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Almost Periodicity and Lyapunov’s
Functions for Impulsive Functional
Differential Equations with Infinite Delays

Gani Tr. Stamov

Abstract. This paper studies the existence and uniqueness of almost periodic solutions of nonlinear

impulsive functional differential equations with infinite delay. The results obtained are based on the

Lyapunov–Razumikhin method and on differential inequalities for piecewise continuous functions.

1 Introduction

Impulsive differential equations arise naturally from a wide variety of applications

such as aircraft control, inspection process in operations research, drug administra-

tion, and threshold theory in biology. However, due to numerous theoretical and

technical difficulties, not much has been developed in the direction of impulsive

functional differential equations. In the few publications dedicated to this subject,

early works were by Anokhin [1] and by Gopalsamy and Zhang [3]. Some qualitative

properties (oscillation, asymptotic behavior and stability, almost periodicity) were

investigated by several authors (see [2, 13, 14]).

One of the most important parts of the qualitative theory of differential equations

is the theory of the existence and stability of the almost periodic solutions. In the

present paper we consider the problem of existence and stability of almost periodic

solutions of nonlinear impulsive functional differential equations with infinite delay.

Moreover, the technique of investigation essentially depends on the choice of min-

imal subsets of a suitable space of piecewise continuous functions, which are used

to estimate the derivatives of Lyapunov’s functions [6, 12]. It is well known that

Lyapunov–Razumikhin methods have been widely used in the study of qualitative

properties for functional differential equations without impulses [10].

The paper is organized as follows. In Section 2 we give some preliminaries and

main definitions. In Section 3 we investigate the existence and stability of almost pe-

riodic solutions of nonlinear impulsive functional differential equations with infinite

delay. Sufficient conditions are obtained by means of piecewise continuous auxiliary

functions that are analogues of the classical Lyapunov functions. The investigations

are carried out by also using a comparison principle that permits us to reduce the

study of nonlinear impulsive functional differential equations to the study of a scalar

differential equation.
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2 Preliminary Notes and Definitions

Let R
n be the n-dimensional Euclidean space with norm ‖ · ‖, R

+
= [0,∞), Bν =

{x ∈ R
n : ‖x‖ ≤ ν}, ν > 0,Ω ⊂ R

n, Bν ⊂ Ω,Ω 6= ∅. Consider the following sets:

• B = {{τk} : τk ∈ R, τk < τk+1, k ∈ Z}, i.e., {τk} is unbounded and strictly

increasing, with distance ρ({τ (1)
k }, {τ (2)

k }).
• PC = PC[R, R

n] = {ϕ : R → R
n, ϕ is a piecewise continuous function with

points of discontinuity of the first kind at τk, with {τk} ∈ B, at which ϕ(τk − 0)

and ϕ(τk + 0) exist and ϕ(τk − 0) = ϕ(τk)}.
• PC1[R, R

n] = {ϕ : R → R
n, ϕ is continuously differentiable everywhere except

for points τk, with {τk} ∈ B, at which ϕ̇(τk−0) and ϕ̇(τk +0) exist and ϕ̇(τk−0) =

ϕ̇(τk)}.

Let ϕ0 ∈ PC[R,Ω] and |ϕ0| = supt∈R
‖ϕ0(t)‖.

We will consider the system of impulsive functional differential equations

(2.1)

{

ẋ(t) = f (t, xt ), t > t0, t 6= τk,

∆x(τk) = x(τk + 0) − x(τk − 0) = Ik(x(τk − 0)), k ∈ Z,

where t0 ∈ R, f : R × PC[R, R
n] → R

n; Ik ∈ C[Ω, R
n], k ∈ Z; {τk} ∈ B, and for

t > t0, xt ∈ PC[R, R
n] is defined by xt = x(t + s), −∞ < s ≤ 0.

Denote by x(t) = x(t ; t0, ϕ0), ϕ0 ∈ PC[R,Ω] the solution to system (2.1) satisfy-

ing the initial conditions

(2.2)

{

x(t ; t0, ϕ0) = ϕ0(t − t0), t ≤ t0,

x(t0 + 0; t0, ϕ0) = ϕ0(0),

and let J+(t0, ϕ0) be the maximal interval of type [t0, β) in which the solution

x(t ; t0, ϕ0) is defined.

