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Let S be a semigroup whose set E of idempotents is non-empty. We define a partial
ordering > on E by the rule that e > fif and only if ef = f = fe. If E ={e;:ie N}, where N
denotes the set of all non-negative integers, and if the elements of E form the chain

€ > €1 >€3> ...,

then S is called an w-semigroup.

The purpose of this paper is to give a complete classification of regular w-semigroups in
terms of groups and group homomorphisms. The main problem is that of determining the
structure of a simple regular w-semigroup. It should be noted that if S is a simple semigroup
containing a primitive idempotent (an idempotent that is minimal under the partial ordering
of idempotents described above) then S is regular and its structure known [7; see also 3,
Chapters 2,3]; we say that S is completely simple. The study of simple regular w-semigroups
can be regarded as a natural next step beyond that of completely simple semigroups.

In §1 some special cases of regular w-semigroups are discussed; reference is made to them
in later sections. Bisimple w-semigroups constitute one important case; these semigroups, of
which the bicyclic semigroup is an example, have been classified by Reilly [8].

A regular w-semigroup S is necessarily an inverse semigroup. It is convenient to dis-
tinguish between the case in which S has a kernel and that in which it has not. In §2 it is
shown that S has no kernel if and only if it is the union of a semilattice of groups, the semi-
lattice in this case being an w-chain. The structure of a regular w-semigroup with no kernel
is therefore determined by an infinite sequence of groups G; and homomorphisms y,,

Yo Y1 n
Go"?Gl—'..."")Gn—'...,

in accordance with a theorem of Clifford [2, §3; see also 3, Chapter 4]. On the other hand,
if S has a kernel K then K is a simple regular w-semigroup; further, if K # S then the multi-
plication in § can be expressed in terms of that of K and of finitely many groups by means of
certain connecting homomorphisms (Theorem 2.7).

In §3 we construct a simple regular w-semigroup S(d; G;; 7;) from a sequence of groups
G, and homomorphisms y; of the form

70 7 Ta-1
Go—)Gl—)...—)Gd_l b d Go.

The integer d is characterised as the number of distinct @-classes in S(d; G;; y;). It is then
proved in §4 that this construction provides the most general simple regular w-semigroup.
Putting d = 1 we obtain the main theorems of (8]. The results of §§2, 3 and 4 combine to show
that a regular w-semigroup with a proper kernel K is determined by a sequence of groups
G; and homomorphisms 7; of the form
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Y0 n n Tiva-1
Go—= G —...oG—...> Gy - G
1 1 [ 1+d—1 1

for some /> 0and d> 0.

Finally, in §5, necessary and sufficient conditions are given for two simple regular w-
semigroups, S(d; G,; y;) and S(d*; G;*; 7,*), to be isomorphic. This result is extended to the
case of regular w-semigroups with proper kernels.

1. Some examples of regular -semigroups. With a few minor exceptions, we shall
throughout use the notation and terminology of [3]. The set of all non-negative integers will
be denoted by N.

It is convenient to begin by listing various types of regular w-semigroups to which we
shall refer later.

(1.1) The union of an w-chain of groups.

Let {G;: ie N} be a set of pairwise-disjoint groups and for each i€ N let y; be a homo-
morphism of G, into G,,,. For each pair (/,j)e N x N such that i < let

4, =%Vi+1---Vj-1
and for each ie N let a; ; denote the identity automorphism of G;. Let S =ﬁ G, and define
a multiplication on § by the rule that =
aib; = (a0 )(bj;,) (a,€G;,b;eG)),
where t = max{i,j}. Then S is a regular w-semigroup. In fact, if e; denotes the identity of
G, for all ieN, then e; 2 ¢, if and only if i £j. Write T, =G G; (neN). Then it is clear
from the law of multiplication that 7T, is an ideal of .S for all i; ;N. Moreover,
A T,=0.
Hence S has no kernel. "=

Semigroups of the above type are a special case of those first studied by Clifford in
(2, §3].

(1.2) The bicyclic semigroup B.
Let B= N x N and define a multiplication in B by the rule that
(m, n)(p’ q) = (m_n+t’ q—P‘H),

where ¢ = max{n, p}. Then B is a bisimple w-semigroup [3, p. 43 and Theorem 2.53). The set
of idempotents of B is {(n,n):ne N}and

mm)yz(n,n<sm<n.

We call B the bicyclic semigroup. 1t occurs as a subsemigroup of every simple semigroup
that contains a non-primitive idempotent [3, Theorem 2.54].
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(1.3) The semigroup S(G, ).

The bicyclic semigroup can be generalised as follows. Let G be any group and let «
be an endomorphism of G. Let S =N x G x N and define a multiplication in S by

(m;g;n)(p;h;q) =(m—n+t; gu' " ha'"% q—p+1),
where ¢t = max{n,p} and «° denotes the identity automorphism of G. Then S is a bisimple
w-semigroup, which we denote by S(G,a); moreover, every bisimple w-semigroup is, to

within isomorphism, of this type [8, Theorems 2.2 and 3.5]. Such a semigroup is necessarily
regular [3, Theorem 2.11].

(1.4) The semigroup B, .
Let d be any positive integer and let B, be defined by
By = {(m,n)eB: m =n (modd)},
where B is the bicyclic semigroup (1.2). Then B, is a subsemigroup of B. Furthermore, it
can be shown that B, is a simple regular w-semigroup with exactly d @-classes. The D-classes
are the subsets
D;={(m,n)eB: m=i(modd) and n=i(modd)} (0=Zi<d),

and each D, is a subsemigroup of B, isomorphic to B itself.

(1.5) The Bruck extension of the union of a finite chain of groups.

