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Let 5 be a semigroup whose set E of idempotents is non-empty. We define a partial
ordering S> on £ by the rule that e ̂ / i f and only if e / = / = / e . If E = {ef: ieN}, where N
denotes the set of all non-negative integers, and if the elements of E form the chain

eo>e1 >e2>...,

then S is called an oi-semigroup.
The purpose of this paper is to give a complete classification of regular co-semigroups in

terms of groups and group homomorphisms. The main problem is that of determining the
structure of a simple regular co-semigroup. It should be noted that if S is a simple semigroup
containing a primitive idempotent (an idempotent that is minimal under the partial ordering
of idempotents described above) then S is regular and its structure known [7; see also 3,
Chapters 2,3]; we say that S is completely simple. The study of simple regular co-semigroups
can be regarded as a natural next step beyond that of completely simple semigroups.

In §1 some special cases of regular co-semigroups are discussed; reference is made to them
in later sections. Bisimple co-semigroups constitute one important case; these semigroups, of
which the bicyclic semigroup is an example, have been classified by Reilly [8].

A regular co-semigroup S is necessarily an inverse semigroup. It is convenient to dis-
tinguish between the case in which S has a kernel and that in which it has not. In §2 it is
shown that S has no kernel if and only if it is the union of a semilattice of groups, the semi-
lattice in this case being an co-chain. The structure of a regular co-semigroup with no kernel
is therefore determined by an infinite sequence of groups Gt and homomorphisms yt,

yo n yn

Go -*G1-»...->G(I -+...,

in accordance with a theorem of Gifford [2, §3; see also 3, Chapter 4]. On the other hand,
if S has a kernel K then K is a simple regular co-semigroup; further, if K ^ S then the multi-
plication in S can be expressed in terms of that of K and of finitely many groups by means of
certain connecting homomorphisms (Theorem 2.7).

In §3 we construct a simple regular co-semigroup S(d; Gt; y,) from a sequence of groups
Gj and homomorphisms yt of the form

70 N 74-1

G0-»G1-»...->G<i_1 -> Go.

The integer d is characterised as the number of distinct ©-classes in S(d; Gf; y,). It is then
proved in §4 that this construction provides the most general simple regular co-semigroup.
Putting d = 1 we obtain the main theorems of [8]. The results of §§2, 3 and 4 combine to show
that a regular co-semigroup with a proper kernel K is determined by a sequence of groups
Gj and homomorphisms yt of the form
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TO Tl 71 71 + d - l

Go -* Gi ->. . .-» G, - • . . . -> Gl+i-i -* G,

for some / > 0 and d > 0.
Finally, in §5, necessary and sufficient conditions are given for two simple regular co-

semigroups, S(d; Gt; yt) and S(d*; G,*; yt*), to be isomorphic. This result is extended to the
case of regular co-semigroups with proper kernels.

1. Some examples of regular co-semigroups. With a few minor exceptions, we shall
throughout use the notation and terminology of [3]. The set of all non-negative integers will
be denoted by N.

It is convenient to begin by listing various types of regular co-semigroups to which we
shall refer later.

(1.1) The union of an co-chain of groups.

Let {G,: ieN} be a set of pairwise-disjoint groups and for each ieN let y, be a homo-
morphism of G, into G,+1. For each pair (i,j)eN x N such that i <j let

00

and for each ieN let a, , denote the identity automorphism of Gt. Let S =U G, and define

a multiplication on S by the rule that

fli bj = (a, a,,) (bj aJt,) (af e Gf, bj e G;),

where / = max{i,j}. Then 5 is a regular co-semigroup. In fact, if ef denotes the identity of
00

G, for all ieN, then e, ^ e, if and only if f g ; . Write Tn =U G, (neA^). Then it is clear

from the law of multiplication that Tn is an ideal of 5 for all n e N. Moreover,

n rB = 0.
n = 0

Hence S has no kernel.
Semigroups of the above type are a special case of those first studied by Clifford in

[2, §3].

(1.2) The bicyclic semigroup B.

Let B = N x N and define a multiplication in B by the rule that

(m, n) (p, q) = (m - n +1, q -p + i),
where t = max{n,p}. Then B is a bisimple co-semigroup [3, p. 43 and Theorem 2.53]. The set
of idempotents of B is {(n, n): n e N} and

(m, m) ^ (n, n)om ^ n.

We call B the bicyclic semigroup. It occurs as a subsemigroup of every simple semigroup
that contains a non-primitive idempotent [3, Theorem 2.54].
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(1.3) The semigroup S(G, a).

The bicyclic semigroup can be generalised as follows. Let G be any group and let a
be an endomorphism of G. Let S = N x G x N and define a multiplication in S by

(m;g;n)(p;h;q) = (.m-n + t; ga'-'.ha'-* q-p+t),

where t = max {n,p} and a0 denotes the identity automorphism of G. Then S is a bisimple
co-semigroup, which we denote by S(G,<x); moreover, every bisimple co-semigroup is, to
within isomorphism, of this type [8, Theorems 2.2 and 3.5]. Such a semigroup is necessarily
regular [3, Theorem 2.11].

(1.4) The semigroup Bd.

Let d be any positive integer and let Bd be defined by

Bd = {(m,n)eB: m = n (modd)},

where B is the bicyclic semigroup (1.2). Then Bd is a subsemigroup of B. Furthermore, it
can be shown that Bd is a simple regular co-semigroup with exactly d ^-classes. The ^-classes
are the subsets

D; = {(m, n)eB: m = i (modd) and n = i (modd)} (0 g j < d),

and each Dt is a subsemigroup of Bd isomorphic to B itself.

