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Summary

Interval mapping by simple regression is a powerful method for the detection of quantitative trait

loci (QTLs) in line crosses such as F
#

populations. Due to the ease of computation of the

regression approach, relatively complex models with multiple fixed effects, interactions between

QTLs or between QTLs and fixed effects can easily be accommodated. However, polygenic effects,

which are not targeted in QTL analysis, cannot be treated as random effects in a least squares

analysis. In a cross between true inbred lines this is of no consequence, as the polygenic effect

contributes just to the residual variance. In a cross between outbred lines, however, if a trait has

high polygenic heritability, the additive polygenic effect has a large influence on variation in the

population. Here we extend the fixed model for the regression interval mapping method to a mixed

model using an animal model. This makes it possible to use not only the observations from

progeny (e.g. F
#
), but also those from the parents (F

"
) to evaluate QTLs and polygenic effects. We

show how the animal model using parental observations can be applied to an outbred cross and so

increase the power and accuracy of QTL analysis. Three estimation methods, i.e. regression and an

animal model either with or without parental observations, are applied to simulated data. The

animal model using parental observations is shown to have advantages in estimating QTL position

and additive genotypic value, especially when the polygenic heritability is large and the number of

progeny per parent is small.

1. Introduction

Interval mapping was originally developed for the

detection of quantitative trait loci (QTLs) in data

from a cross between inbred lines. Such a cross is an

ideal structure for the detection of QTLs, because all

individuals in the F
"
are genetically identical and they

show complete linkage disequilibrium for genes

differing between lines. Haley & Knott (1992) and

Haley et al. (1994) introduced a simple regression

method for QTL detection by interval mapping in

populations derived by crossing inbred or outbred

lines, respectively. Haley et al. (1994) assumed that the

crossed outbred lines were fixed or nearly fixed with

respect to alternative alleles (QQ or qq) at a QTL and

applied simple regression of the observed trait values
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onto the predicted genotypic values. One advantage of

the regression method is its computational rapidity,

which permits substantial flexibility in the models

fitted. Fixed effects influencing traits in F
#
animals are

easily taken into account in the model. Including fixed

effects, such as sex, parity and farm, in a model can

increase the power of detection of QTLs and improve

the accuracy of the estimation of their effects.

In QTL analysis regions with moderate to large

effect on quantitative traits are targeted. However, it

is likely that quantitative traits are also influenced by

genes scattered through the genome of relatively small

effect : so-called polygenes (Falconer & Mackay, 1996,

p. 102). These polygenes have individually too small

an effect to be picked up by QTL analysis. In a cross

between two inbred lines these effects may go

undetected and act to inflate the residual variance.

Alternatively, the joint effect of several or many such

loci may be detected as a QTL (Visscher & Haley,

1996). In a cross between two outbred lines the
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situation is more complex. Where two very different

outbred lines are crossed, QTLs of major effect may

be assumed homozygous (QQ or qq) in the outbred

lines and heterozygous (Qq) in the F
"

generation.

Under this assumption, if the trait has a heritability

(i.e. ratio of additive genetic variance to phenotypic

variance) that is greater than zero within the outbred

lines, this genetic variance is caused by polygenes.

Genetic variance in the F
#

generation is caused both

by the effects of these polygenes and by QTLs that

contribute to the line difference. When a trait has a

high heritability in both outbred (grandparental) lines,

a significant part of the phenotypic variance in the F
#

will be caused by polygenes. If we ignore the polygenic

effects, they will add to the error term in the statistical

model, potentially reducing the power for the detection

of QTLs.

In this study, we extend the fixed model for the

regression analysis into a mixed model using

Henderson’s mixed model equations (Henderson,

1984, p. 335). In the context of an animal model it is

possible to use the observations not only from progeny

(F
#
) but also from parents (F

"
) to evaluate major

gene and polygene effects. We show how the animal

model using parental observations can be applied to

the analysis of the F
#

population and increase the

accuracy of QTL analysis. We also introduce a

restricted maximum likelihood (REML) estimator to

obtain the variance ratio for the mixed model

equations.

2. Methods

We follow the notation adopted by Knott et al.