Let A be any semigroup with an identity and let S denote the set N x 4 x N. Define a
multiplication on S by the rule that
(m—n+p;b;q) if n<p,
(m;a;n)(p;b;q) =< (m;ab;q) if n=p,
{(m;a;q—p+n) if n>p.
Then S is a simple semigroup with an identity. This construction was first used by Bruck
[1, Theorem 8.3] to show that every semigroup can be embedded in a simple semigroup with
an identity. We call S the Bruck extension of A [see also 10, p. 569]. It can be verified that
(m; a; n) is an idempotent of S if and only if m = n and @*> = a. Further, (m;a;n) is a regular
element of S if and only if a is a regular element of 4 [3, Theorem 8.48].
Now let {G;:i=0,...,d—1} be a set of d pairwise-disjoint groups and, if d> 1, let y;
d-1

be a homomorphism of G, into Gy, (i=0,...,d—2). Let A = U G, and let multiplication
i=0

in A be defined as in (1.1), where «; ; denotes y;...7y;_y (i <j) and, for each i, &, , denotes
the identity automorphism of G;. Let e; denote the identity of G;. Then A is a regular
semigroup with idempotents e; (i=0,...,d—1); furthermore, ey >e¢;,>...>¢,_,. We
call A the union of a finite chain of groups. Let S be the Bruck extension of 4. Then S is
regular since A is regular. Also, the set of idempotents of .S is

{(m; e;; m): meN;i=0,...,d-1}
and it can be verified that

(m;e;;m)>(n;e;;n) <> either m <nor (m=nand i<j).
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It follows that S is an w-semigroup. Thus S is a simple regular w-semigroup. If, for
each i, we take G; ={e;} then S reduces to the semigroup B, of (1.4). (In fact, the mapping
(m; e;; n) = (md+1i, nd+i) is an isomorphism of S onto B,.)

The regular w-semigroups in (1.2), (1.3), (1.4) and (1.5) are simple. We conclude this
section with an example of a simple w-semigroup that fails to be regular. Take A to be the
three-element semigroup {0, @, 1}, where 0 and 1 are, respectively, the zero and identity
elements of 4 and @ = 0. Let S be the Bruck extension of 4. Then a is not a regular element
of A and so S is not regular. The set of idempotents of S is {(m; e; m): meN, e=0 or 1}
and it is easily seen that

0;1;0)>(0;0;0) > (1;1; ) >(1;0;1) > (2;1;2) >(2;0;2) > ....

Thus S is an w-semigroup.

2. Preliminary results. In this section we shall reduce the problem of determining the
structure of regular w-semigroups to that of determining the structure of simple regular
w-semigroups.

First, [8, Lemma 2.1} and [5, Theorem 3.2] combine to give

THEORBM 2.1. Let S be a regular w-semigroup. Then S is an inverse semigroup with an
identity and 3¢ is a congruence on S.

We now establish some notation that will be used throughout the remainder of the paper.
To save repetition, the full hypotheses will not be restated for successive lemmas.

Let S be a regular w-semigroup and let {e,:ne N} be the set of idempotents of S, where
en e, if and only if m <n. Let the %#-[#-]class of S containing e, be denoted by
R,[L,] for all ne N. With the usual partial ordering of the #- and Z-classes [3, §6.6] we
then have

Ry>Ry>Ry>... and Ly>Li>L,>....

Write H,, ; = RinL;. The following statements are easily seen to be equivalent:
(l) Hi,j #* 0, (ll) (eh ej)e@, (lll) Hj, i # 0

The non-empty sets H; ; are just the s#-classes of S. We note that if xeH, ; then
xx~' =e¢;and x"'x =e¢;. Evidently e;e H, ; and so each H, , is a group [3, Theorem 2.16].

LeMMA 2.2. Let i, je N and let t = max{i,j}. Then

(i) Hg' lHj,jg Ht.t and Hj,jHi,ig Ht,l .

(ii) eibj = bje‘for a” bjEHj,j.

Proof. We have that e;e; = ¢, = e;e;. But, by Theorem 2.1, 5 is a congruence on S.

Hence (i) holds. Let b;eH; ;. Then e;b;eH, , and so e;b; = e,e;b;e, = e,b;e,. Similarly,
b;e; = e,b;e,. Thus we obtain (ii).

D
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o0
By Lemma 2.2(i), U H, ,is a subsemigroup of S. Since it is both a union of groups
n=0

and an w-semigroup, it has the structure described in (1.1) [3, Theorem 4.11].
Write S; = e, Se; (ie N). The main properties of S; are described in the next lemma.

LemMa 2.3.
() S, is a regular w-semigroup with identity e; and group of units H; ;.
() S, =U{H, ;: r2i and s2i}.
(ili) Let (e;, e;)eD. Then there exists an isomorphism 0 of S; onto S; such that
(x,x0) €D for all xeS;.

Proof. (i) It is clear that S; is a subsemigroup of S with identity e; and group of units
H, , (the maximal subgroup of S containing e;). Let xe S;. Then x = e¢;xe; and so x~!
=e,x"'e;eS,. Thus S,is regular. Also ¢;e S, for all j = i and so S, is an w-semigroup.

(ii) Let xeS;. Then xee;S and therefore xe R, for some r = i. Similarly, xeL, for
some s = i. Hence xeH, , for some r =i and s 2i. Conversely, let ye H, , for some r 2 i,
s2i. Theny = e, ye, = efe,ye)e€S,;.

(iii) Since (e, e;)e 2 it follows that H; ;# (. Let acH; ;. It can readily be shown
that a~*xae S, for all xe S, and that the mapping 0:S; — S; defined by x0 = a~'xa (xe S} is
an isomorphism of S, onto S; [6, Lemma 1]. Let xeS;. Then xaa~' = xe; = x and so
(xa, x)eR. Also a(a™'xa) = e;xa = xa; therefore (xa,a”*xa)e ¥. Thus (x, a”'xa)e D and
this completes the proof.

o0
The maximal subgroups of S are the sets H, , and we have already noted that U H, , is
n=0

a regular w-subsemigroup of S with the structure described in (1.1). It will now be shown
that if S # ﬁo H, , then S has a kernel.
LemMa 2.4. Let S be such that R; #+ H, ; for some i€ N and let | be the least such integer i.
Then S, is the kernel of S and is a simple regular w-semigroup. If 1> 0 then
S=AuS;, AnS§;=0,
where A is the subsemigroup :l-J: H;;of S.

