ON A PAPER BY M. IOSIFESCU AND S. MARCUS

C.J. Neugebauer 1
(received August 5, 1962)

In this paper we will construct an example showing that the problem posed in [1] has a negative answer. Two more theorems on the subject treated in [1] will be included.

Let $I_0 = [0,1]$, R the reals, and let, for $A \subset R$, A^O be the interior of A. Let $\{x_n\}$ be a sequence in [0,1) such that $0 = x_1 < x_2 < \ldots$ and $\lim_n x_n = 1$. For each n, let I_n be a closed interval having x_n as its midpoint (except for n = 1 in which case x_1 is the left endpoint of I_1) such that $I_n \cap I_m = \emptyset$, $n \neq m$, and the metric density relative to I_n of $\bigcup_{n \geq 1} I_n$ at $1 \le n \ge 1$ is zero. Let I_n be a closed interval in I_n concentric with I_n (except for n = 1, where I_n has I_n as its left endpoint) whose length is half that of I_n .

We recall that a function $f: I_{o} \to R$ is approximately continuous at x_{o} , $x_{o} \in I_{o}$, if there exists a measurable set $E \in I_{o}$ such that E has metric density 1 at x_{o} relative to I_{o} and $\lim_{s \to \infty} f(x_{o})$, $x \in E$, $x \to x_{o}$ [2, p. 132].

THEOREM 1. There exist f,g: $I_o \to R$ bounded on I_o such that f is approximately continuous on I_o , g is a derivative on I_o , and $f^2 + g^2$ does not possess the Darboux property on I_o .

Canad. Math. Bull. vol.6, no.3, September 1963

Supported by NSF Grant No. 18920

<u>Proof.</u> We will first construct g. Let $x_n = 1 - \frac{1}{n}$, and let g(1) = 0, $g(x_n) = 0$, $n = 1, 2, \ldots$. On the intervals $[x_n, x_{n+1}]$ define g continuously such that $\{x: x \in [x_n, x_{n+1}] \}$ and $[g(x)] > \frac{1}{2} \} = [x_n, x_{n+1}] - (J_n \cup J_{n+1})$ and $\int_{x_n}^{x_{n+1}} |g| = \frac{1}{2}$. On $[x_n, x_{n+1}]$, let g be non-negative if n is odd and nonpositive if n is even. We can clearly make g bounded on I_0 . Define $G: I_0 \to R$ by

$$G(t) = \begin{cases} \int_{0}^{t} g, & 0 \le t < 1 \\ 1 - \frac{1}{2^{2}} + \frac{1}{3^{2}} - + \dots, & t = 1. \end{cases}$$

It is readily verified that G'(t) = g(t), $t \in I$ (see e.g. the proof of theorem 2).

Define a bounded function h: $I \to R$ satisfying the conditions: $\{x: h(x) = 0\} = I_0 - \bigcup_{n \ge 1}^0, \{x: h(x) > \frac{1}{4}\} = \bigcup_{n \ge 1}^0, h(x) \ge 0 \text{ on } I_0$ and continuous on [0,1). Then h is approximately continuous on I_0 and hence $f = \sqrt{h}$ is approximately continuous on I_0 . However, $f^2(x) + g^2(x) \ge \frac{1}{4}$ for $x \in [0,1)$ and $f^2(1) + g^2(1) = 0$. Hence $f^2 + g^2$ does not possess the Darboux property.

It is natural to inquire whether or not f + g has the Darboux property if f is approximately continuous and g is a derivative. We will first show that this is not always the case.

THEOREM 2. There exist f, g: $I_{0} \rightarrow R$ such that f is approximately continuous on I_{0} , g is a derivative on I_{0} , and f + g does not possess the Darboux property.