(1998). The model applied assumes a QTL (Q) lying

between two co-dominant flanking markers (A and B)

and is developed for mapping the F
#

generation,

although analysis of a backcross would follow very

similar procedures. An F
#

is derived from a cross

between two outbred (grandparental) lines, which

have different alleles for the three loci. The genotypes

of the two grandparental lines are A
"
A

"
Q

"
Q

"
B
"
B
"
and

A
#
A

#
Q

#
Q

#
B
#
B
#
. The parents (F

"
) have only one

genotype: A
"
Q

#
Q

"
Q

#
B
"
B
#
. Three genotypes at a QTL

are possible in the F
#
. The effects of Q

"
Q

"
, Q

"
Q

#
and

Q
#
Q

#
are denoted ­a, ­d and ®a, respectively. The

phenotypic value y
i

(the observation) of a progeny

(F
#
) can be written as a regression model in terms of

an additive and a dominance contribution at a QTL:

y
i
¯µ­c

ai
a­c

di
d­e

i
,

where µ is the mean, e
i

is the error, including an

additive polygenic effect and residual effect, and c
ai

and c
di

are coefficients for additive (a) and dominance

(d ) genotypic effect of individual animal i, respectively.

Further details of these terms are given by Haley &

Knott (1992).

(i) Animal model

To consider an additive polygenic effect, we use a

mixed model :

y
i
¯µ­c

ai
a­c

di
d­u

i
­e

i
,

where, u
i
CN(0,σ

u
#) is the additive polygenic effect

(random effect) and e
i
CN(0,σ

e
#) is the residual error.

Since the additive polygenic effect of each individual

animal is being considered, this is an animal model.

We assume there are n animals, then

y¯Lµ­w
"
a­w

#
d­Zu­e.

Here, y is n¬1 vector of the observation y
i
. w

"
and w

#

are n¬1 vectors of c
ai

and c
di
, respectively. Z is the

design matrix (n¬n) for the additive polygenic effect

and u is n¬1 vector of the additive polygenic effects of

n animals. e is n¬1 vector for the residual effect. L is

a vector for µ. If all animals have observations, then

L is n¬1 vector with all elements 1.

In the mixed model equations,

E

F

L«L L«w
"

L«w
#

L«
w
"
«L w

"
«w

"
w
"
«w

#
w
"
«Z

w
#
«L w

#
«w

"
w
#
«w

#
w
#
«Z

L Z«w
"

Z«w
#

Z«Z­kA−"

G

H

E

F

µ

a

d

u

G

H

¯

E

F

L«y
w
"
«y

w
#
«y

Z«y

G

H

.

Here, A−" is the inverse of relationship matrix among

animals. k (¯σ
e
#}σ

u
#) is the ratio of the variance of

the additive polygenic effects (σ
u
#) and the error

variance (σ
e
#). In this model, we use observations

from all animals through the relationship matrix.

Observations from F
"

parents as well as from F
#

progeny can be used to estimate the effect and

position of QTLs.

(ii) Example data set

We assume that a QTL (Q) is lying between two co-

dominant flanking markers (A and B). We have an F
#

generation from a cross between two outbred lines (1

and 2) which carry different alleles for the three loci.

The example data set, comprising two sires (animals 1

and 5) and two dams (animals 2 and 6) from the F
"

generation, is shown in Table 1. Animals 3 and 4 (in

the F
#
generation) are the progeny of animals 1 and 2,

and animals 7 and 8 (in the F
#

generation) are

progeny of animals 5 and 6. Since sires and dams are

from the F
"
generation, they have the same genotype,

i.e. A
"
A

#
Q

"
Q

#
B
"
B
#
. Marker genotypes of the progeny

are also shown in Table 1. The recombination fraction

between the two flanking markers A and B is

designated as r. The recombination fraction between
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Table 1. Example data set for an animal model