Recall from [14] that the solution x(t) = x(t ; t0, ϕ0) of the initial value problem

(2.1) (2.2) is characterized by the following:

(i) For t ≤ t0, t0 ∈ [τk0
, τk1

), τk0
< τk1

, τki
∈ {τk}, i = 0, 1 the solution x(t)

satisfies the initial conditions (2.2);

(ii) For t0 < t ≤ τk1
, x(t) coincides with the solution to the problem

ẋ(t) = f (t, xt ), t > t0,

xt0
= ϕ0(s), −∞ < s ≤ 0.

At the moment t = τk1
the mapping point (t, x(t ; t0, ϕ0)) of the extended

phase space jumps instantaneously from position (τk1
, x(τk1

; t0, ϕ0)) to position

(τk1
, x(τk1

; t0, ϕ0) + I1(x(τk1
; t0, ϕ0));

(iii) For τk1
< t ≤ τk2

, τk2
∈ {τk} the solution x(t) coincides with the solution to

{

ẏ(t) = f (t, yt ), t > τk1
,

yτk1
= ϕ1, ϕ1 ∈ PC[R,Ω],
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where

ϕ1(t − τk1
) =

{

ϕ0(t − τk1
) t ∈ (−∞, τk1

],

x(t ; t0, ϕ0) + Ik1
(t ; t0, ϕ0) t = τk1

.

At the moment t = τk2
the mapping point (t, x(t)) jumps instantaneously, etc.

Thus in interval J+(t0, ϕ0) the solution x(t ; t0, ϕ0) to the problem (2.1), (2.2) is

a piecewise continuous function with points of discontinuity of the first kind at the

moments t = τk, k ∈ Z, where it is continuous from the left.

For convenience, let us state the following hypotheses.

(H1) f ∈ C[R × PC[R,Ω], R
n], f (t, 0) = 0, t ∈ [t0,∞).

(H2) The function f (t, ϕ) is Lipchitzian with respect to ϕ ∈ PC[R,Ω] uniformly on

t ∈ [t0,∞).

(H3) Ik ∈ C[Ω, R
n], Ik(0) = 0 and (I + Ik) : Ω → Ω, k ∈ Z where I is the identity in

Ω.

Lemma 2.1 Let the conditions (H1)–(H3) hold. Then J+(t0, ϕ0) = [t0,∞).

Proof Since conditions (H1)–(H3) hold, then from the existence theorem for the

equation without impulses ẋ = f (t, xt ) [4, Theorem 2.2.1], it follows that the so-

lution x(t) = x(t ; t0, ϕ0) to problem (2.1), (2.2) is defined on each of the intervals

(τk−1, τk], k ∈ Z. From the property of the sequence {τk} we conclude that it is

continuous for t ≥ t0.

We note that the problems of existence, uniqueness, and continuity of the solu-

tions of functional differential equations without impulses have been investigated

[5, 7].

Since the solutions to (2.1), (2.2) are piecewise continuous functions, we adopt

the following definitions for almost periodicity.

For T, P ∈ B, let s(T ∪ P) : B → B be a map such that the set s(T ∪ P) forms a

strictly increasing sequence and if D ⊂ R, let θε(D) = {t + ε, t ∈ D}, and Fε(D) =
⋂

{θε(D) : ε > 0}.

By φ = (ϕ(t), T) we denote an element from the space PC × B, and for

every sequence of real numbers {αn}, n = 1, 2, . . . , let θαn
φ denote the sets

{ϕ(t + αn), T − αn} ⊂ PC × B, where T − αn = {τk − αn, k ∈ Z, n = 1, 2, . . . }.

Definition 2.2 ([11]) The set of sequences {τ
j

k }, τ
j

k = τk+ j − τk, k ∈ Z, j ∈ Z,

{τk} ∈ B, is said to be uniformly almost periodic if for any ε > 0 there exists a

relatively dense set in R of ε-almost periods, common for all the sequences {τ
j

k }.

Lemma 2.3 ([11]) The set of sequences {τ
j

k } is uniformly almost periodic if and only

if from each infinite sequence of shifts {τk − αn}, k ∈ Z, n = 1, 2, . . . , αn ∈ R we can

choose a subsequence that is convergent in B.

