid models inside the first element and gradually
change to implicit LES outside the first element.

p = 1 basis functions, the intercepts were also found to match. This can be seen in figure 9
where the profiles appear identical at large resolutions. However, small discrepancies exist
near the lower resolution limit (i.e. the wall-resolved LES limit), suggesting that either the
traditional WMLES approach is inaccurate or the sub-grid model is not accurate. Figure 9
also suggests that a universal slip-wall model form exists irrespective of the sub-grid model
or the numerical scheme as long as A is known.

Even if A is known prior to the simulation or is dynamically determined, a model for
Cy,1 which takes as input the normalised grid size A} /pA is not useful. This is because
the value of A™ is not known unless the wall stress is also known. One option is to use the
traditional wall model to obtain the friction velocity u; to compute A™ Whitmore et al.
(2021). A better choice would be to represent the slip-wall model coefficient Cy, 1 as a
function of the mean slip velocity (u;) based Reynolds number, i.e. Reg;, = (us)A/pAv,
as a consequence of which the wall stress will no longer be required to predict Cy, ;.
Figure 10 shows the A-normalised slip-wall model coefficient C,, 1 as a function of the
slip-velocity (mean stream-wise)-based Reynolds number. As can be observed in figure 10,
a universality in the model form similar to the curves in figure 9 also exists in the case when
the slip-wall Reynolds number is used as a feature in place of the normalised grid size. In
addition, the curves were found to collapse to the p = 1 Reichardt curve for exactly the
same value of A used in the case of C,,  versus A™. In addition to the plots for C,, ; for
the various traditional approach obtained using various sub-grid models, a model fit is
also provided in the figure 9. This fit can be used as a model to specify C,, at the wall as a
function of the slip-wall Reynolds number once A is known.

As a first step, we apply the C,, computed using the traditional approach and apply it as a
slip-boundary condition to check whether the traditional WMLES results can be recreated
with the slip boundary condition. At this stage, we are applying the same value of C,,
for the stream-wise and the span-wise components. In this implementation, it is assumed
that the there is no transpiration, i.e. no flow through the wall. To apply the slip-wall
boundary condition, we first use the slip velocity components u, ; at the wall to compute
the wall-normal derivatives of the velocity components u;, ;,

upi  Ugi

= i 5.1
an _ AC, -1
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Figure 10. The A-normalised C,, versus the slip velocity us-based Reynolds number (ug)A/pAv. The
A-normalised C), are computed by 1-D projection of the Reichardt profile and compared with the same obtained
using the traditional WMLES solution. The plots marked by ‘FGP’ use the explicit sub-grid models inside the
first element only and gradually change to implicit LES outside the first element.

and finally compute the wall stress at any location using the following formula:

oup. i
T (5.2)

in
on |,

Tw,i =V

Hence, contribution of the mean wall stress is only present from the viscous and the
sub-grid stresses. In addition to the C,, obtained by post-processing the traditional
approach solutions, the C,, computed using the slip-velocity Reynolds number-based
model are also used. The value of A, required for implementing the slip-velocity Reynolds
number-based approach is obtained from the traditional method. The slip-velocity
Reynolds number-based model does not require the specification of different C,, for each
Re; case; however, it requires one A which remains constant across all the cases with
different Re,. Figure 11 shows the stream-wise mean velocity profiles, the root mean
square of different velocity components and the Reynolds shear stress profiles at different
friction Reynolds numbers. The vertical dashed lines show the location of the first, second
and third off-wall grid points. For the traditional wall model, the wall-stress is computed
using the velocity components at the third off-wall grid point. The slip-wall model does
not require any such exchange location. It is clear from figure 11 that when the correct A is
used, the Reynolds number dependence is captured accurately and the statistics obtained
using the slip-wall model are identical to the traditional wall model.

The previous tests presented in figure 11 showed that the model is able to capture
the Reynolds number dependence on a single grid. The next step is to change the
grid resolution and check whether similar results also hold true for the new grid.
Before performing numerical experiments with our proposed slip-wall model, an a priori
study could be performed by using the results from the traditional WMLES solutions.
Two different meshes are now used with Ny x Ny x N; : 12 x 12 x 12 and 18 x 12 x 18
elements, respectively. The resolution in the wall-normal direction is kept the same,
whereas the resolution in the span-wise and stream-wise case are smaller in the case of
the 18 x 12 x 18 mesh because the size of the channel is kept constant.

