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ABSTRACT 

An algorithm for the numerical determination of asymmetric periodic 
solutions of the planar general three body problem is described. The 
elements of the "variational" matrix which are used in this algorithm 
are computed by numerical integration of the corresponding "variational" 
equations. These elements are also used in the study of the linear iso-
energetic stability. A number of asymmetric periodic orbits are pre­
sented and their stability parameters are given. 

1. NUMERICAL DETERMINATION OF ASYMMETRIC PERIODIC SOLUTIONS 

We use a rotating system of dimensionless coordinates with origin 
at the center of mass of the two more massive bodies P. and P?. 

The position of the three-body system is fully determined in terms 
of the coordinates x,y of the third body P-,, the distance X2 of P9 from 
the origin and the angle 8 between the rotating and a non-rotating 
system. 

In the rotating coordinate system the Equations of motion of the 
planar general three body problem are 

x = Bx + x8 2 + 28 y + 8y + uAx 

y = (B +82)y - x8 - 2x8 , 

x'2= (m3B* + 8
2)x2 - (l-m3)(l-y)

3/X2 + m3(l-u)Ax, 

8 = -28x2/x2 + m (l-u)Ay/x2, 

or in first-order form: 

dX dX dX 

d T - X 4 4 f l ' dF- = X5A V d T = V f 3 
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dX4 2 
IT = BX1 + X1X8 + 2X8X5 + X8X2 + y A X 3 A f 4' 

dX5 2 2 -
— = (B + X8)X - X lX8 - 2X4X8,f5, 

~ = (m3B* + Xg)X3 - (l-m3) (1-U) /X3 + m3(l-p)AX1 4 fg , 

dX 

d T = X 8 A f 7 ' 

dX 
— = "2X8X6/X3 + m3(l-p)AX2/X34 f g, 

where 

(X^ X2, X3, X4, X5, Xg, X?, X8) = (x,y,x2,x, y, x2, 9,9). 

A periodic solution X(X ; t) of the above Equations will satisfy 

X. (X ; f+T) = X. (X ;t) , î 7 (3) 
1 - 0 1 - 0 

where T is the period and X = (X . ,..., X _) is the initial-conditions 
—o ^ 00 

vector. Further, without loss of generality, we shall fix initial values 
of y,9 and 8 as follows:y = 0 , 9 = 0 , 6 = 1 . 
The periodicity conditions are written in the form: 

x(xQ, x2Q, xQ, yQ, x2Q; T) = xQ , (a) 

y ( K 0 ' X20' X 0' ̂ 0' X20? T ) = Y 0 ' (b) 

X2( X0' X20' X 0' Y 0 ' X20; T ) = X20 ' (c) 

X ( V X20' X 0' Y 0 ' X20; T) = X0 ' Cd) (4) 

Y ( X 0 ' X20' V Y 0 ' X20; T ) = Y0 ' (e) 

X2( X0' X20' V Y 0 ' X20'' T ) = X20' <f) 

®(X0' X20' X 0' V X20; T) = ^0 (g) 

In practice condition (4b) is satisfied "by force" since we start 
and terminate the numerical integration when the orbit crosses the Ox 
axis. Further, due to the integrals of the problem only four of the re­
maining six periodicity conditions are trully independent. Essentially, 
therefore, the periodicity conditions are only four and in this work we 
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have used the conditions (4a, c,d,f). 
From these periodicity conditions corrector-predictor algorithms 

can be established for the numerical determination of entire series of 
asymmetric periodic solutions. In the corrector phase we assume an ini­
tial state vector Xg which approximately leads to a periodic orbit of 
(approximate) period T, and seek to adjust this state vector by diffe­
rential corrections to improve iteratively the accuracy of periodicity. 

If we integrate the Equations of motion and stop at the second 
crossing with the Ox-axis (after one full revolution), we have in gene­
ral 

X(XQ ; T) + XQ . 

We seek corrections 6X = (6x , 0, 6x , 6x , 6y , 6x , 0, 0) such 
that 

X (XQ + 6XQ ; T + 6T) = XQ + 6XQ . (5) 

Expanding in Taylor series and neglecting terms of order higher that the 
first, we shall have 

9x. 3x. 8x. 3x. 