Animal Observation Sire Dam
Marker
genotype

Expectation
in terms of a

1 (F
"
) 20 – – A

"
A

#
B

"
B

#
0

2 (F
"
) 0 – – A

"
A

#
B

"
B

#
0

3 (F
#
) 10 1 2 A

"
A

"
B

"
B

"
0±9803

4 (F
#
) 2±5 1 2 A

"
A

#
B

#
B

#
®0±4902

5 (F
"
) 0 – – A

"
A

#
B

"
B

#
0

6 (F
"
) ®10 – – A

"
A

#
B

"
B

#
0

7 (F
#
) 0 5 6 A

"
A

"
B

"
B

#
0±4902

8 (F
#
) ®7±5 5 6 A

#
B

#
A

#
B

#
®0±9803

A and Q is r
A

and that between Q and B is r
B
. Haley

& Knott (1992) gave the coefficient values, c
ai

and c
di
,

for all possible genotypes. For example, the coefficient

c
ai

of marker genotype A
"
A

"
B
"
B
"

is [(1®r
A
)#(1®r

B
)#

®r
A
#r

B
#]}(1®r)#. When the putative QTL is midway

between two markers 20 cM apart (i.e. r¯ 0±1648,

r
A
¯ r

B
¯ 0±0906) then

[(1®r
A
)#(1®r

B
)#®r

A
#r

B
#]}(1®r)#¯ 0±9803.

We use the same assumptions as Haley & Knott

(1992) used, where µ and d are set to zero for

simplicity in demonstrating the analysis. The F-

statistic is calculated for the simulated position of the

putative QTL, 10 cM from both the A and B loci. In

practice, we move the putative QTL through the

interval to find the position that gives the highest F

value. We use an animal model :

y¯wa­Zu­e.

Here, y is 8¬1 vector of observations from 8 animals.

Term a is a scalar for additive genotypic effect of a

QTL, w is the 8¬1 vector of c
ai

and u is the 8¬1

vector of additive polygenic effects of animals. Z is the

design matrix (8¬8) for the additive polygenic effects

of animals. In this example, Z is a diagonal matrix

with all elements 1.

In the mixed model equations:

E

F

w«w w«Z
Z«w Z«Z­kA−"

G

H

E

F

a

u

G

H

¯
E

F

w«y
Z«y

G

H

.

The vector of u and a can be estimated as

E

F

a

u

G

H

¯
E

F

w«w w«Z
Z«w Z«Z­kA−"

G

H

−"
E

F

w«y
Z«y

G

H

¯
E

F

C
""

C
"#

C
#"

C
##

G

H

E

F

w«y
Z«y

G

H

.

A−" is the inverse of the relationship matrix among 8

animals. k (¯σ
e
#}σ

u
#) is the ratio of the additive

polygenic variance (σ
u
#) and the error variance (σ

e
#).

Assume the variance ratio k is 1, i.e. the heritability is

0±5 (¯σ
e
#}(σ

u
#­σ

e
#)). We use observations from all

individuals through the relationship matrix.

These values are given as:

Z«Z¯diag(1, 1,1,1,1,1,1,1)

w«Z¯ (0 0 0±9803 ®0±4902 0 0 0±4902

®0±9803)

w«w¯ 0±9803#­(®0±4902)#­0±4902#­(®0±9803)#

¯ 2±403

Z«y¯ (20 0 10 2±5 0 ®10 0 ®7±5)«
w«y¯ 0±9803¬10­(®0±4902)¬2±5­

(®0±9803)¬(®7±5)¯15±930.

The following values would be estimated:

u«¯ (10±000 0±000 5±000 5±000 0±000

®5±000 ®2±500 ®2±500)

a¯ 5±100

σ
e
#¯ (y«y®u«y®aw«y)}(n®1)

¯ (662±500®331±253®5±100¬15±930)}(8®1)

¯ 35±714

F¯ a¬a}(C
""

¬σ
e
#)¯

5±100¬5±100}(0±6403¬35±714)¯1±138.

Element C
""

, 0±6403, from the inverted matrix corre-

sponds to w«w, 2±403, in the mixed model equations.