(1.5) The Bruck extension of the union of a finite chain of groups.

Let A be any semigroup with an identity and let S denote the set N x A x N. Define a
multiplication on S by the rule that

{ (m-n+p;b;q) if n <p,
(m;ab;q) if n = p,

(m;a;q-p+n) if n > p.
Then S is a simple semigroup with an identity. This construction was first used by Bruck
[1, Theorem 8.3] to show that every semigroup can be embedded in a simple semigroup with
an identity. We call S the Bruck extension of A [see also 10, p. 569]. It can be verified that
(w; a; n) is an idempotent of S if and only if m - n and a2 = a. Further, (m; a; ri) is a regular
element of S if and only if a is a regular element of A [3, Theorem 8.48].

Now let {G,: i = 0 , . . . , d— 1} be a set of d pairwise-disjoint groups and, if d> 1, let y,
<f-i

be a homomorphism of Gt into Gi+l (i = 0 , . . . , d-2). Let A = U Gt and let multiplication
in A be defined as in (1.1), where ai>; denotes yi...yj.l (i<j) and, for each i,aI>( denotes
the identity automorphism of Gt. Let e, denote the identity of Gt. Then /4 is a regular
semigroup with idempotents e, (i = 0 , . . . , d— 1); furthermore, e0 > ex > ... > ed-y. We
call A the union of a finite chain of groups. Let 5 be the Bruck extension of A. Then S is
regular since A is regular. Also, the set of idempotents of S is

{(/«; e(; m): meN; i = 0,...,d—l}
and it can be verified that

(m;ei;m)>(n;eJ;n) o either m < n or (m = n and i < j).
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It follows that S is an co-semigroup. Thus S is a simple regular co-semigroup. If, for
each i, we take Gt = {e,} then S reduces to the semigroup Bd of (1.4). (In fact, the mapping
(m; et; n) -> (md+ i, nd+ i) is an isomorphism of S onto Bd.)

The regular co-semigroups in (1.2), (1.3), (1.4) and (1.5) are simple. We conclude this
section with an example of a simple co-semigroup that fails to be regular. Take A to be the
three-element semigroup {0, a, 1}, where 0 and 1 are, respectively, the zero and identity
elements of A and a2 = 0. Let S1 be the Brack extension of A. Then a is not a regular element
of A and so S is not regular. The set of idempotents of S is {{m; e; m): meN, e = 0 or 1}
and it is easily seen that

Thus S is an co-semigroup.

2. Preliminary results. In this section we shall reduce the problem of determining the
structure of regular co-semigroups to that of determining the structure of simple regular
co-semigroups.

First, [8, Lemma 2.1] and [5, Theorem 3.2] combine to give

THEOREM 2.1. Let S be a regular osemigroup. Then S is an inverse semigroup with an
identity and 3ff is a congruence on S.

We now establish some notation that will be used throughout the remainder of the paper.
To save repetition, the full hypotheses will not be restated for successive lemmas.

Let S be a regular co-semigroup and let {en:neN} be the set of idempotents of S, where
em ^ en if and only if m ^ n. Let the ^-[i?-]class of S containing en be denoted by
Rn [Ln] for all neN. With the usual partial ordering of the Si- and JSf-classes [3, §6.6] we
then have

Ro> Rt> R2> ... and Lo >Ly >L2 >

Write HltJ = R,nLj. The following statements are easily seen to be equivalent:

(i) Hit j # 0, (ii) (e,, ej) e 9, (iii) HJ<, * 0.

The non-empty sets HitJ are just the jf-classes of S. We note that if xeHit] then
xx'1 = e, and x~*x = ei. Evidently e^E^, and so each Hit, is a group [3, Theorem 2.16].

LEMMA 2.2. Let i, je N and let t = max {/,./}• Then

(i) HttJfj.j£H,w, andHj.jHuSH,.,;

(ii) e;bj = bj e, for all bje Hjt j .

Proof. We have that e^j = e, = e,e;. But, by Theorem 2.1, Jf is a congruence on S.
Hence (i) holds. Let bjeHjj. Then e,bjeHtt t and so efij = etetb]et = etb}et. Similarly,
bje, = e,bjet. Thus we obtain (ii).
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GO

By Lemma 2.2(i), U Hn „ is a subsemigroup of 5. Since it is both a union of groups
n = 0

and an ©-semigroup, it has the structure described in (1.1) [3, Theorem 4.11].
Write Sf = e(5e( (ieN). The main properties of St are described in the next lemma.

LEMMA 2.3.

(i) Si is a regular co-semigroup with identity et and group of units Hit,.

(ii) S,=U{fl , , , : r^i and s^i}.

(iii) Let (e(, e,) e 3). Then there exists an isomorphism 9 of St onto Sj such that

Proof, (i) It is clear that St is a subsemigroup of S with identity et and group of units
Hit i (the maximal subgroup of S containing et). Let xe St. Then x = ef;ce; and so x'1

= esx~ieieSl. Thus S, is regular. Also ejeSt for ally ^ i and so Sf is an co-semigroup.
(ii) Let xeSi. Then xeetS and therefore xeR, for some r ^ i. Similarly, xeLs for

some s ^ i. Hence A: e #r> 5 for some r ^ / and J ^ i. Conversely, let yeHrs for some r ^ i,
s ^ i. Then^ = erye, - eiHerye^e,eS,.