Definition 2.4 The sequence {φn}, φn = (ϕn(t), Tn) ∈ (PC × B) is convergent to

φ, φ = (ϕ(t), T), (ϕ(t), T) ∈ (PC × B) if and only if for any ε > 0 there exists
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n0 > 0 such that for n ≥ n0,

ρ(T, Tn) < ε, |ϕn(t) − ϕ(t)| < ε

holds uniformly for t ∈ R \ Fε(s(Tn ∪ T)).

Definition 2.5 The function ϕ ∈ PC[R,Ω] is said to be an almost periodic piecewise

continuous function with points of discontinuity of the first kind from the set T if for

every sequence of real numbers {α ′
m} there exists a subsequence {αn}, αn = α ′

mn
,

such that θαn
φ is compact in PC × B.

We introduce the following assumptions.

(H4) The function f (t, ϕ) is almost periodic in t ∈ R, uniformly with respect to

ϕ ∈ PC[R,Ω].

(H5) The sequence {Ik(x)} is almost periodic, uniformly with respect to x ∈ Ω,

Ω ∈ R
n.

(H6) The function ϕ0 ∈ PC[R, R
n] is almost periodic.

(H7) The set of sequences {τ
j

k }, τ
j

k = τk+ j −τk, k ∈ Z, j ∈ Z, {τk} ∈ B, is uniformly

almost periodic.

Let conditions (H4)–(H7) hold and let {αm
′} be an arbitrary sequence of real

numbers. Then there exist a subsequence {αn}, αn = αmn

′, such that the sequence

{ f (t +αn, x, y)} is convergent uniformly on x ∈ Ω, y ∈ Ω to the function f α(t, x, y),

the sequence ϕ0(t + αn) is convergent uniformly to the function ϕα
0 (t), and the set of

sequences {τk −αn}, k ∈ Z is convergent to the sequence τα
k , uniformly with respect

to k ∈ Z as n → ∞.

By {kni
} we denote the sequence of integers such that the subsequence {τk+ni

} is

convergent to τα
k , uniformly with respect to k as i → ∞. From (H2) it follows that

there exists a subsequence of the sequence {kni
} such that the sequence {Ik+kni

(x)} is

convergent uniformly to the limit denoted by Iα
k (x).

Then for every sequence {α ′

m} the system (2.1), (2.2) satisfies the system Eα in the

form

(2.3)











ẋ(t) = f α(t, xt ), t 6= τα
k ,

x(t) = ϕα
0 (t), t ∈ (−∞, t0],

∆x(t) = Iα
k (x(τα

k )), t = τα
k , k ∈ Z.

Definition 2.6 The set of all systems Eα is said to be the module of the system (2.1),

(2.2), and we denote this set by mod( f , ϕ0, Ik, τk).

Definition 2.7 ([14]) The zero solution to the system Eα is said to be

• uniformly stable if (∀ε> 0)(∃δ = δ(ε))(∀t0 ∈ R)(∀ϕ0 ∈ PC[R, R
n] ∩ Bδ)

(∀t > t0) : ‖x(t ; t0, ϕ0)‖ < ε;
• uniformly attractive if (∃λ> 0)(∀ε> 0)(∃T = T(ε))(∀ϕ0 ∈ PC[R, R

n] ∩ Bλ)

(∀t0 ∈ R)(∀t > t0 + T) : ‖x(t ; t0, ϕ0)‖ < ε;
• uniformly asymptotically stable if it is uniformly stable and uniformly attractive.
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Consider the sets:

Gk = {(t, x, y) ∈ R × R
n × R

n : τk−1 < t < τk, k ∈ Z, }, G =
⋃

k∈Z

Gk;

Q = {a ∈ C[R
+, R

+] : a is strictly increasing in R
+ and a(0) = 0}.