Proof. By Lemma 2.3(ii), S;= U{H, ;ir2land s2{}.If H, ; #0 for i #jand j </,
then H; ,#0 and so R;#H; ;, which contradicts the definition of /. Thus, for i 2/,
R;=U{H, ;:jzl}cS,. Similarly, L; = S, (= )).

We show first that S, is an ideal of S. Let aeH,  for some r 2/, s =/ and let xeS.
Then axe R, for some i = r. Since i = /it follows that axe S,. Similarly xae S,.
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Next we show that S, is simple. Let he R\H, ;and let k =h"'. Then 4 and k lie in S,.
Also hk =e;, kh # e, and so S, contains the infinite descending chain of idempotents

e,=hk>kh>kh >...>k"n">... (2.4a)

[3, Lemma 1.31]. Let T be any ideal of S, and let xeT. Then xx~! = ¢, for some neN;
also e,eT. From (2.4a), e, = k"h". Hence

e = (h'K")? = h"(k"h"e,)k"e T

and so S, = T. Thus S, is simple. Being an ideal of §, S, is the kernel of S. Moreover, by

2.3(i), S, is a regular w-semigroup.
-1
Finally, let /> 0. Since A = UR and S, = UR we see that S =4uUS, and AnS, =0.

Furthermore, by Lemma 2.2(i), 4 i 1s a subsemlgroup of S.

COROLLARY 2.5. S is simple if and only if Ry # H, o.

Proof. Let Ry # Hy, . Then, by Lemma 2.4, S, is simple and S =§,. Conversely,
suppose that S is simple. If R, = H, , for all ne N then S would be the union of an w-chain
of groups (1.1) and so would possess proper ideals. Hence R; # H; , for some ieN. Let
! be the least such i. Then, by Lemma 2.4, S, is an ideal of S and is proper if / > 0; hence
1=0.

We now give a characterisation of a regular w-semigroup without a kernel.

THEOREM 2.6. Let S be a regular w-semigroup. The following conditions on S are equi-
valent.

() S has no kernel.
(ii) The idempotents of S are central.
(iii) S is the union of an w-chain of groups.

Proof. We first show the equivalence of (i) and (iii). Let § have no kernel. Then, by

Lemma 2.4, R, = H, , for all neN and so S =UH, ,. This establishes (iii). Conversely,
n=0

as was shown in (1.1), the union of an w-chain of groups has no kernel.

Liber [4] has shown that an inverse semigroup is a unton of groups if and only if its
idempotents are central. The equivalence of (ii) and (iii) is a special case of this resuit.

The final result of this section concerns the structure of a regular w-semigroup with a
proper kernel.

THEOREM 2.7. Let Gy, ..., G, be a set of pairwise-disjoint groups for some | >0 and
let K be a simple regular o- sengroup, disjoint from each G;, with group of units G. Write
G, =G. For each i such that 0 i< I—1 let y; be a homomorphism of G, into G;.,. For
0Si< jZl define a; ; to be y;yi4y...7;—, and let a; ; be the identity automorphism of
G, (0=igl-1). Let S =GyuGU...UG,., UK. Define a multiplication (o) in S, extending
that of K and of each G, as follows:
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(@) aiod; = (a;2;,,)(b;2;, ),
(ii) g;ex = (aiai, DX, xoa;=x(a;a; 1),
(iii) xoy =xy,
where a,e G;(0<i<1-1),b;€G;(0<j<I-1),t =max{i,j} and x,ye K. Then S is a regular
w-semigroup with kernel K.

Conversely, if S is a regular w-semigroup with kernel K # S then S is isomorphic to a semi-
group constructed as above.

-1
Proof. Let A = UG,. Then by [3, Theorem 4.11}, 4 is a semigroup under (o). Define
i=0

a mapping 0: 4 —+ S by a,0 = a;«; ; (a;€G;; 0 =i < /—-1). It is easily verified from (i) that
9 is a homomorphism. Applying [3, Theorem 4.19], we see that S (= AuK) is a semigroup.
Since K is a simple ideal of S, it is the kernel of S. Let e; be the identity of G, (0 £ i< 1-1)
and let {f,:ie N} be the set of idempotents of K, where f, > f; > f, >.... From (i) we see
that

€ >e >...>e_

and, from (ii), that e,_,of, =fo =foce,—;; thatis, ¢_, >f,. Thus S is an w-semigroup.
That S is regular follows from the fact that its subsemigroups K, G; (i=0,...,/—1) are
regular,

Conversely, let S be a regular w-semigroup with kernel K# S. We use the notation
established earlier. By Theorem 2.6, R; # H; ;for some ie N. Let / be the least such mtegcr i
ByLemma 2.4, K= S;. Since K # S, it follows that / > 0 and so § = AUK, where 4 = U H; .

i=0
Write G;=H; (0<i</). Then, for 0£i</], 0<j</ and ¢t =max{i,j}, we have that
G,G; < G,, by Lemma 2.2(1). Also a;e;,, =¢;4,q; for all a,eG;(0 =i </—-1) by Lemma
2.2(ii) and so the mapping y;: G; = G, defined by a;7; = a;e,,, is a homomorphism (see
[3, Theorem 4.11]). It then follows easily that the structure of A is as described in (i). Now
let a,eG; (0 <i</-1)andlet xeX. Then

a;x = afe,x) = (a;€41 €ivz ... €)% = (a;0; X,
where @; ;= 9;7i+1-..V1~1. Similarly, xa; = x(a;2; ;). This completes the proof.

(2.8) It is easily verified that the #-classes of S in the above theorem are the sets
Gy,...,G;-, K and that, under the natural ordering of these classes [3, § 6.6],

Gy>Gy>..>G_;>K.

Now suppose that a second regular w-semigroup S* is defined similarly in terms of a simple
regular w-semigroup K*, groups G} (i =0,..., /*), where G7, is the unit of group K*, and
homomorphisms y¥ (i=0,..., I*~1). Then S = S* if and only if the following conditions
are satisfied:

@) I=1%

(ii) there exists an isomorphism ¢ of K onto K*;
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(iii) for i =0,..., [ there exists an isomorphism 6; of G; onto G} and, in particular,
b =¢ l G;

(iv) 0,77 =704, (=0,...,1-1).