(iii) Since (et,ej)e@ it follows that Hitj^<l). Let aeHltJ. It can readily be shown
that a"1xaGSJ for all xeSt and that the mapping 0:S^->S, defined by *0 = a~1xa(xeSi)is
an isomorphism of 5, onto S; [6, Lemma 1]. Let xeSt. Then xaa"1 = xe{ — x and so
(xa, x) e@. Also a(a" ixa) = etxa = xa; therefore (xa, a~ lxa) e $£. Thus (x, a~ lxa) e Q and
this completes the proof.

00

The maximal subgroups of 5 are the sets Hn n and we have already noted that U Ha>n is
n = 0

a regular co-subsemigroup of S with the structure described in (1.1). It will now be shown
00

that if S # U Hn<n then S has a kernel.
n = 0

LEMMA 2.4. Let S be such that Rt ^ Hit tfor some ieN and let I be the least such integer i.

Then 5, is the kernel of S and is a simple regular oi-semigroup. If I > 0 then

S = AvSt, AnSt = 0,

where A is the subsemigroup U Hui of S.

Proof. By Lemma 2.3(ii), S, = U{#r>s: r £ / and s £ /}. If H,tJ # 0 for i / y andy < /,
then HjtlT^9 and so RJ^HJJ, which contradicts the definition of/. Thus, for i ^ /,
J?i = UfiJ,,; :y ̂  /} £ S,. Similarly, L; E 5, (i ̂  /)•

We show first that Sj is an ideal of S. Let aeHrs for some r^l, s'k.l and let
Then ax e 2?, for some i ^ r. Since i ^ / it follows that ax e 5,. Similarly xa e 5,.
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Next we show that S, is simple. Let heR\Hlt, and let k = h~1. Then ft and k lie in S,.
Also hk=eukh^ e, and so St contains the infinite descending chain of idempotents

e, = hk>kh> k2h2 > ... > k"h" > ... (2.4a)

[3, Lemma 1.31]. Let T be any ideal of St and let xeT. Then xx'1 = en for some neN;
disoeneT. From (2.4a), en ̂  k"hn. Hence

e, = (hnkn)2 = W

and so S, £ T. Thus 5, is simple. Being an ideal of S, S, is the kernel of S. Moreover, by
2.3(i), S, is a regular co-semigroup.

( - 1 CO

Finally, let / > 0. Since A = U Rt and S, = U Rt we see that S =AvSt and AnSt = 0.
1 = 0 i=/

Furthermore, by Lemma 2.2(i), A is a subsemigroup of S.

COROLLARY 2.5. S is simple if and only if Ro ¥* Hoo.

Proof. Let R0^H00. Then, by Lemma 2.4, So is simple and S = S0. Conversely,
suppose that S is simple. If Rn = Hn> „ for all neN then S would be the union of an co-chain
of groups (1.1) and so would possess proper ideals. Hence Rt ^ Ht t for some ieN. Let
/ be the least such i. Then, by Lemma 2.4, 5( is an ideal of S and is proper if / > 0; hence
1 = 0.

We now give a characterisation of a regular co-semigroup without a kernel.

THEOREM 2.6. Let S be a regular co-semigroup. The following conditions on S are equi-
valent.

(i) S has no kernel.
(ii) The idempotents of S are central.

(iii) S is the union of an co-chain of groups.

Proof. We first show the equivalence of (i) and (iii). Let 5 have no kernel. Then, by
GO

Lemma 2.4, Rn = Hn „ for all neN and so S = U Hnn. This establishes (iii). Conversely,
n = 0

as was shown in (1.1), the union of an co-chain of groups has no kernel.
Liber [4] has shown that an inverse semigroup is a union of groups if and only if its

idempotents are central. The equivalence of (ii) and (iii) is a special case of this result.
The final result of this section concerns the structure of a regular co-semigroup with a

proper kernel.

THEOREM 2.7. Let Go, . . . , G,_ t be a set of pairwise-disjoint groups for some / > 0 and
let K be a simple regular co-semigroup, disjoint from each G-,, with group of units G. Write
G, = G. For each i such that O^i^l—l let y{ be a homomorphism of G( into Gi + 1. For
0£i<j£l define <xitJ to be Vi?i+i .••VJ-i and let a;>, be the identity automorphism of
Gj (0 ^ i ̂  / - 1 ) . Let S = G Q U G ^ .. . uG,_X\JK. Define a multiplication (°) in S, extending
that of K and of each G,, as follows:
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(i) aiobJ = (ai(xlit)(bjiXjtt),

(ii) aj<>x = (a fa , , ,)x, x<>o, = x(a f a , t , ) .

(iii) xoy=xy,

where a^G, (0 ^ i ^ / - 1 ) , Z>;e(7, (0 ^y ^ / - 1 ) , f = max{/,./} andx,yeK. Then Sis a regular
a-semigroup with kernel K.

Conversely, if S is a regular co-semigroup with kernelK^ S then S is isomorphic to a semi-
group constructed as above.

/ - i
Proof. Let A =\JGt. Then by [3, Theorem 4.11], A is a semigroup under (o). Define

i = 0

a mapping 9: A -*S by atd = al<xi , (ateGt; 0 ^ i: ^ / - 1 ) . It is easily verified from (i) that
0 is a homomorphism. Applying [3, Theorem 4.19], we see that S ( = AvK) is a semigroup.
Since K is a simple ideal of S, it is the kernel of S. Let e, be the identity of G, (0 ^ / ^ /— 1)
and let {f,:ieN} be the set of idempotents of K, where f0 > / t > / 2 > . . . . From (i) we see
that

eo>e1> ... >e,-i

and, from (ii), that e,_!<>/„ =/„ =/0oe,_1; that is, e,-! > / 0 . Thus S is an co-semigroup.
That S is regular follows from the fact that its subsemigroups K, G{ (J = 0 , . . . , /— 1) are
regular.