Definition 2.8 We shall say that the function V : R × R
n × R

n → R
+ belongs to

the class V0 if

• V is continuous in G and V (t, 0, 0) = 0, t ∈ R.
• For each k ∈ Z and each point (x0, y0) ∈ Bν × Bν the limits

V (τk − 0, x0, y0) = lim
(t,x,y)→(τk,x0,y0)

(t,x,y)∈Gk

V (t, x, y),

V (τk + 0, x0, y0) = lim
(t,x,y)→(τk,x0,y0)

(t,x,y)∈Gk+1

V (t, x, y)

exist and are finite and the equality V (τk − 0, x0, y0) = V (τk, x0, y0) holds.
• V is locally Lipshitz in x, y, i.e., there exists a positive constant L such that

(2.4) ‖V (t, x1, y1) −V (t, x2, y2)‖ ≤ L(‖x1 − x2‖ + ‖y1 − y2‖),

for t ∈ R, (xi , yi) ∈ Bν × Bν , i = 1, 2.

Let V ∈ V0, t > t0, t 6= τk, x ∈ PC[R, R
n], y ∈ PC[R, R

n]). Introduce

D−V (t, x(t), y(t)) = lim inf
δ→0

δ−1

{

V (t + δ, x(t) + δ f (t, xt ), y(t) + δ f (t, yt )) −V (t, x(t), y(t))
}

.

Introduce the following classes of functions:

Ω1 =
{

(x, y) : x, y ∈ PC[R,Ω],V (s, x(s), y(s)) ≤ V (t, x(t), y(t)),

−∞ < s ≤ t, t ≥ t0, V ∈ V0

}

.

Definition 2.9 We shall say that the function W : R×R
n → R

+ belongs to the class

W0 if the following hold:

• W is continuous for (t, x) ∈ R × R
n, t 6= τα

k , k ∈ Z and W (t, 0) = 0, t ∈ R.
• For each k ∈ Z and each point x0 ∈ Bν the limits

W (τα
k − 0, x0) = lim

(t,x)→(τα
k ,x0)

t<τα
k

W (t, x),

W (τα
k + 0, x0) = lim

(t,x)→(τk,x0)
t>τα

k

W (t, x)

exist and are finite and the equality W (τα
k − 0, x0) = W (τα

k , x0) holds.
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• W is locally Lipshitz along x.

Let W ∈ W0, t > t0, t 6= τα
k , x ∈ PC[R, R

n]. Introduce the function

D−W (t, x(t)) = lim inf
δ→0

δ−1{W (t + δ, x(t) + δ f α(t, xt )) −W (t, x(t))}.

In the proof of the main results we shall use the following lemmas.

Lemma 2.10 Let the following conditions hold.

(i) Conditions (H1)–(H3).

(ii) The function g : (t0,∞)×R
+ → R is continuous in each of the sets (τk−1, τk]×R

+,

k ∈ Z, and g(t, 0) = 0 for t ∈ (t0,∞).

(iii) γk ∈ C[R
+, R

+], γk(0) = 0, and ψk(u) = u + γk(u), k ∈ Z are nondecreasing

with respect to u.

(iv) The maximal solution r(t ; t0, u0) to the problem

(2.5)

{

u̇ = g(t, u), t > t0, t 6= τk, u(t0 + 0) = u0 ≥ 0,

∆u(τk) = γk(u(τk)), τk > t0, k ∈ Z.

is defined in the interval [t0,∞).

(v) The solution x(t) = x(t ; t0, ϕ0), y(t) = y(t ; t0, ϕ0) to the problem (2.1), (2.2) is

such that x(t), y(t) ∈ PC[R,Ω] ∩ PC1[R,Ω].

(vi) The function V ∈ V0 is such that V (t0 + 0, ϕ0, ϕ0) ≤ u0 and the inequalities

D−V (t, x(t), y(t)) ≤ g(t,V (t, x(t), y(t))), for t 6= τk,

V (t + 0, x(t) + Ik(x(t)), y(t) + Ik(y(t))) ≤ ψk(V (t, x(t), y(t))), for t = τk, k ∈ Z,

are valid for each t > t0 and x, y ∈ Ω1.

Then

(2.6) V (t, x(t ; t0, ϕ0), y(t ; t0, ϕ0))) ≤ r(t ; t0, u0) as t ≥ t0.