3x. 3x. 
I 

'06 
+ ~^t X06 + " S T ^ " 6T = X0i + 6X0i ' 

(i = 1,2,3,4,6). (6) 

For i=2 we obtain in particular, 

3X2 3X2 3X2 3X2 

3x 9x 
+ - 3 X - 6X06 + " B r - 6T = ° ' (7) 

06 

since, for t=T, x = y = 0 while 6X = 6y0= 0. Solving now Equations (7) 
for 6T and substituting into relations (6) we get 

X. + u.6X„, + u 6X „ + u 5X„, + u6X„,_ + u.^6X„^ 
i il 01 i3 03 i4 04 i5 05 i6 06 

= XQi + 6XQi, i = 1,3,4,6. (8) 
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where 

9x. 9x f. 

13 8X0j 8X0j f2 

("variations at the crossing"; Markellos, 1977). 
Assuming X constant or equivalently 6X = 0, Equations (8) become 

^ll"1' 6X01 + U136X03 + U156X05 + U166X06 = XorXl ' 

U316X01 + (U33-1)6X03 + U356X05 + U366X06 = ^ " V 

U416X01 + U436X03 + U456X05 + U466X06 = X04"X4' ^ 

U616X01 + U636X03 + U 6 5 6 X 0 5 + (U66-1)6X06 = X06"X6 " 

This system is the corrector of the algorithm. It is solved for 
the corrections 6X , 6X , 6X , 6X , which are then added to the 
corresponding components of the initial state vector to obtain a better 
approximation to the periodic orbit with period T + 6T. 

After repeated applications of the corrector we find (assuming con­
vergence) the periodic (to the desired accuracy) solution characterized 
by the value Xn which is kept constant during the correction process. 

We then proceed to a single application of the predictor: 

(U11-1)AX01 + U13AX03 + U15AX05 + U16AX06 = -U14AX04' 

(11) 
U31AX01 + (U33-1)AX03 + U35AX05 + U36AX06 = -U34AX04 ' 

U41AX01 + U43AX03 + U45AX05 + U46AX06 = ( 1- U44 ) A X
0 4' 

U61AX01 + U63AX03 + U65AX05 + (U66-1)AX06 = -U64AX04' 

This predictor is designed to obtain the approximate initial state 
vector X- + AX_ corresponding to another periodic orbit (along the 
family), characterized by the value X* = X + AX , where the 
"increment" AX., is arbitrary but small so that convergence of the 
subsequent application of the corrector is secured. The values of the 
"sensitivities" u.. involved in Equations (10) and (11) are computed 
from relations (9), where the "variations" 8x./9x are known through 
numerical integration of the linear variational Equations: 
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where 

V = (v..) = (3X./3X ) 

a n d 9f. 
P = ( -^) , i,j= 1,...,8. 

j 

STABILITY 

IF X is the vector, in phase space, corresponding to a periodic 
orbit and X + 6X is the vector of a neighboring orbit corresponding 
to the same value of the energy and angular momentum integrals, then a 
transformation T is constructed which transforms the initial state X 
to the state X when the orbit crosses the surface of section X =Y=0 
for the second time (simple orbits). This transformation is expressed 

X = 0(X ), (13) 

where 

£ = (o1, o3, a^, a6). (14) 

After linearization,the transformation (13) is written 

6X =A 6X (15) 

where 

6X = (6Xr 6X3, 6X4, 6X6) , 

6X0 = (6X01' 5X03' 6X04' 6X06)T ' (16) 

and A is the 4x4 matrix with elements the first partial derivatives of 
the functions (a., a„, a, , ar) with respect to the initial conditions, 1 3 4- 6 
i.e. 

A = (a. .) = ( -5-^- ) , i,j = 1,3,4,6 (17) 

The conditions for stability are: 

A > 0 , |p| < 2 , |q| < 2 , (18) 

where 

A = o2-4(3-2), p = - | ( a + / A ) , q=-|(a-/A) (19) 

https://doi.org/10.1017/S025292110009713X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110009713X


T
A
B
L
E
 
I
:
 T
h
e
 
se
ri
es
 A
 

o
f
 a
s
y
m
m
e
t
r
i
c
 
p
e
r
i
o
d
i
c
 
o
r
b
i
t
s
 o
f
 t
he
 p
l
a
n
a
r
 g
e
n
e
r
a
l
 
t
h
r
e
e
 b
o
d
y
 
p
r
o
b
l
e
m
 
fo
r
 

y
 
=
 0
.2
5
 
a
n
d
 
X
„
.
 =
 -
 0
.
1
7
2
9
2
.
 