We omit the proof.

3. The semigroup S(d; G;; 7;). In this section we give a process for constructing a simple
regular w-semigroup from a finite set of groups and homomorphisms. It will then be shown
(84) that this construction yields the most general type of simple regular w-semigroup.

Let d be a positive integer and let {G;:i=0,...,d—1} be a set of d pairwise-disjoint

groups. Let y,_, be a homomorphism of G,_, into G, and, if d > 1, let y, be a homomorphism
of G, into G;;, (i=0,...,d—2). Thus we have the sequence

Yo 71 Yd-1
GO_'GI—'"‘_'Gd—l - Go-

For all ne N let y, = Yymoaay- FOr m, ne N and m <n write
am,n='ym‘)’m+l"'}’n—l

and for all neN let «, , denote the identity automorphism of G,(meaq - Let S be the set of
all ordered triples

(m;ay;n),
where m,neN, 0 £i<d-1 and a;eG,. Define a multiplication in S by the rule that
(m;a;;n)(p;byiq) = (m—n+t;(aia,, ) (0;2,,4); §—p+1), (3.1)

where ¢ = max{n, p}, u = nd+i, v = pd+j and w = max{u, v}. Denote the groupoid so formed
by S(d;Gg,..., G4—1; Yos---» Ya—1) OF, more compactly, by S(d; G;; y,)-

The main result of this section (Theorem 3.3) is that S(d; G,; ;) is a simple reqular w-
semigroup with exactly d D-classes.

Remarks. Let m, neN and let m <n. Then a,, , is a homomorphism of G, g 4) int0
G (moa ay and, for all re N,

am. n= %m+rd, n+rd+
Moreover,
U, nO%n,p = %, p (ménsp)

The following special case of (3.1) should be noted:
(m;a;;n)(n; by; q) = (m;(a;a;, z)(bj“j, 0 49),
where ¢ = max{i,j}. In particular, taking i = j we have that

(m;a;;n)(n; b;;q) = (m;a;b;; q).
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Lemma 3.2. S(d; G;; v)) is a semigroup.

Proof. Since the multiplication in (3.1) is such that the outer components of the triples
reflect the multiplication in the bicyclic semigroup B (1.2), it is enough to consider the behaviour
of the central components.

Let a=(m; a;; n), b= (p; b;; q), c =(r; ¢;; 5s). We shall show that the central com-
ponents of (ab)c and a(bc) are the same. This will establish the lemma. To simplify the proof
we make use of the subsemigroup B, of B discussed in (1.4). Define elements &', ', ¢’ of B,

by
a’'=(md+i,nd+i), b’ =(pd+j,qd+j), ¢ =(@d+k,sd+k).
Then
a'b’ =((m—n+t)d+u,, (g—p+t)d+uy),
where
tyd+uy = max {nd+i, pd+j}, 0= u, <d,
and so
@b)e =((m—n+p—g+t)d+u,,(s—r+t)d+u,),
where
tyd+u, =max{(g—p+t,)d+u,,rd+k}, 0<u, <d.
A similar argument shows that
a'(b'c)=((m—n+t)d+u,,(s—r+q—p+t)d+uy),
where
tyd+u; =max{qd+j,rd+k}, 0=Zu;<d,
and

tyd+u,=max{nd+i,(p—q+t3)d+us}, 05 u,<d.
Comparing (a'd’)c’ and a'(b'c’), we see from the associativity of B, that
p—q = t4"‘tz and uz = u4. (3.2&)

We use the same notation below. Consider the product (ab)c in S(d; G;; y;). The central
component of ab is -

_ (31 %41, 11a4u,) (bj Cpdt j, td+u)-
This lies in the group G, ; denote it by x,,. It then follows that the central component of
(ab)c is
(Xuy Og=p+enyd+uy, taatus) (CkOrat, 12a+ur)-
Since p—q+¢, = t,, by (3.2a), we have that
Xuy E(g=pte)d+uy, tad+uz = Xuy Ftyd4uy, ted+uy = (01 %ng+1, t0g4uy) (bj Xpg+ 4, ted+u)r
Hence the central component of (ab)c is
(@5 %na41, teatu) (05 %pasj, raatu) (CxPrasr, t2a4u1)-
In the same way, it can be shown that the central component of a(bc) is

(81 %ng 44, ted+us) (bj Xod+j, tad+us) (Ck%ra 4k, 120 4ud)
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But since 7,—p = t,—q and u, = u,, by (3.2a), we have that

Opd+j, tad+uz; = %qd+j, tad+us

and so the central components of (ab)c and a(bc) are equal.
This completes the proof.

THEOREM 3.3, S(d; G;; y,) is a simple regular w-semigroup with exactly d D-classes.

Proof. Write S = S(d; G;; v,). Let f; denote the identity of the group G, and, for each
a;e G, let a7! denote the inverse of a;in G; (i =0,...,d~1).

By Lemma 3.2, S is a semigroup. Let (m; a;; n)eS. Since (m; a;; n)(n; a7'; m)(m; a;;n)
= (m; a;; n), S is regular.

We prove next that {(m;f;; m):meN;i=0,...,d— 1} is the set of idempotents of S.
It is clear that (m;f;; m) is an idempotent. Conversely, let x = (m; a;; n), where x* = x.
Then m—n+t =n—m-+t, where t = max{m, n}; hence m =n. Thus x* = (m;a}; m) and
so a; =f;. Now

(m;fi;m)(nsf5m) = (645 0) = (03 S ) (m3 fi; m),
where
td+k = max {md+i,nd+j}, 0sk<d.

It follows that, under the natural ordering, the idempotents form a chain
(0:/6;0) > (0;£1;0) > ... >(0:/5-1;0)
>l D> f D> > - 1)
>(2:00:20 > @25 f132) > ... > (25f4-132)
>,
Thus S is a regular w-semigroup. The identity of S is (0; f,; 0) and it is readily verified that

1

(m;a;;n)~' =(n;a;';m).