Proof From Lemma 2.1 it follows that J+(t0, ϕ0) = [t0,∞). The maximal solution

r(t ; t0, u0) to problem (2.5) is defined by

r(t ; t0, u0) =



































r(t ; t0, u+
0 ), t0 < t ≤ τk1

,

r1(t ; τk1
, u+

1 ), τk1
< t ≤ τk2

,
...

ri(t ; τki
, u+

i ), tki
< t ≤ tki+1

,
...

where ri(t ; τki
, u+

i ) is the maximal solution to the equation without impulses u̇ =

g(t, u) in the interval (τki
, τki+1

], {τki
} ⊂ {τk} for which

u+
i = ψi(rki−1

(τki
; τki−1

, u+
i−1)), k ∈ Z, u+

0 = u0.
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Let t ∈ (t0, τk1
]. Then from corresponding comparison lemma for the continuous

case [8, Theorem 1.4.1] it follows that

V (t, x(t ; t0, ϕ0), y(t ; t0, ϕ0)) ≤ r(t ; t0, u0),

i.e., inequality (2.6) is valid for t ∈ (t0, τk1
].

Suppose that (2.6) is satisfied for t ∈ (τki−1
, τki

], ki > k1. Then from condition

(vi) of Lemma 2.10 and the fact that the functions ψki
are nondecreasing, we obtain

V
(

τki
+ 0,x(τki

+ 0; t0, ϕ0), y(τki
+ 0; t0, ϕ0)

)

≤ ψki

(

V (τki
, x(τki

; t0, ϕ0), y(τki
; t0, ϕ0))

)

≤ ψki
(r(τki

; t0, ϕ0)) = ψki
(rki−1

(τki
; τki−1

, u+
ki−1

)) = u+
ki
.

We apply again the comparison lemma for the continuous case in the interval

(τki
, τki+1

] and obtain

V
(

t, x(t ; t0, ϕ0), y(t ; t0, ϕ0)
)

≤ rki
(t ; τki

, u+
ki

) = r(t ; t0, u0),

i. e., inequality (2.6) is valid for t ∈ (τki
, τki+1

]. The proof is completed by induction.

Lemma 2.11 Let the following conditions hold.

(i) Conditions (H1)–(H7).

(ii) For any Eα ∈ mod( f , ϕ0, Ik, τk) there exist functions W ∈ W0, a, b ∈ Q such

that

(a) a(‖x(t)‖) ≤ W (t, x(t)) ≤ b(‖x(t)‖), t ∈ R, x(t) ∈ PC[R, R
n];

(b) for any t > t0, x ∈ PC[(t0,∞), R
n] for which W (s, x(s)) ≤ W (t, x(t)) s ∈

[t0, t] the following inequalities hold

D−W (t, x(t)) ≤ −cW (t, x(t)), t 6= τα
k , c = const > 0,

W (t + 0, x(t + Iα
k (x(t))) ≤ W (t, x(t)), t = τα

k , k ∈ Z.

Then the zero solution to the system Eα is uniformly asymptotically stable.

Proof The proof of Lemma 2.11 is analogous to the proof of Lemma 2.10 .

3 Main Results

Theorem 3.1 Let the following conditions hold.

(C1) Conditions (H1)–(H7).

(C2) The functions V ∈ V0 and a, b ∈ Q are such that

(3.1) a(‖x(t) − y(t)‖) ≤ V (t, x(t), y(t)) ≤ b(‖x(t) − y(t)‖),

for x(t) ∈ PC[R,Ω], y(t) ∈ PC[R,Ω].
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(C3) The inequalities

D−V (t, x(t), y(t)) ≤ −cV (t, x(t), y(t)), t 6= τk, c = const > 0,(3.2)

V (t + 0, x(t) + Ik(x(t)), y(t) + Ik(x(t))) ≤ V (t, x(t), y(t)),(3.3)

t = τk, x, y ∈ Ω1, k ∈ Z.

(C4) There exists a solution x(t ; t0, ϕ0) of(2.1),(2.2) such that ‖x(t ; t0, ϕ0)‖ < ν1,

where t ≥ t0, ν1 < ν.

Then for the system (2.1),(2.2) there exists a unique almost periodic solution ω(t)

such that:

(i) ‖ω(t)‖ ≤ ν1;

(ii) mod(ω(t), τk) ⊂ mod( f , ϕ0, Ik, τk);

(iii) ω(t) is uniformly asymptotically stable.

Proof Let {αi} be any sequence of real numbers such that αi → ∞ as i → ∞ and

{αi} moving the system (2.1),(2.2) in the system Eα, Eα ∈ mod( f , ϕ0, Ik, τk).