Conversely, let S be a regular co-semigroup with kernel K^ S. We use the notation
established earlier. By Theorem 2.6, R{^= Ht t for some / e N. Let / be the least such integer /.

i - i
By Lemma 2.4, K=S,. Since K # S, it follows that / > 0 and so S = AuK, where A = U H, ,.

j=o

Write Gi = Hit f(0 ^ / ^ /). Then, for 0 ^ i ^ /, 0 ^y ^ / and t = max{/,y}, we have that
GtGjSGt, by Lemma 2.2(i). Also aiei+1 =ei+1at for all ajeGj(0 ^ i ^/—1) by Lemma
2.2(ii) and so the mapping y(:Gi-*Gl+l defined by atyi = atei+1 is a homomorphism (see
[3, Theorem 4.11]). It then follows easily that the structure of A is as described in (i). Now
let a, 6 Gt (0 g / g / - 1 ) and let xeK. Then

ei+2 ...e,)x =

where a(j ( = y1y,-+1... y,_!. Similarly, xas = x(aiaj,). This completes the proof.

(2.8) It is easily verified that the ./-classes of S in the above theorem are the sets
Go,...,(?,_!, K and that, under the natural ordering of these classes [3, § 6.6],

G0>G1 > . . . >G,_! >K.

Now suppose that a second regular co-semigroup 5* is defined similarly in terms of a simple
regular co-semigroup K*, groups G* (i = 0 , . . . , /*), where G*. is the unit of group K*, and
homomorphisms y* (/ = 0 , . . . , /* — 1). Then 5 s 5* if and only if the following conditions
are satisfied:

0 ) / = /*;
(ii) there exists an isomorphism c6 of K onto K* ;
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(iii) for i = 0 , . . . , / there exists an isomorphism 0, of G,- onto G* and, in particular,
0, = c6|G,;

(iv)0,yT = Vi0|+i (i = 0 , . . . , / - I ) .

We omit the proof.

3. The semigroup iS(d; Gjj y,). In this section we give a process for constructing a simple
regular co-semigroup from a finite set of groups and homomorphisms. It will then be shown
(§4) that this construction yields the most general type of simple regular co-semigroup.

Let d be a positive integer and let {(?,•: i = 0 , . . . , d— 1} be a set of d pairwise-disjoint
groups. Let y^.j be a homomorphism of Gt-X into Go and, if d > 1, let y, be a homomorphism
of G, into G1+1 0 = 0 , . . . , d-2). Thus we have the sequence

yo ?i y<i-i

Go -* Gx -*...-* Gd-1 -» G o .

For all «eJV let yB = yn(m0<i<i) • For m, neN and w < n write

and for all neN let a n n denote the identity automorphism of Gn(modd). Let S be the set of
all ordered triples

where m,neN,0£i£d—l and a,e G,. Define a multiplication in 5 by the rule that

(3.1)

where * = max {«,/>}, M = m/+ /, v = />rf+y and w = max {«, u}. Denote the groupoid so formed
by S(d; Go,..., Gd. t; y 0 , . . . , yd_ J or, more compactly, by S1^; G(; y,).

The main result of this section (Theorem 3.3) is that S(d; G(; y;) is a simple regular co-
semigroup with exactly d ^-classes.

Remarks. Let m, neN and let m^n. Then «m>B is a homomorphism of Gm(modd) into

a m , n = a m + rd, n + rd-

Moreover,

The following special case of (3.1) should be noted:

(m;a(;n)(n; bj ;q) = (m; (at a;>,) (6y a; , ,); q),

where / = max{/,y}. In particular, taking i =j we have that
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LEMMA 3.2. S(d; G,; y() is a semigroup.

Proof. Since the multiplication in (3.1) is such that the outer components of the triples
reflect the multiplication in the bicyclic semigroup B (1.2), it is enough to consider the behaviour
of the central components.

Let a = (m; at; ri), b = (p; by, q), c = (r; ck; s). We shall show that the central com-
ponents of (ab)c and a(bc) are the same. This will establish the lemma. To simplify the proof
we make use of the subsemigroup Bd of B discussed in (1.4). Define elements a', b', c' of Bd

by

a' = (md+i,nd+i), V = (pd+j,qd+j), c' = (rd + k,sd + k).
Then

a'b'^dm-n + tJd + U!, (q-p + tjd + uj,
where

t1d + u1=m&x{nd+i,pd+j}, 0^ut<d,
and so

(a'fc')c' = ((m — n + p — q + t2)d + u2,(s-r + t2)d + u2),
where

t2d+u2 = max{(q-p+(i)d+M!,rd+k), 0 g «2 <d.

A similar argument shows that

where
r3d+u3 = m?Lx{qd+j,rd+k}, Q^

and

Comparing (a'b')c' and a'ib'c'), we see from the associativity of Bd that

p—q = t4 —12 and u2
 = u4- (3-2a)

We use the same notation below. Consider the product (ab)c in S(d; Gt; y(). The central
component of ab is

This lies in the group GUI; denote it by JCU1. It then follows that the central component of
(ab)c is

Since p-q+t2 = f4, by (3.2a), we have that

* « i a ( « - P + 'i)<f + «i. t2d + U2= XuiCttid + ut,

Hence the central component of (ab)c is

(fliail<J + (, tAd + u2)(b

In the same way, it can be shown that the central component of a(bc) is
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But since tA—p = t2—q and u2 = uA, by (3.2a), we have that

and so the central components of (ab)c and a(bc) are equal.
This completes the proof.