(iii) Simulations

The genome of each individual consisted of a pair of

chromosomes 100 cM in length, carrying marker loci

at the ends and at 20 cM intervals (i.e. six markers in

total). All markers were fully informative. A single

QTL in the centre of the chromosome was used. The

phenotypic variance was set at 100 and the additive

genotypic effect, a, of the QTL was 5. The dominance

genotypic effect, d, was set at zero. Three additive

polygenic variances (σ
u
#) of 20, 40 and 60 (equivalent

to three heritabilities (¯σ
u
#}(σ

u
#­σ

e
#)) of 0±2, 0±4

and 0±6) were used. Two types of population structures

were simulated. In both structures the individuals to

be grandparents were chosen randomly from outbred

lines and it was assumed that there was no relationship

among them. Dams were nested within sires. Structure

1 had 10 sires and 20 dams in the F
"
generation. Two

dams were mated per sire and every dam had 10

progeny in the F
#
generation. Structure 2 had 10 sires

and 200 dams in the F
"

generation. Twenty dams
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Sire1 Dam1 Dam2 Sire10 Dam19 Dam20

10 progeny10 progeny10 progeny10 progeny

F1

F2

Fig. 1. Simulated population structure 1. Ten sires and 20
dams are in the F

"
generation and dams are nested

within sire. Two dams are mated per sire and every dam
has 10 progeny in the F

#
generation.

Sire1 Dam1.... Dam20 Sire10 Dam181 .... Dam200

1 progeny1 progeny1 progeny1 progeny

F1

F2

Fig. 2. Simulated population structure 2. Ten sires and
200 dams are in the F

"
generation and dams are nested

within sire. Twenty dams are mated per sire and every
dam has only one progeny in the F

#
generation.

were mated per sire and every dam had only one

progeny. In total, there were 200 progeny in the F
#

generation in both population structures (Figs 1, 2).

(iv) Statistical methods

(1) Regression (RG): Simple regression using c
ai

and

a was applied and only observations (phenotypic

values) of progeny (F
#
) were used.

y
i
¯µ­c

ai
a­e

i
,

where, e
i

CN(0,σ
e
#) is the error comprising the

additive polygenic effect and the residual effect.

(2) Mixed model with no parental observations

(MXN): Mixed model equations were applied. Re-

gression of a and additive polygenic effects (u) were

considered. Observations on progeny (F
#
) were used

but no observations on parents (F
"
) were used.

y
i
¯µ­c

ai
a­u

i
­e

i
,

where u
i
CN(0,σ

u
#) is the additive polygenic effect

(random effect) and e
i
CN(0,σ

e
#) is the error term

comprising the residual effect. Since no parental

observations were used, the solutions from MXN

were the same as from a sire and dam model.

(3) Mixed model with parental observations (MXP):

Mixed model equations were applied and the same

statistical model as (2) was used. Observations on

both parents (F
"
) and progeny (F

#
) were used.

In practice, we used the reduced-animal model to

reduce computational cost. Mixed model equations

for the animal model demand equations for all

individuals, that is, parents and progeny in our case.

Quaas & Pollak (1980) developed a method which

allows the equations to be set up only for parents and

the predicted values for the progeny to be obtained by

back-solving from the predicted values of parents.

When we used the reduced-animal model, the size of

the mixed model equations that needed to be inverted

was reduced from 231 (30 parents, 200 progeny and 1

covariate) to 31 (30 parents and 1 covariate) in

structure 1 and from 411 (210 parents, 200 progeny

and 1 covariate) to 211 (210 parents and 1 covariate)

in structure 2.

(v) Null hypothesis

Data were generated with no QTL but with markers

at 20 cM spacing. Under structure 1, 1000 replicates,

and under structure 2, 500 replicates, with all

combinations of heritabilities, were generated and

analysed.

(vi) Estimation of �ariance ratio k by REML

The mixed model equations require the variance ratio

k(¯σ
e
#}σ

u
#) to be known. When the heritability (h#)

is known, k is easily calculated:

h#¯σ
u
#}(σ

u
#­σ

e
#), k¯ (1®h#)}h#¯σ

e
#}σ

u
#.

If the grandparental lines are ordinary domestic

breeds, it is not difficult to find a reliable estimate of

the heritability of most traits from the literature.

However, if one uses an uncommon breed or animal

as grandparent, for example wild boar in a study of

pigs, or a trait that is not commonly recorded, it might

be difficult to find a reliable estimate of the heritability.

In this case we must find the ratio, k, from our own

data set. Thompson (1977) developed the iterative

minimum variance quadratic unbiased estimator

(MIVQUE) as the restricted maximum likelihood

(REML). Sorensen & Kennedy (1986) derived REML,

iterative MIVQUE, under the reduced-animal model.