Figure 12 shows the A-normalised C,, obtained for different resolutions for two different
types of normalisations. Different normalisations are used because the effective A is not
known in the case where the element is not cubic. The plots marked by “WN’ and ‘VOL’
use the wall-normal grid spacing and the cube root of the cell volume as A,, respectively.
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Figure 11. Comparison of the first-order and second-order statistics using the traditional method (Trad.), by
re-using the slip-wall model with C,, computed from the traditional WMLES solution (Slip) and with the C,,
computed using the slip-wall Reynolds number formulation (Reg;,) at different friction Reynolds number. The
vertical dashed lines show the locations of the first, second and third grid points. For the traditional wall model,
velocity is sampled at the third off-wall grid point.

It can be observed that when the wall-normal grid spacing is used as A,, the A values
required for the two different resolutions are different. This suggests that if the wall-normal
grid resolution is used for A,, our proposed slip-wall model will not generalise to a
different grid for the same A value. On the other hand, when the cell volume was used
for A,, the A values required to ensure that both the curves collapse was found to be same.
This suggests that, for the resolutions considered here, the cube root of the cell volume is
an ideal candidate for A, to ensure that the slip-wall model generalises to a new grid for
the same value of A. Hence, the proposed model will require the specification of the model
constant 4 and it is expected to work on different grids and Reynolds numbers. Figure 12
also shows plot of C,, ; at two other resolutions of 12 x 16 x 12 and 32 x 12 x 16. While
constructing the model fit these resolutions have not been considered. The plots for these
specific resolutions are used later to explain the success of the slip-wall model on these
unseen resolutions.

Figures 13 shows the stream-wise mean velocity profiles, the root mean square of
different velocity components and the Reynolds shear stress profiles at different friction
Reynolds numbers on two different meshes with 12 x 16 x 12 and 32 x 12 x 16 elements,
respectively, that are not part of the data used for fitting the model for C,, ;. Clearly,
the model not only captures the effect of Re; but also generalises to a new resolution.
The performance of the proposed slip-wall model is comparable to the traditional wall
model which is a major improvement over the dynamic slip-wall model proposed by Bae
et al. (2019). The results indicate that the proposed wall model is able to work reasonably
well even at considerably different resolutions. The excellent performance of the slip-wall
model can be also explained by computing C,, , using the traditional WMLES solutions on
these grids. The C,, 4 values estimated using the traditional WMLES solutions from two
different meshes with 12 x 16 x 12 and 32 x 12 x 16 elements, respectively, are plotted in
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—O— Reichardt wall-model p=1,1=1.0
—O— Rescaled Reichardt wall-model p =3, 1 = 1.632
—#— Rescaled Reichardt wall-model p = 5, 1 =2.278
v Traditional wall model Smag. WN (12x12x12) p = 3, 1 = 0.460
A Traditional wall model Smag. WN (18x12x18) p =3, 1 =0.630
v Traditional wall model Smag. VOL (12x12x12) p=3, 1 = 1.125
v Traditional wall model Smag. VOL (18x12x18) p =3, 4 = 1.125
---- Model fit
B Pred. Traditional wall model Smag. VOL (12x16x12) p=3,1 =1.125
B Pred. Traditional wall model Smag. VOL (32x12x16) p =3, 1 =1.125

C,, i stream-wise
[\

0 2 4 6 8
Slip Re: log, (({u,) A, /pAv)