THEOREM 3.3. S(d; Gf; y,) is a simple regular co-semigroup with exactly d ^-classes.

Proof. Write S = S(d; Gt; yt). Let/, denote the identity of the group Gt and, for each
a( e G,, let a~,1 denote the inverse of a, in Gt (i = 0,. . . , d— 1).

By Lemma 3.2, 5is a semigroup. Let(m; a,; n)eS. Since (m; at;ri)(n; a^; /n)(wj;a,;n)
= (m; a(; n), S is regular.

We prove next that {{m\f{; m):meN; i = 0,. . . , d— 1} is the set of idempotents of S.
It is clear that (m;f,; m) is an idempotent. Conversely, let x = (m;ai; n), where x2 = x.
Then m—n + t = n—m + t, where t = max{m,«}; hence m = n. Thus x2 = (m;a2,;m) and
so ai=f(. Now

(m;/,; m) («;/ ;; n) = (f ;/4; 0 = («;/;; n) (m;/,; m),
where

It follows that, under the natural ordering, the idempotents form a chain

(0;/0;0) > (0;/!; 0) > ... > (0;/,_ t; 0)

Thus S is a regular co-semigroup. The identity of S is (0;/0; 0) and it is readily verified that

(mutiny1 =(n;ari;m).

To show that S is simple it is enough to prove that (0;/0; 0) lies in the ideal generated
by an arbitrarily-chosen element (m; at; n) of S. We have that

= (0;(af V rf
= (0;(a,-1a(,lJ

= (0;/0;0)

and this establishes the result.
Finally, we have to show that 5 has exactly d ^-classes. Since S is regular each ^-class

contains an idempotent; hence it is sufficient to show that

((m;/,;m), (n;fj-,n))e2> o i = ; .
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Write e = (nt',fi; m), e' = (»;//, ri). We use the fact that (e, e')e2 if and only if there exists
xeS such that xx'1 = e, x-ix = e'.

First suppose that (e, e')e2i. Let x = (r;ak;s), where :0c"1 = e, ;c~1.x = e'. Since
xx~* =(r;fk;r) and JC-1JC = (s;fk;s) we see, in particular, that i = k=j. Conversely,
suppose that 1 =j. Take x = (m;f,; n). Then xx"1 = e and JX:"1* = e', which shows that
(e,e')e2).

This completes the proof of the theorem.

(3.4) With the notation of §2 it can be verified that

Rmd+i = {(.mia^riieS-.aieG^neN} (meN;i = 0,...,d-l),

} (neN;i = 0,...,d-l)
and so

(eGI} (m.neN; j = 0 d-1).

We conclude this section by discussing two special cases.
First take d=\. By Theorem 3.3, S(l; Go; y0) is a bisimple co-semigroup. Write

G = G0 and a = y0. Then a is an endomorphism of G. Also if m, neN and m ^ n then the
mapping am „: G -* G is just a""1", where a0 is interpreted as the identity automorphism of G.
It follows that the multiplication in (3.1) reduces to that of the semigroup S(G, a) described
in (1.3).

Next consider the case in which yd_ t : Gd- j -* Go is the " zero homomorphism " defined by

where/o is the identity of Go. Let u,veN and suppose that u^v. Write u = md+i,
v = nd+j (O£i<d,O<,j<d). Then

a =\fj i f m < " '
"' " {flja,j if m = n,

d*~ 1

where/^ is the identity of Gj. Let A = U Gtand define a multiplication (<>) in A by
i 0i = 0

where fljeG,, 6^eG; and / = max{ij}. Then X is a semigroup and, from (3.1), we have that

((m-n+p;bj;q) if n <p,
(m;ai;n)(p;bJ;q) = < (m;aiobj;q) if n = p,

[(m;a,;q-p+n) if « > p.

Thus in this case S(d; Gt; y,) reduces to the Bruck extension of A (see (1.5)).

4. The structure of a simple regular co-semigroup. This section is devoted to showing
that any simple regular co-semigroup S is isomorphic to a semigroup of the type S(d; Gt; yj).
In particular, the number of ^-classes of S is finite.

We shall follow the notation of §2. Let S be a simple regular co-semigroup. Then, by
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Corollary 2.5, Ro ^ Hoo; that is, Ro is the union of H0>0 and certain other non-empty
sets Ho „. Let d be the smallest positive integer n such that Ho „ # 0. Thus (e0, ed)e9 and
(e0 ,e,)<E@ for any i such that 0 < i < d.

LEMMA 4.1. (eP, end+r) e 0 /or o// r,neN.

Proof. By Lemma 2.3 (iii) there exists an isomorphism 9 of 5 (= So) onto Sd such that
(x, x9) e 0 for all x e S. Hence {er 9: r e N} is the set of idempotents of Sd and

ed = e09>e19>e29> ....

But the set of idempotents of Sd is {ed+r:reN}. Thus er0 = ed+r for all reN and so

The result now follows by induction.
Since every idempotent of S is of the form end+i for some neN and some i such that

0 ^ i" < d, the result shows that S has at most d distinct ^-classes. The next lemma establishes
that there are exactly d ^-classes.

LEMMA 4.2. LetO<i<j<d. Then (e,-, ej)
Proof. Suppose that (et, e,-)e@. Then HirJ # 0. Let heH,tJ and let it = A"1. Then

hk = e,, kh = et and h, keSt. Hence by [3, Lemma 1.31] we have the strictly descending
chain of idempotents

ei>kh>k1h2>... >knh">....