We applied their method to estimate the variances.

Iteration procedures for REML using the reduced-

animal model are as follows. The length of chromo-

some is assumed to be 100 cM.

Step 1. Estimation of the following values every

1 cM from 0 cM to 100 cM using an initial ratio, k

E Additive polygenic effect (u) of parents and

progeny (u of progeny is obtained by back-

solution from parents’ u)

E Additive genotypic effect of QT gene (¯ a)

E F-statistic

Step 2. Decision on QTL position

E The QTL position is estimated as the position

that gives the highest F-statistic

E Estimated values (a and u) at this QTL position

are used for the next step

Step 3. Estimation of variances by MIVQUE

E Estimate additive polygenic variance (σ
u
#) and

error variance (σ
e
#) by MIVQUE for the reduced-

animal model

E Calculate new variance ratio k(¯σ
e
#}σ

u
#)

E Go back to step 1 with a new k until the

estimators have converged
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When variances, σ
u
# and σ

e
#, do not change, variances

and the ratio k are assumed to have converged and

these are the REML estimators.

(vii) Wrong �ariance ratio k and QTL position

When the wrong variance ratio k is given, this could

lead to a biased position of the QTL being estimated.

To investigate this problem, we gave incorrect variance

ratios as the initial values and iterated until con-

vergence. The true k was 1±5 (i.e. heritability 0±4) and

the wrong initial ratios k, 4±0 (heritability 0±2) and

0±666 (heritability 0±6), were given. Twenty replicates

were generated. When the difference between ratio

k
n−"

from the (n®1)th iteration and k
n

from nth

iteration was less than 0±001% of k
n
, the procedure

was judged to have converged.

3. Results

(i) Comparison of the three methods

This comparison was carried out under the assumption

that the heritability (¯σ
u
#}(σ

u
#­σ

e
#)) was known.

Table 2. Comparison of estimates from the three methods in simulated

population structure 1

h# cMA SD a SD F-statistic SD

0±2 RG 48±48 10±61 5±05 1±28 15±10 7±07
MXN 49±28 10±09 5±09 1±26 16±03 7±40
MXP 49±13 9±89 5±08 1±26 16±19 7±49

0±4 RG 48±08 11±33 4±98 1±39 14±99 7±25
MXN 49±11 9±68 5±05 1±23 17±26 7±86
MXP 49±39 8±91 5±05 1±22 17±51 7±97

0±6 RG 48±80 9±39 4±92 1±51 14±95 7±47
MXN 49±78 8±41 5±03 1±17 18±93 8±41

MXP 49±72 8±16 5±01 1±17 19±29 8±54

Ten sires, 20 dams and 200 progeny are used. The simulated values of cMA and
a are 50 cM and 5, respectively. RG is the regression method. MXN and MXP are
the mixed models without and with parental observations, respectively.

Table 3. Comparison of estimates from the three methods in simulated

population structure 2

h# cMA SD a SD F-statistic SD

0±2 RG 49±40 11±41 5±09 1±60 15±94 9±33
MXN 49±74 10±87 5±05 1±60 16±18 9±55
MXP 49±58 10±76 5±07 1±62 16±72 9±69

0±4 RG 48±44 13±39 5±02 1±57 15±58 8±96
MXN 49±88 10±71 4±95 1±57 16±25 9±48
MXP 49±08 10±47 4±98 1±58 17±65 10±03

0±6 RG 48±02 13±00 4±96 1±55 15±17 8±46
MXN 48±70 11±65 4±86 1±51 16±35 9±32
MXP 49±72 7±68 4±94 1±53 19±23 10±44

Ten sires, 200 dams and 200 progeny are used. The simulated values of cMA and
a are 50 cM and 5, respectively. RG is the regression method. MXN and MXP are
the mixed models without and with parental observations, respectively.

When the heritabilities were 0±2, 0±4 and 0±6, the

variance ratios k were 4±0, 1±5 and 0±666, respectively.

The simulated value of the QTL (cMA) position was

50 and estimated values from RG, MXN and MXP

based upon 200 replicates were close to the simulated

value in both population structures (Tables 2, 3).