Figure 12. The A-normalised C,, versus the mean slip velocity (u;) based Reynolds number (us) A/pAv. The
A-normalised C,, are computed by 1-D projection of the Reichardt profile and compared to the same obtained
using the traditional WMLES solution. The plots marked by “WN’ and ‘VOL’ use the wall-normal grid spacing
and the cube root of the cell volume for specification of A,, respectively.
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Figure 13. Comparison of the first-order and second-order statistics obtained using the traditional method
(Trad.) and the proposed slip-wall model at different friction Reynolds numbers. The solution is computed on
two different meshes with 12 x 16 x 12 and 32 x 12 x 16 elements, respectively, that is not part of the data
used for fitting the model. The vertical dash-dotted and dashed lines show the locations of first, second and
third grid points for the meshes with 12 x 16 x 12 and 32 x 12 x 16 elements, respectively. For the traditional
wall model, velocity is sampled at the third off-wall grid point.

figure 12. The accurate prediction of C,, 4 by the model fit explains the excellent predictive
performance of our slip-wall model.

6. Perspectives on improved slip-wall models

Slip-based wall models (Bose & Moin 2014; Bae et al. 2019; Whitmore et al. 2021)
allow for easy implementation of the wall boundary condition without the need to sample
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velocity components at a few grid points away from the wall and also allows the possibility
to model flow separation. The dynamic slip-wall model proposed by Bae et al. (2019)
shows good performance on the zero-pressure gradient flat plate case, albeit for a narrow
range of Rey. However, this model requires improvements when compared with traditional
wall models for the equilibrium channel flow case at similar resolutions. In §4, we
provided a priori results on the model form for C,, for equilibrium channel flows. In § 5,
we used some of the insights obtained from § 4 to improve the performance of the existing
slip-wall model to at least the traditional WMLES level. Although the performance of our
proposed slip wall model was found to be acceptable, more insights from § 4 can be used
to further improve the accuracy of both the proposed and the existing slip-wall models. To
this end, we outline the following ingredients for the construction of a more generalisable
slip-based wall model forms.

(1) The slip model coefficients can be different in the stream-wise, span-wise and the
wall-normal directions as observed in figure 8(c). In a more complex 3-D case, the
choice of stream-wise, span-wise and the wall-normal direction is a bit ambiguous.
However, the mean flow can be used to identify these directions. However, this needs
to be iteratively done because the mean flow can itself change when changing these
directions. Another approach is to use the flow direction at the first off-wall grid
point, similar to how the traditional wall models are implemented. In § 5, we used
the same C,, for all directions. The effect of using different C,, for different velocity
components on our proposed model is a topic of further research.

(i1) If a dynamic modelling procedure is performed to obtain C,,, the value of C,, cannot
be assumed to be same at the original grid and the test filtered grid. Figure 8(c)
shows that C,, changes when the resolution is changed from A™ to the test filtered
grid resolution 2A™. In addition to C,, being not constant across different grid
levels, there is a dependence on the wall units. This dependence is generally not
considered in the existing slip-wall model forms. However, this dependence is
present in traditional wall models which are found to perform well for equilibrium
wall-bounded flow cases. In § 5, we were able to improve the performance of the
dynamic slip-wall model of Bae ef al. (2019) by just augmenting the model form
without performing any dynamic procedure.

(ii1) The discrepancy in figures 9 and 10 between the C,,  curves obtained by the optimal
projection of the Reichardt profile, and that obtained using the solutions of the
traditional WMLES approach suggests that the current WMLES approaches are
sub-optimal due to the presence of wall modelling and sub-grid modelling errors.
This also suggests that there is a lot of scope for improvements, and our optimal
projection framework can be used to assess the WMLES performance of different
combination of sub-grid models and wall models.

(iv) The final comment is on the choice of the parameter that should be used to
performing the dynamic procedure. We saw in § 4 that the value of A effectively
captures the effect of the order of projection and hence the numerical method.
The corresponding function g is fairly universal for different orders. Hence, it is
imperative that the dynamic modelling be performed on A rather than C,,. The model
form for g1 can be empirically obtained from DNS data, the Reichardt profile or from
the solution of an existing model such as the wall-stress-based WMLES models.
We further observed in § 5 that if the cube root of the cell volume is used for A,,
A remains fairly constant across different resolutions and Reynolds numbers for a
given sub-grid model. A dynamic model that determines A without requiring the
solutions from the traditional model is a topic of further research.
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In this work, two different model forms for C,, ; were proposed as shown in figures 9
and 10. The first model uses A™ as a feature, whereas the second model uses the Reynolds
number based on the slip velocity as a feature. The implementation of the first model
is slightly more complex because the proposed expression for C,, is a function of two
parameters: A and AT. Assuming that the grid size A is known, to compute A™ from A,
an estimate of the average wall stress (t,,) is required:

oup, 1
dy

This average quantity influences the slip velocities through C,, which, in turn, affects the
average itself. As discussed earlier, an alternate approach is to use the equilibrium wall
profile to obtain t,, as done in Whitmore et al. (2021). However, this requires the sampling
of the velocity fields from the off-wall grid points which makes the implementation of
slip-wall models as cumbersome as the traditional wall model. An alternate approach is to
use the Reynolds number based on the slip velocity as described in § 5. In this work, the
optimal estimates of C,, were obtained from the DNS solution by projecting on uniform
elements of different sizes. However, our projection framework by using anisotropic
elements also allows us to study the effect of the grid aspect ratios. As discussed in § 5,
one approach to account for mesh anisotropy is to replace A, with an effective grid size
such as the cube root of the cell volume. However, it is advisable to include the aspect
ratio in the model form as well to ensure optimal performance across different types of
meshes. Finally, the present model form has been derived from the channel flow data and
its accuracy in the spatially developing flows such as the flat plate or in the separated flow
regions has not been assessed. Given the excellent performance of the traditional wall
models on the flat-plate cases we expect similar performance from our proposed model,
however, this is a topic of further research.

(tw) = v< > — (up un2lw) — (T5]). (6.1)

w

7. Conclusion

The projection-based scale-separation approach is an essential part of the VMS and uses
the grid effectively as a filter. It is applicable to cases where the filter length is anisotropic,
varies in space or filtering needs to performed on an unstructured grid. These filter
properties were found to be essential for a priori assessment of existing coarse-grained
methods for wall-bounded turbulent flows, where the grids can be highly anisotropic and
vary in size along a particular direction.

An a priori assessment of the optimal solutions at three different limits, the
wall-resolved LES, the HRLES and the WMLES limit, was performed by projecting
DNS on different grids suitable for these scale-resolving approaches. For each of these
cases, while projecting the DNS on to the coarse space, weak imposition of the boundary
condition was made by not enforcing no-slip boundary conditions at the boundary nodes.
In the wall-resolved LES limit, the mean velocity was found to be well resolved, no-slip
was naturally satisfied and the turbulent stresses were well represented. In the HRLES
limit, which was obtained by coarsening the wall-resolved LES mesh in the span-wise
and stream-wise directions, the mean velocity was well resolved and the no-slip boundary
condition was naturally satisfied. However, the turbulent stresses were found to be well
represented only at the centre of the channel and under-represented in the near-wall region
where sufficient resolution was not present. In the WMLES limit, which is obtained by
further coarsening the HRLES grid in the wall normal direction, the mean profile is no
longer represented accurately near the wall and a slip velocity is obtained. The turbulent
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stresses in WMLES are relatively well represented at the centre of the channel compared
to the near-wall region. In the near-wall region, the stream-wise and the span-wise velocity
fluctuations were found to be non-zero at the wall, whereas the resolved wall-normal
fluctuations and the turbulent shear stress were found to be under-represented. All these
trends were found to be consistent with existing solutions in the literature suggesting that
the present framework can be utilised to assess, augment and calibrate existing methods.

The ability to obtain the slip-velocity directly from 3-D projections of DNS on coarse
near-wall meshes enabled further assessment of the existing slip-wall-based wall models.
As a first step, estimates of the slip-wall model coefficient C,, were obtained from the
mean velocity profile in the inner layer through 1-D projections of the Reichardt profile.
The C,, estimates from the mean profile were found to be strongly dependent on the order
of projection suggesting that the numerical method has considerable effect on the optimal
value of C,,. In addition to this, the resolution for a given slip velocity and projection order
was found to scale with the wall units. To make modelling more tractable, we introduced
an extra resolution normaliser A to express the effect of projection order through a single
coefficient, similar in scope to the Smagorinsky model coefficient Cy. When this analysis
was extended to three dimensions, similar dependence on the polynomial order p on
C,, was found for the stream-wise and the span-wise velocity components. However, on
re-introduction of resolution normaliser A and reusing the A values corresponding to the
1-D projections, similar collapse in the C,, 4 values was also observed for the 3-D case.
The value of C,, ; was also found to be different for the stream-wise, span-wise and the
wall-normal velocity components.