By hypothesis, e0 > ef > e} > ed. Choose n such that

k"h"Zed^kr+ih"+1.

Then it is easily seen that hnedk" is an idempotent and that

hn{knhn)k"-£ fe^k" ^/in(kn+1fe"+1)fe" .

But hn(knh")kn = e, and hn(ka+1hn+1)kn = e^k^e, = ey, hence

e^h-e^^ej. (4.2a)

Now {edk
n)hn = ed and so foJt", e^e3t\ further, k'Qi^kr) = eiW and so (/jBedfc

n, edlf)eX.
It follows that (Aned jfc", e,,) e 9. Hence (AV,,it", e0) e @. This, together with (4.2a), contradicts
the definition of d. Thus (ef, e;) £ ©.

From the previous two lemmas we can now state which of the sets Hm< „ are non-empty.

LEMMA 4.3. For any m,neN the following conditions are equivalent.

(i) Hm> n * 0, (ii) (em, en)e S, (iii) m = n (mod d).

Proof. The equivalence of (i) and (ii) has already been noted. By Lemma 4.1, (iii) implies
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(ii). Now let (em,en)e9 and write m = rd+ i, n = sd+j, where O£i<d, Og,j<d. Then
(et,ej)e@ by Lemma 4.1. Hence i=j, by Lemma 4.2, and so m = n (modd). Thus we
have shown that (ii) implies (iii).

Let the ®-class of S containing et be denoted by Dt and let the group H,t { be denoted
d - 1

by G, (i = 0 , . . . , d-1) . Evidently S = U Dt and .0(0/), = 0 if / ^j.
i=0

LEMMA 4.4.

(i) Dt is a bisimple co-semigroup with identity et and group of units G(.

(ii) The Si- [&-] classes of Dt are the sets Rnd+ i[Lnd+ J (n e N).

Proof, (i) Since S is regular and its idempotents form a chain, each D, is a bisimple
inverse subsemigroup of S [9]. Moreover, by Lemma 4.3, the set of idempotents of Dt is
{end+i:neN}. Thus D, is a bisimple co-semigroup with identity et. The group of units of
D, is the maximal subgroup of Dt containing e,. But Gt £ D, and Gt is the maximal sub-
group of S containing e(. Hence the group of units of Dt is Gt.

(ii) From Lemma 4.3 we have that

D , = U * „ „ + , = U L n d + l .
n=0 n=0

It is clear that each ^2-class of Dt is contained in an 52-class of S. Let neN and let
a,beRnd+i. To show that Rnd+i is an $2-class of D{ it is enough to prove that a and b are
^-equivalent in £>,-. Since (a,b)e!M there exist elements x,yeS such that a = bx, b = ay.
Write x' = b~1bxa~ia, y' = a-iayb~ib. Then a = fcc', 6 = a / . Further, (a,x')e£C and
(6,7') e if. Hence x ' , / e £),. This gives the required result.

From Lemma 4.4 we obtain

LEMMA 4.5. Let hleH,ti+l(O£i<d) and let ki^h',1. Take h°t =jfc? =e,. Then

kTa,hnieHmd+i,nd+i (m,neN;a,eGd

and the mapping ^:Gf-»Hmd+j,nd+t defined by

is a bijection.
This is essentially [8, Lemma 3.4] applied to the bisimple co-semigroup Dt. We omit

the proof.
Now choose an element heHod and let k = h~l. Thus hk — e0 and kh = ed. For the

remainder of this section h and A: will be kept fixed. We make the convention that

LEMMA 4.6. e,/j6/f,j(,+ , (i = O,...,d-l).

Proof. First, (e,/!)^,/!)"1 = e,/ifce, = ejeoe, = e, and so e(A6i?j. Let etheLn. From
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Lemma 4.3, to show that n = d+i it suffices to show that d^n<2d. We note that ke{h
— (eih)~1(e,h)eLn; hence keth = en. Since eo = hk^et> kh = ed it follows easily that

that is,

ed £ en £ k2h2.

Now from Lemma 4.5 we have that k2h2 = k2e0 h2 e H2dt 2d
 a n d so k2h2 = eld. Further-

more, if en = k2h2 then et = /j(fcej h)k = h{k2h2)k = kh = ed, which is a contradiction.
Hence ed ^ en > e2(( and this gives the required result.

LEMMA 4.7. Every element of S is uniquely expressible in the form kmajh" (m, neN;

Proof. LetOg,i<d. We first show that (e(/i)" = e,h" (n = 1,2,3,...). This holds
trivially for n = 1. Assume that (e,A)r = e,hr for some positive integer r. By Lemma 4.6,

s St and so (e(/i)
rej = (ejA)r. Hence

and the result follows.
Next, ke, = (e^)'1 and (^e,)" = [ M ) " ] " 1 = (ei/i")-1 = k"ei (« = 1,2,3,...). Now take

h( = CJ/J in Lemma 4.5. Then kl = h~i
l = kex. Also h" = eih" for all positive integers n and

this holds also for n = 0 since /i? and h° are defined to be e, and e0 respectively. Similarly

Let x e S . Then X 6 f f - + j ] B | t i for some m,n,i (0 ^i<d) by Lemma 4.3, and so, by
Lemma 4.5,

x = k?a, hi

= /cmei a, e, /i"

Moreover, if kfath" — krbth
s then k^ajhi = &|Z>,/iJ and so m = r, n = s and ai = bi by

Lemma 4.5. Thus the expression for x is unique.