When the heritability was low, the difference in the

empirical standard deviation of cMA across replicates

from the three methods remained small in both

population structures. With higher polygenic herit-

abilities, the empirical standard deviation of cMA was

smaller for MXN and MXP, because the error

variance was reduced and this increased the accuracy

of prediction. This was especially the case in structure

2, with only one progeny per dam, where the standard

deviations of cMA from MXP were markedly reduced

with increasing heritability.

The simulated value of the additive genotypic value,

a, of the QTL was 5 and estimated values from RG,

MXN and MXP were all close to 5. The empirical

standard deviation of a from MXN and MXP reduced

with increasing heritability. The standard deviation of

a and cMA from RG did not reduce with increasing
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Fig. 3. F-statistics curves from the three methods with heritabilities (a) 0.2, (b) 0.4 and (c) 0.6.
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Table 4. Distribution of F-statistics under the null

hypothesis

Population
structure h# Method Highest F

Empirical 5%
threshold

Structure 1 0±2 RG 3±28 (2±23) 8±00
MXN 3±29 (2±22) 7±78
MXP 3±27 (2±21) 7±96

0±4 RG 3±29 (2±24) 7±83
MXN 3±29 (2±24) 7±73
MXP 3±26 (2±23) 7±77

0±6 RG 3±29 (2±26) 7±80
MXN 3±27 (2±28) 7±88
MXP 3±24 (2±27) 7±79

Structure 2 0±2 RG 3±21 (2±21) 6±91

MXN 3±22 (2±18) 7±15
MXP 3±19 (2±15) 7±02

0±4 RG 3±25 (2±24) 7±05
MXN 3±25 (2±23) 7±17
MXP 3±22 (2±19) 7±18

0±6 RG 3±29 (2±31) 7±45
MXN 3±29 (2±29) 7±10
MXP 3±25 (2±27) 7±58

The highest F-statistics represents the mean over 1000
replicates for structure 1 and 500 replicates for structure 2.
Standard deviation is given in parentheses. The empirical
5% threshold is calculated as the mean of the 50th and 51st
highest F-statistics for structure 1 and the mean of the 25th
and 26th highest F-statistics for structure 2.

heritability. The polygenic effect was not considered

by the RG method. Having a higher heritability

increased the difference between families and this

affected the estimate of RG.

F-statistics from MXP are higher than those from

MXN or RG for both population structures. This is

particularly so when the heritability is high; thus for

a heritability 0±6, the F-statistic from MXP is larger

than those from the other methods. Average F-

statistics over 20 replicates from structure 2 have been

plotted every 2 cM along the chromosome (Fig. 3). It

Table 5. Example of iterati�e procedures by REML

Iteration
number k σ

u
# σ

e
# cMA a F-statistic

1 9±0000 39±5175 69±7149 48 5±725 15±733
2 1±7642 39±9905 67±0417 50 5±384 17±032
3 1±6764 40±0083 66±8676 50 5±372 17±172
4 1±6713 40±0094 66±8568 50 5±371 17±181

5 1±6710 40±0094 66±8563 50 5±371 17±182
6 1±6710 40±0094 66±8562 50 5±371 17±182
… … … … … … …
10 1±6710 40±0094 66±8562 50 5±371 17±182

Initial ratio k¯ 9±0 (¯σ
e
#}σ

u
#), i.e. heritability (¯σ

u
#}σ

e
#­σ

u
#) 0±1, in structure

1 is used. Variances and k¯1±6710 (¯ 66±8562}40±0094) are converged at the
sixth iteration.

is obvious that F-statistics from MXP are increasing

with higher heritability. The peak F-statistics from

MXP are much higher than those from MXN or RG.

Since MXP takes into account the polygenic effect by

means of parent and progeny observations, the higher

heritability reduces the error variance and increases

the power to detect QTLs. On the contrary, increased

heritability reduces F-statistics from RG slightly in

both population structures.