04
 

1
 

2
 

.3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0
 

11
 

1
2
 

1
3
 

m
3
 

0
.
0
0
0
1
0
3
 

0
.
0
0
1
2
0
3
 

0
.
0
1
4
0
0
9
 

0
.
0
3
6
5
0
9
 

0
.
0
5
0
6
2
9
 

0
.
0
7
8
6
4
9
 

0
.
1
0
0
2
6
9
 

0
.
1
1
9
6
8
9
 

0
.
1
3
4
0
8
9
 

0
.
1
5
0
1
0
9
 

0
.
1
7
0
1
8
9
 

0
.
1
9
0
0
0
9
 

0
.
2
0
0
0
0
0
 

x o
i
 

-
2
.
3
3
0
4
8
 

-
2
.
3
2
6
7
2
 

-
2
.
3
1
2
5
8
 

-
2
.
3
1
1
3
8
 

-
2
.
3
1
5
0
1
 

-
2
.
3
2
5
9
8
 

-
2
.
3
3
6
0
9
 

-
2
.
3
4
5
7
4
 

-
2
.
3
5
3
0
7
 

-
2
.
3
6
1
3
1
 

-
2
.
3
7
1
6
7
 

-
2
.
3
8
1
8
5
 

-
2
.
3
8
6
9
4
 

X
0
3
 

0
.
7
4
9
9
0
5
 

0
.
7
4
9
1
4
5
 

0
.
7
4
3
5
5
7
 

0
.
7
3
6
4
8
9
 

0
.
7
3
2
5
5
6
 

0
.
7
2
5
1
4
1
 

0
.
7
1
9
5
5
6
 

0
.
7
1
4
5
5
6
 

0
.
7
1
0
8
3
8
 

0
.
7
0
6
6
7
6
 

0
.
7
0
1
4
0
9
 

0
.
6
9
6
1
4
3
 

0
.
6
9
3
4
5
9
 

X
0
5
 

1
.
9
0
1
3
9
 

1
.
8
9
8
7
6
 

1
.
8
9
2
6
4
 

1
.
9
0
2
8
4
 

1
.
9
1
3
9
4
 

1
.
9
3
8
6
0
 

1
.
9
5
9
1
1
 

1
.
9
7
8
0
1
 

1
.
9
9
2
1
7
 

2
.
0
0
7
9
7
 

2
.
0
2
7
7
7
 

2
.
0
4
7
2
3
 

2
.
0
5
6
9
9
 

X
0
6
 

-
0
.
0
0
0
3
7
 

-
0
.
0
0
2
4
3
0
 

-
0
.
0
1
3
4
4
6
 

-
0
.
0
2
4
3
0
1
 

-
0
.
0
2
9
8
9
2
 

-
0
.
0
3
8
7
7
8
 

-
0
.
0
4
4
6
4
7
 

-
0
.
0
4
9
4
0
4
 

-
0
.
0
5
2
6
7
6
 

-
0
.
0
5
6
0
9
3
 

-
0
.
0
6
0
0
8
4
 

-
0
.
0
6
3
7
3
7
 

-
0
.
0
6
5
4
8
0
 

E
 

-
0
.
0
9
3
8
0
3
 

-
0
.
0
9
4
2
4
1
 

-
0
.
0
9
7
7
0
0
 

-
0
.
1
0
2
1
4
2
 

-
0
.
1
0
4
7
3
3
 

-
0
.
1
0
9
1
3
8
 

-
0
.
1
1
2
1
6
5
 

-
0
.
1
1
4
6
4
2
 

-
0
.
1
1
6
3
3
8
 

-
0
.
1
1
8
0
8
8
 

-
0
.
1
2
0
0
8
3
 

-
0
.
1
2
1
8
3
8
 

-
0
.
1
2
2
6
4
2
 

P
 

-
1
.
9
9
8
 

-
2
.
0
3
7
 

-
2
.
6
2
9
 

-
3
.
9
8
3
 

-
5
.
0
3
0
 

-
7
.
2
3
4
 

-
9
.
1
1
9
 

-
1
0
.
9
3
 

-
1
2
.
3
7
 

-
1
4
.
0
7
 

-
1
6
.
3
8
 

-
1
8
.
8
7
 

-
2
0
.
2
1
 

q
 

-
3
9
.
1
9
 

-
3
6
.
2
5
 

-
3
6
.
9
8
 

-
4
6
.
2
2
 

-
5
4
.
2
7
 

-
7
3
.
0
4
 

-
9
0
.
7
5
 

-
1
0
9
.
3
 

-
1
2
4
.
7
 

-
1
4
3
.
9
 

-
1
7
1
.
2
 

-
2
0
1
.
8
 

-
2
1
8
.
9
 

>
 

H
 o
 

a SO
 
o
 

r
 

>
 

55
 

O p
 
p
 

>
 

T
h
e
 p
e
r
i
o
d
 
of
 t
h
e
 o
r
b
i
t
s
 v
a
r
i
e
s
 
fr
om
 
T
 =
 
12
.4
77
3
 
(o
rb
it
 
1)
 t
o
 T
 
=
 
10
.9
99
2
 
(o
rb
it
 1
3)
 

I 