LEMMA 4.8. LetOg,j<dandletbjeGj. Then hbjeHOtd.

Proof. We have that

(/jfey) (/ifc/)~J = hejk = hej khej k = hei ed ej k = hed k = hkhk = e0.

Hence hbjeR0. Also b}ed = edbj, by Lemma 2.2(ii), and so

{hbjYKhbj) = ft)1^ = bye.bj = b^b^ = ejed = ed.

Thus AZ>;ELd. Therefore hbjeHOd.
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In particular, hxeHOid for all xeGd-t. Now, by Lemma 4.5, every element of HOd

is expressible in the form gh for some unique geG0. Hence we can define a mapping
Vd_!: Gd-t -> Go by the equation

hx = (xyd.1)h

Now suppose that d > 1. Let i be such that 0 ̂  i g d— 2. Then for each xeGtv/e have
that xef+1 = ei+1xeGi+1 (Lemma 2.2). Define a mapping }v.Gj->(7,+1 by the rule that

xyt=xel+1(xeG,).

LEMMA 4.9. vf is a homomorphism {i = 0,. . . , d— 1).

Proof. Consider the case / = d— 1. For all *, j> e Gd _ t

(*y)y<i-i h = /J(X>>) = (Ax)j = (xy^^hy = (xyi.^iyy^^h

and so, since every element of HOd is uniquely expressible in the form gh (geG0),

Suppose that d> 1. Let 0 ^ i^d-2 and let Jc.^eC,. Then

(x^)7j = xyei+1 = xyef+1 =xei+1yei+l= (xy,)(yy,).

We now extend the above definitions by writing

Thus yn is a homomorphism of Gn(moid) into G^+ixmodio- F° r m, n e N and /M<« write

a m , n = V m V m + 1 • • • V n - 1

and for each neN let aM) „ be the identity automorphism of G^^ d). Then am> „ = ct,d+mifd+n

for all reN. Also, if WJ ^ n ^p, then

am,nai.,p = am,p-

Furthermore, ifO^i^j<d and af 6 Gx then

LEMMA 4.10. Let aieGl,b}eGj(()^i<d,O^Lj<d) and let rbea positive integer. Then

(i) a^bj^aibjiXj^^^h',

(ii) aikrbJ = kr(alait

Proof, (i) We first note that hed-1 = (ed_j yd-i)h = eoh = A. Now, by Lemma 4.8,
y eHOd and so, by Lemma 4.5, A6,- = ^A for some geG0. Hence

Thus hbj =
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Consequently,

athbj = Oiibjcc^jh = (a,e,)(bja,, d)h = ai(bj<xJti<xdtd+dh = a^bjcij^+dh.

Thus the result holds for r = 1. Assume that it holds for r = n — 1 (n > 1) and for all i,j such
that 0£i<d,0^j<d. Then

Hence the result holds for r = « and so, by induction, it holds for all positive integers r.

(ii) From (i) we have that

and so

a,krbj = (bjlh'a;lrl= C»r)"1(«r1

We now come to the main result.

THEOREM 4.11. Let S be a simple regular co-semigroup. Then S s S(d; Gt; yt)for some

Proof. Let d, h, k, Giy yt be as above. By Lemma 4.7, every element of S is uniquely
expressible in the form k^a,/? (m,neN;0^i< d; OjeGj).

Let x = (kmaih
n)(kpbjhq), where m,n,p,qeN, 0^i<d, O^j<d, «,£(?, and bjeGj.

To simplify this product we distinguish three cases.

(i)

x = kmaih
tt-pbjh'1

q-p+n, fromLemma

(ii) If/i</>then

x = kmaik''-''bjhq

= km-"+p(ai<xiAp-n)d+j)bjhq, from Lemma 4.10(ii),

(iii) If n = p then

x = kma{ e0 bj h" = kma, bj hq = fc1"^ a,, s) (bj aJt s)h
q, where s = max {i,j}.

All three cases can be combined as follows. Write t = max{«,/>}, u = nd+i, v =pd+j,
w = max {u,v}. Then
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Thus the mapping 8: S-> S(d; Gf; y,) defined by

is an isomorphism. This completes the proof.

(4.12) We conclude this section by combining the results of Theorems 2.7, 3.3 and 4.11.
Let / and d be positive integers and let {Gj: i = 0 , . . . , l+d— 1} be a set of pairwise-disjoint
groups. Let yi+ d_! be a homomorphism of Gt+d.l into G, and, for i = 0 , . . . , l+d—2, let
y( be a homomorphism of G; into G j + 1 . Thus we have the sequence

yo yi yi yi + d - i

Go -* Gt -*...-* G, -> . . . -> G J + J - ! - • G,.

Write G; = Gl+t, y't = yl+l (i = 0,...,d-1) and let # = S(rf;G|;yj). Then AT is a simple
regular co-semigroup (Theorem 3.3). The unit group of K is isomorphic to G,. Now let S
be constructed from Go,..., Gl^1 , .KTandthehomomorphisms yo>- • •>?( - I as in Theorem 2.7,
where we identify y,_ x with the homomorphism x,_ j - • (0; x,_ t y,_ t ; 0) of G,_ t into the unit
group of K. Then S is a regular co-semigroup with kernel K. Denote it by

Conversely, let S be a regular co-semigroup with a proper kernel K. Then from Theorems 2.7
and 4.11 we see that S is isomorphic to a semigroup of the above type. Note that the 01-
and i ? -classes of K are just the 52- and if-classes of S that are contained in K.