To show that S is simple it is enough to prove that (0; f,; 0) lies in the ideal generated
by an arbitrarily-chosen element (m; a;; n) of S. We have that
(0;a; 'y, g3 m+1)(m;a;5n)(n+1;£0;0)
= (0;(a; ", ) (31 %mgus, m+1y)in+1)(n+1;£,;0)
= (0;(al_lai. 2(a1%, 4);0)
=(0;f0;0)
and this establishes the result.

Finally, we have to show that S has exactly d @-classes. Since § is regular each P-class
contains an idempotent; hence it is sufficient to show that

((m3fism), (n;f;im)eD < i=].
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Write e = (m; f;; m), e’ = (n; f;; n). We use the fact that (e, e’)€ 2 if and only if there exists
xeSsuch that xx ' =e, x 'x =¢'.

First suppose that (e, e)eD. Let x = (r;a,;s), where xx™' =e, x"'x=¢'. Since
xx"Y=(r; f.;r) and x"'x = (s;fs;s) we see, in particular, that i =k =j. Conversely,
suppose that i =j. Take x = (m; f;;n). Then xx~! =¢ and x~'x = ¢’, which shows that
(e, e)e 2.

This completes the proof of the theorem.

1

(3.4) With the notation of §2 it can be verified that
Rpg+i={(m;a;;n)eS:a,€G;,neN} (meN;i=0,...,d-1),

Ly ={(m;a;;n)eS:a,€G;,meN} (neN;i=0,...,d-1)
and so
Hpgsi,pavi = {(m;a;n)eS:a,eG} (m,neN;i=0,...,d-1).
We conclude this section by discussing two special cases.
First take d=1. By Theorem 3.3, S(1; G,; 7o) is a bisimple w-semigroup. Write
G =G, and « = y,. Then « is an endomorphism of G. Also if m,ne N and m < n then the
mapping a,, ,: G - G is just & ™™, where o° is interpreted as the identity automorphism of G.
It follows that the multiplication in (3.1) reduces to that of the semigroup S(G, «) described
in (1.3).
Next consider the case in which y4_,: G;_, = G, is the *“ zero homomorphism *’ defined by

XYa-1=fo (x€Gy-y),
where f, is the identity of G,. Let u,veN and suppose that u <v. Write u =md+i,
v=nd+j (0£i<d 0£j<d). Then

a,a,,.,,={f’ ifm<n,

a;a; 7 ifm= n,
d-1

where f; is the identity of G;. Let4 = U G;and define a multiplication (o) in 4 by
i=0
a;° bj = (aial, ) (bj a;, )
where a,€G;, b;€G, and t = max{i,j}. Then 4 is a semigroup and, from (3.1), we have that
(m—n+p;b;;9) if n<p,

(m;a;n)(p;b;;9) =< (m;a;ebj;q) if n=p,
(m;a;;q—p+n) if n>p.

Thus in this case S(d; G;; y;) reduces to the Bruck extension of 4 (see (1.5)).
4. The structure of a simple regular w-semigroup. This section is devoted to showing
that any simple regular w-semigroup S is isomorphic to a semigroup of the type S(d; G;; y,).

In particular, the number of 2-classes of § is finite.
We shall follow the notation of §2. Let S be a simple regular w-semigroup. Then, by
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Corollary 2.5, Ry # Hy,o; that is, R, is the union of H, , and certain other non-empty
sets H, ,. Let d be the smallest positive integer n such that H, , # 0. Thus (e, e;)e 2 and
(ep,e)¢ 2 for any i such that 0 < i< d.

Lemma 4.1, (e,, €,34+,)€2D for all r,neN.

Proof. By Lemma 2.3 (iii) there exists an isomorphism 8 of S(= S,) onto S, such that
(x, x0)e 2 for all xeS. Hence {e,0:re N}is the set of idempotents of S, and

ed=e00>ele>e20>....
But the set of idempotents of S, is {e;4,:reN}. Thus e, 0 = ¢,,, for all reN and so
(eried-f-r)eg (rEN)'

The result now follows by induction.

Since every idempotent of S is of the form e,y ; for some ne N and some i such that
0 < i < d, the result shows that .S has at most d distinct 2-classes. The next lemma establishes
that there are exactly d 2-classes.

LemMa 4.2, Let 0<i<j<d. Then (e;,e)¢ 2.

Proof. Suppose that (e;,e))e 2. Then H; ; #0. Let heH, ; and let k =h~'. Then
hk =e;, kh=e; and h, keS;. Hence by [3, Lemma 1.31] we have the strictly descending
chain of idempotents

e >kh>kh:> ... >k > ....
By hypothesis, ey > ¢; > ¢; > ¢;. Choose n such that
H 2> e, = K,
Then it is easily seen that A", k" is an idempotent and that
(k"M 2 ke k™ = (k" TR ke .
But *(k"A")k" = e, and A"(k"* 'h"* )K" = e(kh)e, = e;; hence
e 2 he k" 2 e. (4.2a)

Now (e kMh" = ¢, and so (e k", e)eR; further, k"(h"e k™) = e, k" and so (W"e k", e,k™)e Z.
It follows that (h"e k", e;)e 2. Hence (h"e k", ey) € D. This, together with (4.2a), contradicts
the definition of d. Thus (e;, e;) ¢ 2.

From the previous two lemmas we can now state which of the sets H,, , are non-empty.

LemMa 4.3. For any m,ne N the following conditions are equivalent.
G) H,, .#9, (i) (en,e)e?, (i) m=n (modd).

Proof. The equivalence of (i) and (ii) has already been noted. By Lemma 4.1, (iii) implies
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(i)). Now let (e, e,)e 2 and write m = rd+i, n = sd+j, where 0 £i<d, 0 S j<d. Then
(e;,e)€ 2 by Lemma 4.1. Hence i=j, by Lemma 4.2, and so m =n (modd). Thus we
have shown that (ii) implies (iii).