Proof. Using the notation introduced in the second paragraph, let $x_n = 1 - \frac{1}{\sqrt{n}}$, and divide the two complementary intervals of $I_n - J_n^0(n > 1)$ into two equal intervals τ_n' , τ_n'' and σ_n'' , σ_n' , where τ_n' , σ_n'' are to the left of τ_n'' , σ_n' , respectively, and τ_n'' is to the left of σ_n'' . For n = 1, we have only σ_n' , σ_n'' . Let g be continuous on J_n , zero at the endpoints of J_n , negative on J_n^0 such that $J_n^0 = \frac{1}{2(n-1)}$ (n > 1), and let g be

zero on J_1 . On each interval K_n of the form $[x_n, x_{n+1}] - (J_{n+1}^0 \cup J_n^0)$ define g to be continuous, zero at the endpoints of K_n , positive on K_n^0 such that $\int\limits_K g = \frac{1}{2n-1}$, and

 $\{x: x \in K_n \text{ and } g(x) \le 1\} = \sigma_n \cup \tau_{n+1}^n$. Let g(1) = 0. Then g is continuous on [0,1). Let

It follows that G'(t) = g(t), $0 \le t < 1$. To prove that G'(1) = g(1) = 0, let $h_i \to 1$, $h_i \in [0,1)$. For each i, let n_i be the integer for which $x_{n_i} < h_i \le x_{n_i} + 1$. Since $G(1) - G(h_i)$

is the remainder of an alternating convergent series, we have the inequality

$$|G(1) - G(h_i)| \le \frac{1}{2(n_i - 1)}$$
.

Hence

$$\left| \frac{G(1) - G(h_i)}{1 - h_i} \right| \leq \frac{1}{2(n_i - 1)} / \frac{1}{\sqrt{n_i + 1}},$$

and thus G'(1) = 0.

Define $f: I \to \mathbb{R}$ so that the following conditions are satisfied: $\{x: f(x) = 0\} = I_0 - \bigcup_0 I_n^0$, $f \ge 0$ on I_0 , f continuous on [0,1), $\{x: f(x) \ge 1\} = \bigcup_0 (\overline{\tau_n^{(i)}} \cup J_n \cup \overline{\tau_n^{(i)}}) \cup J_1 \cup \overline{\tau_1^{(i)}}$, and f(x) = -g(x) + 1, $x \in J_n$. Then f is approximately continuous on I_0 . But $f(x) + g(x) \ge 1$, $x \in [0,1)$, and f(1) + g(1) = 0.

Both functions in the above proof are unbounded. In view of the next theorem this is an essential feature.

THEOREM 3. Let $f: I_o \to R$ be approximately continuous on I_o and let $g: I_o \to R$ be a derivative on I_o . If either f or g is bounded on I_o , then h = f + g possesses the Darboux property on I_o .

<u>Proof.</u> If f is bounded on I_o, then f is a derivative on I_o [2, p.132], and the conclusion follows. We assume that |g| < M on I_o. Let $0 \le \alpha < \beta \le 1$ such that $h(\alpha) \ne h(\beta)$, say $h(\alpha) < h(\beta)$, and let $h(\alpha) < y_o < h(\beta)$. We will exhibit x_o , $\alpha < x_o < \beta$, such that $h(x_o) = y_o$. Define $f: I \to R$ by

$$f_n(x) = \begin{cases} n, f(x) \ge n \\ f(x), -n < f(x) < n \\ -n, f(x) \le -n \end{cases}$$

Then f_n is bounded and approximately continuous on I, and hence f_n is a derivative on I. Thus $f_n + g = h_n$ has the Darboux property. Let n be an integer such that -n + M < y < n - M and $h_n(\alpha) < y < h_n(\beta).$ There

exists $x \in (\alpha, \beta)$ such that h = (x = 0) = y = 0. We only need to show that -n = 0 < f(x = 0) < n = 0. If $|f(x = 0)| \ge n = 0$, then |f = (x = 0)| = n = 0, and $f = (x = 0) + g(x = 0) \neq y = 0$, contrary to h = (x = 0) = y = 0.

REFERENCES

- M. Iosifescu and S. Marcus, Sur un problème de P. Scherk concernant la somme de carrés de deux dérivées, Canad. Math. Bull. vol. 5, no. 2 (1962), pp. 129-132.
- 2. S. Saks, Theory of the Integral, Warszawa-Lwow, 1937.

Purdue University