The ultimate goal of any a priori analysis is to improve the model performance
in a posteriori calculations. As a first step towards better slip-based wall models, the
performance of existing slip-based wall models was compared with traditional WMLES
for channel flows. To establish an equivalence between the two methods, C,, 4 curves were
evaluated using the solution of the traditional WMLES approach and compared with the
curves obtained for the Reichardt profile. The C,, , curves for the traditional WMLES
solutions were found to be identical to those obtained using the Reichardt profile at high
AF/Ap. However, at low A} /Ap, the C,, 4, the curves were found to differ suggesting
the presence of sub-grid modelling and wall-modelling errors in the solution. To reduce
the implementation challenges associated with using AT /Ap as a feature, a slip-velocity
Reynolds number-based (Rey;;,) feature was introduced. Finally, by choosing A, to be the
cube root of the cell volume and re-using A from the traditional WMLES solution, a model
form was constructed by fitting the C,, 4 versus Reg;;, curve. The resulting model was
shown to generalise to different resolutions, element aspect ratios and Reynolds numbers
in a posteriori simulations.
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Figure 14. The high-dimensional solution « is multiplied with DG coarse-scale basis wy, ; to obtain uwy, ;. The
right-hand side r is finally computed by evaluating [ uwj, ; d§2 for all basis function wy,; spanning the coarse
space.

Appendix A. Numerical computation of L,-projection

The problem of finding an L, projection is equivalent to the problem of finding a u;, € V),
such that

(up, wp) = (u,wp) Ywp € V. (A1)

The first step is to determine the coarse space V. The coarse space should be low
dimensional in comparison with the original solution to ensure that the projection
operation acts as a filter. The low-dimensionality of the coarse space can be ensured
by using fewer grid points or modes. There are many choices for the coarse space (e.g.
the Fourier basis functions, the global Chebyshev polynomial basis functions and the
piece-wise polynomial basis functions). Once the coarse space is fixed, the coarse solution
can be written as a linear combination of the basis functions as follows:

up = whan, (A2)

where w}Tl is a vector of coarse-scale basis functions spanning the coarse space and ay
is vector containing the corresponding basis coefficients. Substituting (A2) into (A1), we
obtain

May, =r, (A3)
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where the mass matrix M and the right-hand side vector 7 is given by
M = / wpwr d2, and  r = (u, wp). (Ada,b)

The coarse-scale basis coefficients are obtained as ay = M~ 'r. The mass matrix M
is local (block diagonal) when DG basis functions are used. In the case of CG basis
functions, the mass matrix has to be assembled by adding contributions from individual
element mass matrices. The computation of M is not as expensive as compared with
the right-hand side vector r, especially when u is high dimensional. The elements of
the matrix M can be precisely computed using a Gauss quadrature rule appropriate for
the order of the polynomial used to define the coarse space. The computation of (u, wy,),
however, needs special care because it requires the computation of the inner product of a
high-dimensional solution u with the coarse basis functions wy, as shown in figure 14. The
high-dimensional solution u can come from a finite-difference, finite-volume, spectral or
finite-element simulation.

A general approach to compute the elements of the right-hand side vector r is by
using numerical integration. As can be observed in figure 14, the solution obtained after
multiplication of the coarse basis functions wy, ; with u still contains high-dimensional
features and requires a fine grid for numerical integration. The grid on which u exists
is assumed to be sufficiently fine for performing the numerical integration. In case the
projected solution depends on the order of numerical integration or the size of the
numerical integration grid, the solution can be injected on a more finer grid to perform the
numerical integration. Once the integration grid is set, the trapezoidal rule or the Simpson
formula can be applied to compute the integral over the uwy, ; fields to obtain the right-hand
side vector r.
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