Let the 9-class of S containing e; be denoted by D, and let the group H; ; be denoted
d-1
by G, (i=0,...,d—1). Evidently S=U D;and D;nD; =0 if i #j.
i=0

LeEMMA 4.4.

(i) D, is a bisimple w-semigroup with identity e; and group of units G,.
(ii) The R- [£-] classes of D, are the sets R4, [L.4+i] (neN).

Proof. (i) Since S is regular and its idempotents form a chain, each D, is a bisimple
inverse subsemigroup of S [9]. Moreover, by Lemma 4.3, the set of idempotents of D, is
{ema+i:neN}. Thus D, is a bisimple w-semigroup with identity e;. The group of units of
D, is the maximal subgroup of D; containing e¢;. But G, < D, and G, is the maximal sub-
group of S containing ¢;. Hence the group of units of D, is G,.

(ii) From Lemma 4.3 we have that

D= U Ry = u Lug+i-
n=0 n=0

It is clear that each %-class of D, is contained in an Z%-class of S. Let neN and let
a,beR,y.;. To show that R4, ; is an %-class of D, it is enough to prove that a and b are
Z-equivalent in D;. Since (a,b)eZ there exist elements x,yeS such that a = bx, b =ay.
Write x’ =b"'bxa~'a, y' =a 'ayb~'b. Then a=bx’, b=ay. Further, (3,x)e & and
(b,y)e¥. Hence x',y'e D,;. This gives the required result.

From Lemma 4.4 we obtain
LeEMMA 4.5. Let hieH; 4., (0 S i<d) and let k,=h3'. Take h} =k =e,. Then

ki'aihi € Hug v i, na+i (m,neN;a;eG)
and the mapping :G; = Hpg+1, na+: defined by
xy =ki'xh} (xeG)

is a bijection.

This is essentially [8, Lemma 3.4] applied to the bisimple w-semigroup D;. We omit
the proof.

Now choose an element he H, 4 and let k = h™'. Thus hk = e, and kh = e,. For the
remainder of this section A and k will be kept fixed. We make the convention that
R =k’=e,.

LEMMA 4.6. e,—hEH,.“,, (i=0,...,d—l).

Proof. First, (e;h)(e;h)™ ' =ehke, = e;eqe; =€, and so e;heR;. Let e;heL,. From
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Lemma 4.3, to show that n = d+i it suffices to show that d £ n < 2d. We note that ke;h
= (e;h)"'(e,h)eL,; hence ke,h =e,. Since ey = hk = e; > kh = ¢, it follows easily that
k(hk)h = ke;h 2 k*h?;
that is,
e, 2 e, = k*h

Now from Lemma 4.5 we have that k*h* = k?egh*e H,, ,4 and so k®h* =e,,. Further-
more, if e, =k*h* then e; = h(ke,h)k = h(k*h*)k = kh = e¢;, which is a contradiction.
Hence e, = e, > e,, and this gives the required result.

LemMMA 4.7. Every element of S is uniquely expressible in the form k™a,h" (m,neN,;
0<i<d;a,eqG).

Proof. Let 0 £i<d We first show that (e;h)" =¢;h" (n=1,2,3,...). This holds
trivially for n = 1. Assume that (e;h)" = e; A" for some positive integer . By Lemma 4.6,
e;he R, < S, and so (e;h)’e; = (e;h)". Hence

(e' h)r+1 — (ei h)rh =g hr+ 1
and the result follows.

Next, ke; = (e;h)™! and (ke))" = [(e;h)"] ! = (e;i") ! =k"; (n =1,2,3,...). Now take
h;=e;hin Lemma 4.5. Then k,; = h7' = ke;. Also h? = e, h" for all positive integers n and
this holds also for n = 0 since 42 and A° are defined to be e; and e, respectively. Similarly
k7 =k"e,(meN).

Let xeS. Then x€ Hpyy i, pg+: for some m,n,i (0 £i<d) by Lemma 4.3, and so, by
Lemma 4.5,

x = kia; h}

= k"'ei a;e; h"

= k™a, h".
Moreover, if k™a,h" =k'b;h* then kTahi =kib,hi and so m=r, n=s and a,=b,; by
Lemma 4.5. Thus the expression for x is unique.

Lemma 48. Let 0 s j<dandlet b;eG;. Then hbje H, ;.

Proof. We have that
(kb)) (hb))™' = he;k = he khe;k = he;e,e;k = he;k = hkhk = e, .
Hence hb;e R,. Also b;e; = e4b;, by Lemma 2.2(ii), and so
(hb;)~'(hb;) = b7 'khb; = b7 'esb; =b}'bey =€;e,=¢,.
Thus hb;eL,. Therefore hb,e H, 4.
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In particular, hxe H, 4 for all xeGy_;. Now, by Lemma 4.5, every element of Hy 4
is expressible in the form gh for some unique geG,. Hence we can define a mapping
¥4-1:G4-1 — G, by the equation

hx = (xy4-1)h (x€Gy—y).

Now suppose that d > 1. Let i be such that 0 £ i < d—2. Then for each xe G; we have
that xe;,, = €;4, X€ G4, (Lemma 2.2). Define a mapping y;: G; = G,,, by the rule that

xy=xe.y (x € Gy).

LeMMA 4.9. y; is a homomorphism (i =0,...,d—1).

Proof. Consider the case i =d—1. For all x,yeG,_,
(CY)ya-1h = h(xy) = (hx)y = (xy4-1)hy = (x74-1) Va- )R
and so, since every element of H,, , is uniquely expressible in the form gh (g € G,),
x¥a-1 = (XV4=-1) (¥7a-1)-
Suppose that d > 1. Let 0 =i <d—2 and let x,yeG;. Then
(xY)7i = xye 1 = xyel,y = Xe g yery = (x7) (y7).
We now extend the above definitions by writing
¥n = Vn(mod d) (neN).
Thus y, is a homomorphism of G,moqa) INtO G (4 1)meay- FOTr m, n € N and m<n write
%m0 = PmPm+1-+-Vn-1

and for each neN let a, , be the identity automorphism of Gmoa ay- Then o, , = tssm, ra+n
for all re N. Also, if m <n £ p, then

%m0 %n, p = %, p+
Furthermore, if 0 £ i £ j < d and a;eG, then

aie.’:a‘a'-’j:ejai.