For any real number β, let i0 = i0(β) be the smallest value of i such that αi0
+ β ≥

t0. Since ‖x(t ; t0, ϕ0)‖ < ν1 for all t ≥ t0, x(t + αi ; t0, ϕ0) ∈ Bν1
for t ≥ β, i ≥ i0.

Let I ⊂ (β,∞) be compact. Then for any ε > 0, choose an integer n0(ε, β) ≥
i0(β) so large that for l ≥ i ≥ n0(ε, β) and t ∈ (β,∞) it follows that

b(2ν1)e−c(β+αi−t0) <
a(ε)

2
, ‖ f (t + αl, xt ) − f (t + αi , xt )‖ <

a(ε)c

2L
,

where x ∈ PC[(t0,∞), Bν1
], c = const > 0.

Consider the function V (σ, x(σ), x(σ + αl − αi)).

For σ > t0, x(σ) ∈ Ω1, x(σ + αl − αi) ∈ Ω1, from (2.4). (2.6), and (3.2) we obtain

(3.4) D−V (σ, x(σ), x(σ + αl − αi))

≤ −cV (σ, x(σ), x(σ + αl − αi))

+ L‖ f (σ + αl − αi , xσ+αl−αi
) − f (σ, xσ+αl−αi

)‖

≤ −cV (σ, x(σ), x(σ + αl − αi)) +
a(ε)c

2
.

On the other hand, from (3.3), (3.4), and Lemma 2.10

V (t+αi , x(t+αi), x(t+αl)) ≤ e−c(t+αi−t0)V (t0, x(t0), x(t0+αl−αi))+
a(ε)c

2
< a(ε).

Then from (3.1) we have ‖x(t + αi) − x(t + αl)‖ < ε, for l ≥ i ≥ n0(ε, β), t ∈ I.

Consequently there exists a function ω(t) such that x(t +αi)−ω(t) → ∞ for i → ∞.

Since β is arbitrary it follows that ω(t) is defined uniformly on t ∈ I.

Next we shall show that ω(t) is the solution to (2.3). Since x(t ; t0, ϕ0) is solution

to (2.1), (2.2) we have

‖ẋ(t + αi) − ẋ(t + αl)‖ ≤ ‖ f (t + αi , xt+αi
) − f (t + αl, xt+αi

)‖

+ ‖ f (t + αl, xt+αi
) − f (t + αl, xt+αl

)‖,
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for t + α j 6= τk, j = i, k, and k ∈ Z.

As x(t + αi) ∈ Bν1
for large αi , for each compact subset of R there exists an

n1(ε) > 0 such that if l ≥ i ≥ n1(ε), then

‖ f (t + αi , xt+αi
) − f (t + αl, xt+αi

)‖ <
ε

2
.

Since x(t + α j) ∈ Bν1
, j = i, l, it follows from Lemma 2.3 that there exists

n2(ε) > 0 such that if l ≥ i ≥ n2(ε), then

‖ f (t + αl, xt+αi
) − f (t + αl, xt+αl

)‖ <
ε

2
.

For l ≥ i ≥ n(ε), n(ε) = max{n1(ε), n2(ε)} we obtain

‖ẋ(t + αi) − ẋ(t + αl)‖ ≤ ε, t + αi 6= τα
k ,

which shows that limi→∞ ẋ(t+αi) exists uniformly on all compact subsets of R. Then

limi→∞ ẋ(t + αi) = ω̇(t), and

(3.5)







ω̇(t) = lim
i→∞

[ f (t + αi , xt+αi
) − f (t + αi , ω(t)) + f (t + αi , ω(t))]

= f α(t, ω(t)), t 6= τα
k .

On the other hand, for t + αi = τα
k ,

(3.6)







ω(τα
k + 0) − ω(τα

k − 0) = lim
i→∞

(x(τα
k + αi + 0) − x(τα

k + αi − 0))

= lim
i→∞

Iα
k (x(τα

k + αi)) = Iα
k (ω(τα

k )).

From (H6) we get that for sequence {αi} there exists a subsequence {αn}, αn =

αin
such that the sequence {ϕ0(t + αn)} converges uniformly to the function ϕα

0 .