5. The isomorphism theorem. In the preceding sections we have established a construc-
tion for the most general simple regular co-semigroup in terms of a finite collection of groups
and homomorphisms. We now find necessary and sufficient conditions for two semigroups
constructed by this process to be isomorphic.

THEOREM 5.1. Let S = S(d; G,; y,) and let S* = S(d*; G?; y ?). Then S £ S* if and only
if(i) d = d* and (ii) there exist isomorphisms dt of G{ onto G* (i = 0 , . . . , d— 1) and an inner
automorphism C*ofG* such that the following diagram is commutative:

7 d - l70

Go >(

e0

Go—(
7*0

71

Jl '
7*1

(5-la)

Go > Go

Proof. We use the notation of §3. Starred quantities refer to S* throughout. We recall
from (3.4) that

for all m,neNand for i = 0 , . . . , d—\.
First suppose that there exists an isomorphism <f> of S onto 5*. By Theorem 3.3, d and

d* are the numbers of distinct ^-classes in S and S* respectively. Hence d = d*.
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Consideration of the chain of idempotents in S and in S* shows that

(m;ft;m)cj>=(m;ft;m) (meN;i = 0,...,d-l), (5.1b)

where/, is the identity of G, and/f the identity of G*. Now Rr(j) is an 52-class of S* and
Ls<j> is an SC-class of S* for all r,seN. From (5.1b) it follows that

In particular, Hlt, <f> = Hf 4 (i = 0,. . . , d— 1) and so we can define an isomorphism 0, of Gf

onto G* by the rule that, for all aseGt,

Also Ho d<f> = H* d; hence
(O;/o;l)0 = (O;z

for some z* e G*• Then for xd_ i e Gd_ j we have that

But (0;xd_1y<,_1;l)</. = [(0;/
= (O;z

= (O;z
Hence, for all XJ.J e Gd_!,

(x,,_! Vd-i 9o)z* = z*(^-

Let C* denote the inner automorphism x -• zjxzj " i of G*. Then

i - I V*-1

yJ- ,0o = fld-i7*-iC*. (5.1c)

Now suppose that d > 1. For 0 ^ i ̂  rf—2 and any Xj£ G, we have that

(0;xiyiei+1;0) = (0;xiyi;0)<p

and so
vA+i = oty? (i = o,. . . ,d-2).

From (5.1c) and (5.1d) we see that the diagram (5.1a) is commutative.
Conversely, let d=d*. Suppose also that there exist isomorphisms Qt:Gt-*G*

(i = 0,...,d-1) and an inner automorphism (* of Gj such that (5.1a) is commutative. Thus
(5.1c) holds and, if d> 1, then (5.1d) holds. We note that, for 0 ^j
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Let z j be an element of G* such that

Write A* = ( 0 ; Z Q ; 1 ) and it* =A*1. Then h^,eH*td and A**:* is the identity of 5*. Define
# :S -»S*by

(m;fli;n)</> = fc:(O;aj0i;O)fc;.

We take h% and Jt£ to be the identity of 5*. Since 0,: G( -> G* is a bijection it follows that

ffl?, = {(O;fl(0,;O)eS':fl,eGl} (i = 0 d -1 ) .

Thus, applying Lemma 4.7 to S*, we see that </> is a bijection.

Let (m; a,;«), (/>; bs; q) e S. We shall show that

(m; at; n)4>(p; bj; ?)<£ = [(m; at ;n)(p; bj ;g)](f>. (5. If)

It is convenient to consider separately the three cases

(i) n> p , (ii) n < p , (iii) n = p .

Case (i). The left-hand side of (5.If) is

kWiafaOm-'QibjOjiOM.
Now

= (O;feJaJ.<10o; 0)/i,, by (5.1e).
Hence

and, by induction,

for all positive integers r. Thus

= (0; (a,0,)(ft;ay, (n_p)d 0O a0* f

= (0;(o,0t)(bja,. (n_p)da0>,0,

It follows that

;ai; n)<Kp; bj;q)4> = fc?(0; [ajbjaj, i.

= [(m;ai;n)(p;bJ
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Case (ii). This is similar to case (i) and we omit the details.

Case (iii). (m; a,; n)<f>(n; bj; q)<f>

= k1(O;ai0i;O)(O;bjej;Qi)h%

= kli(0;(ai9iafiS)(bJejalsy,0)h%, where s = max {i j},

This completes the proof.
In the case d = 1 the theorem reduces to [8, Theorem 4.1].
We now extend the result of Theorem 5.1 to the case of a regular co-semigroup with a

proper kernel. Such a semigroup is of the form T(l; d; G,; yt) discussed in (4.12).

Let S = T(l;d;G,;yd and let S* = T(J*;d*;G*i;yf). Then it follows from (2.8) and
Theorem 5.1 that S = S* if and only if the three conditions below are satisfied.

(i) / = /*.

(ii) d = d*.

(iii) There exist isomorphisms 0( of Gt onto G* (i = 0, . . . , l+d-1) and an inner auto-
morphism £* of Gf such that the following diagram is commutative:

yo yi yi yi+<i-i
Gn

flo 6i | »i | »i + d- i | 8|

y'o y*i y*i y ' i+d- i C*

Finally, we mention the case of a regular co-semigroup with no kernel. By Theorem 2.6,
such a semigroup is the union of an co-chain of groups. Let 5, S* be constructed respectively
from groups G,, Gf and homomorphisms y,, y* as in (1.1). Then S s S * if and only if there
exist isomorphisms 6t of G,- onto G* such that Vi0j+1 = Orf for all leJV* [2, p. 1044].
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