LemMMA 4.10. Let a;€G;, bjeG; (0 £ i<d, 0 £ j<d)andlet r be a positive integer. Then
(i) aihrbj = ai(bjaj,rd+i)h',
(i) a;k'b; = k'(a,;, ra+ )b; -

Proof. (i) We first note that he;.; = (e;—y 74-1)2 = egh =h. Now, by Lemma 4.8,
hb;e Hy 4 and so, by Lemma 4.5, hb; = gh for some geG,. Hence

(hbj)es—y = (gh)es—y = gh = hb;.
Thus hbl = h(bl ed_l) = h(bjaj'd_l) = (bjaj’d_l yd—l)h = (bjaj,d)h-
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Consequently,
ahb; = a;(b;a; )h = (a;e)(b;a; Hh= ay(b;o; 404 4+0h = a;(b; °‘j,4+1)h-

Thus the result holds for » = 1. Assume that it holds for » = n—1 (n > 1) and for all i, j such
that 0 £i<d,0£j<d. Then

q h"bj = aihn-l(bj aj, Dh=a [(bj oy, )%, (n—l)d+|‘]hn_l ch= al(bjaj,dad, na+ )"
= ai(bj a;, nd+)h"

Hence the result holds for r = n and so, by induction, it holds for all positive integers r.

(ii) From (i) we have that

b,i_lhrai‘-1 = by (a; 'y, e PR
and so
a;k'b;=(bj'h'a; )" = (h) "G oy, pan )Tl = KT(ai 00 a4 )b
We now come to the main result.

THEOREM 4.11. Let S be a simple reqular w-semigroup. Then S = S(d; G;; y,) for some
d’ Gis 7!(i=0s~--, d—l)

Proof. Let d, h, k, G;, y, be as above. By Lemma 4.7, every element of S is uniquely
expressible in the form k™a,h” (n,neN; 0L i<d;a;eq).

Let x = (k™a;h") (k?b; k%), where m,n,p,qeN, 0<i<d, 0£j<d, a;eG, and b;eG;.
To simplify this product we distinguish three cases.

(i) If n > p then
x = k"™a;h"""b; h*
=Kk"a;(b;ja; (n-pa+)h*?"",  from Lemma 4.10(),
= k"a;(b;0tpy s j, na+ DHITPF".
(ii) If n <p then
x =k™a;kP~"b; h*
= k™" P(a;0; (-ma+)b;h%  from Lemma 4.10(ii),
= k""" (g, Zng+4, pa+ )b H.
(iii) If 7 = p then
x =k"a,eqb;h=k™a;b; k= k™(a;; ) (b;a; Jh?,  where s = max {i,j}.

All three cases can be combined as follows. Write ¢ = max{n,p}, u = nd+i, v = pd+j,
w = max{u,v}. Then

x= km_n+t(ai au, w) (bjau, w)hq—p-H'
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Thus the mapping 6: S — S(d; G;; y;) defined by

(k"a; W8 = (m;a;;n)
is an isomorphism. This completes the proof.

(4.12) We conclude this section by combining the results of Theorems 2.7, 3.3 and 4.11.
Let / and d be positive integers and let {G;:i=0,...,/+d—1} be a set of pairwise-disjoint
groups. Let y,,,-, be a homomorphism of G,,,_, into G, and, for i =0,...,/+d—2, let
y; be a homomorphism of G; into G;,,. Thus we have the sequence

Y0 2! n Ti+d-1
Gy=» G, »..-»G—>...=Gy -y = G

Write G; =G,,;, i =V1+: (i=0,...,d—1) and let K= S(d;G;;7y;). Then K is a simple
regular w-semigroup (Theorem 3.3). The unit group of K is isomorphic to G;. Now let S
be constructed from G, ..., G,_,, K and the homomorphisms y,,..., ;. asin Theorem 2.7,
where we identify y,_, with the homomorphism x;_; — (0; X, y,-,;0) of G,_, into the unit
group of K. Then S is a regular w-semigroup with kernel K. Denote it by

T(;d; Gy yy)
Conversely, let S be a regular w-semigroup with a proper kernel K. Then from Theorems 2.7

and 4.11 we see that S is isomorphic to a semigroup of the above type. Note that the %-
and Z-classes of K are just the - and Z-classes of S that are contained in K.

5. The isomorphism theorem. In the preceding sections we have established a construc-
tion for the most general simple regular w-semigroup in terms of a finite collection of groups
and homomorphisms. We now find necessary and sufficient conditions for two semigroups
constructed by this process to be isomorphic.

THEOREM 5.1. Let S = S(d;G,;7,) and let S* = S(d*;G};yY). Then S = S* if and only
if () d = d* and (ii) there exist isomorphisms 0, of G; onto Gt (i=0,..., d—1) and an inner
automorphism {* of G§ such that the following diagram is commutative:

Y0 7 Ya-1
GO—") Gl _ Gd—l —_— Go

0, 041 l 0o (Sla)
i)

8o
S
Go— Gy —> ...— Gj_1—> Gy — G,
?*% %1 %d-1 4
Proof. We use the notation of §3. Starred quantities refer to S* throughout. We recall

from (3.4) that
Hpgvinavi = {(m;a;;n) € S:a;€G;}

for all m,neNand fori=0,...,d—1.
First suppose that there exists an isomorphism ¢ of S onto S*. By Theorem 3.3, d and
d* are the numbers of distinct P-classes in S and S* respectively. Hence d = d*.
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Consideration of the chain of idempotents in S and in S* shows that
(m;fi;m)p=(m;f¥;m) (meN;i=0,...,d—1), (5.1b)

where f; is the identity of G, and f7 the identity of G¥. Now R,¢ is an #-class of S* and
L, ¢ is an Z-class of S* for all r,se N. From (5.1b) it follows that