From (3.5) and (3.6) it follows that ω(t) is a solution to (2.3).

To show that ω(t) is an almost periodic function, let the sequence {αi} move the

system (2.1) to mod( f , ϕ0, Ik, τk). For any ε > 0 there exists m0(ε) > 0 such that if

l ≥ i ≥ m0(ε), then e−cαi b(2ν1) < a(ε)/4 and ‖ f (κ + αi , xκ+αi
) − f (κ + αl, xκ+αl

)‖ <
a(ε)/4L, where x ∈ PC[((t0,∞), R

n], c = const > 0.

For each fixed t ∈ R let τε be an a(ε)/4L-translation number of f such

that t + τε ≥ 0. Consider the function V (τε + σ, ω(σ), ω(σ + αl − αi)), where

t ≤ σ ≤ t + αi . Then

(3.7) D−V (τε + σ,ω(σ), ω(σ + αl − αi)) − cV (τε + σ, ω(σ), ω(σ + αl − αi))

+ L‖ f α(σ, ω(σ)) − f α(τε + σ, ω(σ))‖

+ L‖ f α(σ + αl − αi , ω(σ + αl − αi))

− f α(τε + σ, ω(σ + αl − αi))‖

≤ −cV (τε + σ, ω(σ)) +
3a(ε)

4
.
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On the other hand,

(3.8) V (τε + τα
k , ω(τα

k ) + Iα
k (ω(τα

k )), ω(τα
k + αl − αi) + Iα

k (ω(τα
k + αl − αi)))

≤ V (τε + τα
k , ω(τα

k ), ω(τα
k + αl − αi)).

From (3.7), (3.8), and Lemma 2.10 it follows that

(3.9) V (τε + t + αi , ω(t + αi), ω(t + αl))

≤ e−cαiV (τε + t, ω(t), ω(t + αi − αl)) +
3a(ε)

4
< a(ε).

From (3.9) we have

(3.10) ‖ω(t + αi) − ω(t + αl)‖ < ε, l ≥ i ≥ m0(ε).

From the definition of the sequence {αi} for l ≥ i ≥ m0(ε) it follows that

ρ(τk + αi , τk + αl) < ε.

Then from (3.10) and the last inequality we obtain that the sequence ω(t + αi)

converges uniformly to the function ω(t).

Assertions (i) and (ii) of Theorem 3.1 follow immediately. We will prove assertion

(iii). Let ω(t) be an arbitrary solution to (iii), and set

u(t) = ω(t) − ω(t), gα(t, u(t)) = f α(t, u(t) + ω(t)) − f α(t, ω(t)),

γα
k (u) = Iα

k (u + ω) − Iα
k (u).

Now we consider the system















u̇ = gα(t, u(t)), t 6= τα
k ,

∆u(τα
k ) = γα

k (u(τα
k )), k ∈ Z,

u(t0 + 0) = u0, t0 ∈ R,

and let W (t, u(t)) = V (t, ω(t), ω(t) + u(t)). Then from Lemma 2.10 it follows that

the zero solution u(t) = 0 of the last system is uniformly asymptotically stable for

t0 ≥ 0 and ω(t) is uniformly asymptotically stable.

Example 3.2 Consider the equation

(3.11)











ẋ(t) = −a(t)x(t) +

∫ t

−∞

c(t − s)x(s)ds + f (t), t > t0, t 6= τk,

∆x(τk) = bkx(τk), k ∈ Z,
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where a, c, f ∈ C[R, R] are almost periodic in the sense of Bohr. The function f (t)

is Lipchitzian in R; {bk}, bk ≥ 0, k ∈ Z, is an almost periodic sequence of real

numbers, and condition (H7) for sequence {τk} ∈ B is met. Let

−a(t) + M

∫

∞

0

|c(u)|du ≤ −λ,

where λ > 0 and M =
∏

∞

−∞
(1 + bk). For the function V (t, x, y) = |x| + |y|, (C2)

and (C3) of Theorem 3.1 hold for the equations (3.11), and from (3.6) it follows that

there exists a uniformly bounded solution for equation (3.11). Then the conditions

of Theorem 3.1 hold and consequently there exists a unique almost periodic solution

for equation (3.11).
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