https://doi.org/10.1017/S025292110009713X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110009713X


ASYMMETRIC PERIODIC ORBITS IN THE THREE-BODY PROBLEM 

and 

a " ( a U + a33 + V + a 66 } (20) 

255 

11 13 

31 33 

11 

41 

14 

W 

11 

61 

16 

66 

a33 "34 

\3 V 

33 36 

"63 "66 

V %6 

a64 a66 

(21) 

(Hadjidemetriou, 1975). The elements a^j can be determined as functions 
of the elements v.. of the "variational" matrix through the expressions: 

x „ x/i x „ 

4 4 4 
a = (v - — v ) + (v - v )D + (v - -— v )D 
li li xc 2i' v 15 xc 25' 15 V 18 xc 2&' 18, 

b b b 
X6 X6 X6 

a.,. = (V V ) + (V V n r - ) D . C
 + (v->o V o 0 )

D ' 0 ' 

3i 3i x 2i 35 x 25 i5 38 x 28 18 
x x x 

a 4 i = ( V 4 i " IT V 2 i 5 + ( V 45 " xT V 2 5 ) D i 5 + (V48 " xT V28)Di8' 
b o 5 

X X X 

a6i = (V6i " t V2i' + (V65 " x7 V25)Di5 + (V68 " JT V28)Di8' 
b b 5 

where 

(i = 1,3,4,6) (22) 

Di5 =-(FliF28 " F2i F18 ) / D' 

~(F2iF15 - F l i F 2 5 ) / D ' (23) 

and 

p F _ p p 
15 28 18 25' 

3F. 

lj 

9E 
9x. 

9F 
2 dP 

'2j 3x. 3x. 
J 3 

, j = 1,3,4,6 (24) 

with F = E and F„ = P denoting respectively the energy and angular 
momentum integrals. 
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3. PRELIMINARY RESULTS 

Applying the above technique, we started the computation of asym­
metric periodic solutions of the general three body problem using initi­
al conditions of such solutions of the restricted problem given by 
Markellos (1977) for values of the mass parameter y in the interval 
(0,0.5). We chose as starting point an orbit belonging to the bifur­
cation series A for u = 0.25 with initial conditions XQ = -2.3310. 
x = -0.17292, y = 1.9017 and Jacobi constant C = 2.67054. The perio­
dic solutions obtained are members of a continuous series formed by 
gradual increase of the mass of the third body m.., in the interval 
(0,0.2) , while the value of the mass parameter \i is kept constant: 
\i = 0.25. Sample numerical results are given in Table I. As can be seen 
in the last column of the Table, all orbits are unstable, in the linear 
"isoenergetic" sence. 

4. REFERENCES 

Hadjidemetriou, J.D. 1975, Celes. Mech. _1_2, 255 

Markellos, V.V.: 1977, Mon. Not. R. Astr. Soc. 180, 103 

https://doi.org/10.1017/S025292110009713X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110009713X