Rr¢=R:‘9 LS¢=Lt'

In particular, H; ;¢ = H¥ ;(i=0,...,d—1) and so we can define an isomorphism 6, of G;
onto G¥ by the rule that, for all a;e G|,

(0;0;;0)¢ = (0;4,6;;0) (i=0,...,d=-1).
Also H, 4¢ = H§ ;; hence
(0:f0; D) = (0;25;1)
for some z§ € G§. Then for x,_, € G,_, we have that
(0;x4-174-13 )¢ = [(0;X4-174-1:0) (05 f5; D]
= (0; X4 1 74-100;0)(0;23; 1)
= (0;(x4-17a-1 90)23 ;1.
But 05 %4-174-13 D¢ = [(0;6; D (0; x4_1;0)]¢
= (O;Zg;l)(();xd-l 0,-1;0)
= (0; Zg(xd—l 05-1 7;— 1 1).
Hence, for all x,_, €G-,
(X4-1Ya-1 90)23 = Z:(xd—l 0;-1 7:— -
Let {* denote the inner automorphism x —» z§xz3 ~* of G§. Then
Ya-1 90=94-1v§‘-16"‘- (5.]c)
Now suppose that d > 1. For 0 £ i £ d—2 and any x,e G, we have that
0;%;7:0,41:0) = (0; x;7;; 009
=[(0;%;;0)(0;f1+1;0)]¢
= (0;%;6;0)(0;/%1;0)
=(0;x;6;7";0)
and so
‘))ioH,l =0i'y‘* (i=0,...,d_2). (S.Id)

From (5.1c) and (5.1d) we see that the diagram (5.1a) is commutative.

Conversely, let d=d*. Suppose also that there exist isomorphisms 6;:G,— G*
(i=0,...,d—1) and an inner automorphism {* of G§ such that (5.1a) is commutative. Thus
(5.1c) holds and, if d > 1, then (5.1d) holds. We note that, for 0 < j < d,

0,0, {£* = o, 40. (5.1¢)

https://doi.org/10.1017/50017089500000288 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500000288

64 W. D. MUNN

Let z3 be an element of G¥ such that
x*=zgxzg"!  (xeGy).

Write h, = (0;23;1) and k, = hy'. Then h,eHg 4 and h, k, is the identity of S*. Define
¢:S - S* by
(m;a;n)p = k3(0;a,6,;0)h5 .

We take 4% and k9 to be the identity of S*. Since 6;: G; —» GT is a bijection it follows that
HY ;={0;a,6,;0)eS*:a,€G} (i=0,...,d-1).
Thus, applying Lemma 4.7 to S*, we see that ¢ is a bijection.
Let (m;a;;n), (p;b;;9)eS. We shall show that
(m;a;m)d(p;b;;9)¢ = [(m;ai;n) (3 by39)1¢. (5.1f)
It is convenient to consider separately the three cases
(i) n>p, (i) n < p, (iii) n = p.
Case (i). The left-hand side of (5.1f) is

k2(0;a;0,; 0)h% 7 (0; b;0;; 0)hs, .
Now
by (0;5;0;50) = (0; 25 (b;0,%5 2); 1)
= (0;(b;0;a} 4,{")25;1)
=(0;b;0;a] ,{*;0) b,
=(0;b;a;,400; O)hy, by (5.1¢).
Hence

h%(0; b;0;;0) =h,(0;b;a; 40,; O)h,
= (O,bj“j,aoo“o,dc*,o)hi
= (0§bj“j,dao,ago;0)hi
=(0;b;a;, 24005 0)h%
and, by induction,
s (Oij0j§0) =(0;b;0;,,400;0)h%
for all positive integers . Thus
(0;a;0,;0)h% 7(0;b;0;;0)
= (0;(a;0) (b, (n—p)dGOaO,i);o)h?t-p
= (0;(a;0,)(b;0), (n-pyao,: 0); Oy P
= (0; [a (b, i, (n— p)d+i)]9i;0)h?k-p°
It follows that
(m;a;;m)d(p; b;;9)d = k3(0; [ai(b; ), (n-pya+1)]0:; % P*"
= [(m;a;;n)(p; b; ;9)]¢-
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Case (ii). This is similar to case (i) and we omit the details,
Case (iii). (m;a;m)¢(n;b;;9)p
= K3(0;0,0,;0)(0; b, 6,3 0)h
= k3(0;(a, 0,0 ) (b;0;¢7 )); 0)h%, where s = max {i,j},
= k:(o; (ai O, s Bs) (bj aj s 0.9)3 O)h?t
= k3 (0; [(a;a;, ) (b, 105; 0)hs
= [(m;a;;n)(n;b;; )19
This completes the proof.
In the case d = 1 the theorem reduces to [8, Theorem 4.1].
We now extend the result of Theorem 5.1 to the case of a regular w-semigroup with a
proper kernel. Such a semigroup is of the form T'(/;d; G,; y,) discussed in (4.12).
Let S=T(;d;G,;y;) and let S* =T(*;d*;G¥;y*%). Then it follows from (2.8) and
Theorem 5.1 that S =~ S* if and only if the three conditions below are satisfied.

1 =1
(i) d = d*.
(iil) There exist isomorphisms 8; of G; onto G* (i =0,...,I+d—1) and an inner auto-
morphism {* of G} such that the following diagram is commutative:

Yo 71 N Yi+d-1
Go _'Gl - ... '_’Gl - ... .—)Gl'f'd—l_——_——d) G,

I

GE+Gf>..5G'» ... Gy ;—— G > G
had] ' ol Y*r4d-1 {*
Finally, we mention the case of a regular w-semigroup with no kernel. By Theorem 2.6,

such a semigroup is the union of an w-chain of groups. Let S, S* be constructed respectively
from groups G,;, G* and homomorphisms y,, y¥ as in (1.1). Then S = S* if and only if there

exist isomorphisms 6; of G; onto G* such that y;6;,, =0,y for all ie N [2, p. 1044].
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