(ii) Null hypothesis

Results of analysis of data generated with no QTL

under structure 1 and structure 2 are shown in Table

4. Means of highest F-statistics from RG, MXN and

MXP at each heritability from the two population

structures did not differ. The approximate empirical

5% thresholds were calculated as the mean of 50th

and 51st highest F-statistic over replicates under

structure 1 and the mean of the 25th and 26th highest

F-statistics over replicates under structure 2. These

values did not differ among RG, MXN and MXP at

each heritability from structure 1 and structure 2.

(iii) Variance ratio k by REML and QTL position

When an initial value of variance ratio k is given, we

can solve the mixed model equations and estimate the

position of QTLs, values of a and the additive

polygenic effect (u). These solutions are used to

estimate the new ratio k. These procedures are used

iteratively until k is converged. Table 5 is an example

of these procedures using structure 1. The simulated

additive polygenic variance and error variance were

40±0 and 60±0, respectively, and the variance ratio k

and heritability were 1±5 (¯ 60±0}40±0) and 0±4 (¯
40±0}(40±0­60±0)), respectively. At the first iteration,

the wrong variance ratio 9 (h#¯ 0±1) was given as the

initial k. After estimating cMA, a and u, a new
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variance ratio k 1±7642 (¯ 69±7149}39±5175) was

obtained. All values – cMA, a, σ
u
# and σ

e
# – remained

unchanged at iteration 6, indicating that the estimates

had converged.

We generated 20 replicates with the wrong initial

variance ratios k at 1st iteration and iterated until the

estimates converged. The simulated variance ratio k

was 1±5 (h#¯ 0±4) and the given wrong initial ratios

were 4±0 (h#¯ 0±2) and 0±666 (h#¯ 0±6). The maximum

number of iterations required for convergence was 7

in both cases. They converged at the ratio k of 1±72

(h#¯ 0±37) as the average. The converged value of

cMA was 49±05. The values of cMA were 49±15 and

48±95 with initial ratio 4±0 and 0±666, respectively. In

both cases, 1 cMA was the maximum difference

between initial and converged values. The simulated

value of a was 5±0 and the estimates converged at 4±98.

The mean differences of a from the converged values

are 0±16 with the initial ratio k¯ 4±0 and 0±07 with the

initial ratio k¯ 0±666.

4. Discussion

The results presented here show that the inclusion of

the additive polygenic effect in a mixed model can

improve the estimate of QTL effects from data derived

by crossing outbred lines. Since MXP (the mixed

model with parental observations) and MXN (the

mixed model without parental observations) treat the

polygenic effect as a random effect in the model, the

accuracy of QTL position estimates increases with

higher heritabilities. Each dam was 10 progeny in

structure 1 and each dam has only one progeny in

structure 2. Thus structure 1 is appropriate for swine

populations and structure 2 for cattle or sheep

populations. When the heritability is high, using

observations on parents significantly increases the

accuracy of QTL position estimation (Table 3) and

increases the peak F-statistics (Fig. 3). The solution

from MXN for structure 1 would be the same as from

a sire and dam model because the relationships at the

F
"
level among F

#
animals were used, but no parental

(i.e. F
"
) observations were taken into consideration.

When the number of progeny is large, the solutions

from the sire and dam model are as accurate as the

solutions from the animal model, because accuracy in

a sire and dam model depends mainly on the number

of progeny per parent (Wilmink & Dommerholt 1985;

Meyer 1989). On the other hand, when the number of

progeny per parent is small and the heritability is

high, using phenotypic observations on parents has a

relatively large influence on accuracy. It can be seen in

structure 2, which is based on one progeny per dam,

that when the heritability is high, MXP gives much

better results than MXN (Table 3).

We should note that the mixed model approach

assumes that the polygenic and environmental vari-

ances are the same in both F
"

and F
#

populations.

Since we consider only the additive polygenic effect

and assume that QTLs of major effect are fixed within

lines, the polygenic variance in both F
"

and F
#

may

reasonably be assumed to be the same. The assumption

of the constant environmental variance should also be

reasonable in many cases, especially where these

populations are not random samples from the field,

but are controlled populations from a designed

experiment. We have only used the observations and

pedigree information from two generations, F
"

and

F
#
, in the mixed model equations. Phenotypic data

from grandparental lines were not used because if the

two grandparental lines had different heritabilities,

this would introduce the problem of variance het-

erogeneity.

An alternative approach to the estimation of a

random effect in a mixed model framework would be

to retain the least squares approach but to include a

fixed effect representing family, e.g. full or half-sib

family (Knott et al., 1998). This has the effect of

removing between-family variation that is partly

genetic in origin and hence should have some of the

beneficial consequences of the MXN approach.

However, it may be costly in terms of lost degrees of

freedom when family units are small. Some further

work to compare the merits of the MXN approach

with a least squares approach with families as fixed

effects would be merited.

The highest F-statistics and empirical 5% threshold

values under the null hypothesis are the same for the

three methods (Table 4). Taking into account these

results under the null hypothesis, the higher peak F-

statistics from MXP in the presence of a QTL (see Fig.

3) lead to higher power for detection of QTLs. When

the variance ratio, k, started with a wrong value – e.g.

9 (h#¯ 0±1), which was far from the real ratio 1±5
(h#¯ 0±4) – the estimated QTL position moved 2 cM

from 48 to 50 cM (Table 5). The value of a changed

from 5±725 to 5±371 from the first to the final iteration.

When the wrong initial ratios of k were 4±0 (h#¯ 0±2)

and 0±666 (h#¯ 0±6), the maximum difference from the

converged value in cMA was 1 cM. The maximum

difference in value of a is 0±48 from the initial ratio 4±0
and 0±18 from the initial ratio 0±666. These results

indicate that the animal model approach has sufficient

robustness to estimate QTL position and to estimate

additive genotypic values without requiring an exact

value for the variance ratio, k. Even information on

whether the heritability is low, medium or high in the

grandparental lines might be sufficient in practice.

The disadvantages of applying a mixed model are :

(1) mixed model equations demand prior information

of variance ratio k, (2) the F-statistic is an approximate

test, not an exact test, of the null hypothesis regarding

a, and (3) when the number of parents is large,

computational costs are high. To solve the first
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problem, we showed that the prior ratio k, even if it

was not the exact value, did not cause a serious bias in

estimation of genotypic values and QTL position

estimates. We also showed that the variance com-

ponents could be estimated by REML using iterative

MIVQUE.

The second problem relates to the testing of fixed

effects in a mixed model. If one gives the exact

variance ratio in mixed model equations, a test using

F-statistics can be an exact test of estimators in a

mixed model (Henderson, 1984, p. 89). Otherwise, it

will be an approximate test. In practice this will not be

a major problem in any event if the significance

threshold is set by a Monte Carlo approach such as

simulation or permutation. Setting the threshold in

this way is required because of the difficulty in setting

a threshold for a chromosomal or whole genome scan.

In this case, the problem becomes one of the com-

putation time required to perform sufficient replicates

of simulation or permutation to provide a reasonable

estimate of threshold.

The third problem of high computational costs is

partly due to the size of matrix to be inverted. We can

use a reduced-animal model, which does not demand

equations for progeny, but equations for parents are

required. Structure 2, which has 10 sires, 200 dams

and 200 progeny, can be applied to animals such as

cattle or sheep. The size of the matrix is reduced to

211, comprising 210 parent and 1 covariate, in the

reduced-animal model. This size of the matrix does

not present a large problem for the single QTL model

but could cause problems with respect to compu-

tational time for replicated simulations in a multiple

QTL model, where the analysis of multiple QTLs

demands a simultaneous search of two or more

dimensions to find the best QTL positions. In the past,

many methods have been investigated in the study of

animal models to get around the problem of large

field data sets (Quaas & Pollak, 1980; Schaeffer &

Kennedy, 1986). Methods to reduce computation cost

should be investigated in QTL analysis for large data

setswithmore complicated analytical models in future.

Only fully informative markers were used in our

simulated data. Haley et al. (1994) extended the

regression method to use all markers including those

that were not completely informative. The same

approach could be used to extend our method.

We used the additive polygenic effect as our only

random effect. Since our approach shows generally

how to extend the model with random effects, other

random genetic and environmental effects, such as a

maternal genetic effect and a permanent environ-

mental effect, could also be included in animal models.

Where appropriate, use of these models may also be

valuable to increase power and accuracy in QTL

analysis.
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