
RADIAL AND ANGULAR LIMITS OF 
MEROMORPHIC FUNCTIONS 

G. T. CARGO 

1. I n t r o d u c t i o n . Let us say t ha t a function denned in the open unit 
disk D has the Montel property if the set of those points eid on the unit circle 
C where the radial limit exists coincides with the set where the angular limit 
exists. By a classical theorem of Montel (4), every bounded holomorphic 
function has this property. Meromorphic functions omitt ing a t least three 
values and, more generally, the normal functions recently introduced by 
Lehto and Virtanen (3) also enjoy the Montel property (also see 1). 

In this paper we show tha t a function of bounded characteristic (which 
necessarily has finite angular limits almost everywhere) need not have the 
Montel property. 

Since a bounded holomorphic function possesses the Montel property, one 
might suspect t ha t a function which is * 'almost ' ' bounded in the sense t ha t 
it belongs to every Hardy class Hp (0 < p < œ ) would also have the Montel 
property. Lemma 2 shows that , on the contrary, if f(z) is any meromorphic 
function which approaches infinity along some radius of D, then there exists 
a bounded holomorphic function B{z) such t ha t B(z)f(z) fails to have the 
Montel property. 

In § 2 we prove that , corresponding to each countable set {Çn} on C, there 
is a function / which belongs to every Hardy class Hp (0 < p < œ ) and which 
has, a t each point fn, a radial limit bu t no angular limit. 

In § 3 extensions of the above results are established, and in § 4 the results 
of this paper are compared with those of Lappan (2) concerning non-normal 
sums and products of normal functions. 

T h e author is indebted to Professor W. Rudin, who suggested (oral com­
munication) t ha t Lemma 2, which is the keystone of this paper, might be 
t rue. Also, the author would like to thank Professor G. Piranian for supplying 
the essential link in the proof of Theorem 2. 

Finally, we should remark tha t the analogy (noted in § 4) between the 
results of Lappan and those of this paper is more than superficial. There is 
a theory which embraces them both, and which, curiously enough, is related 
to an interpolation problem in Hœ. 

2. T h e m a i n resu l t . We begin with the construction of a function / 
t ha t belongs to every Hardy class Hv (0 < p < °°) and has a radial limit 
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but no angular limit at the point 1. In the discussion of Blaschke products, 
we shall use the notation 

H z ' a ) = = ^ t = t ' B(z;{zn})=llb(z;zn). 

LEMMA 1. Let at = 1 — te** where 4> is fixed (0 < \<f>\ < w/2). Then 

inf{|6(r;a«)| : 0 < r < 1; 0 < t < cos <j>) > 0. 

The restriction on / in the conclusion serves only to ensure that \at\ < 1. 
Setting cos <j> = c, we obtain 

\b(r\at)\
2 = 

|1 — r — fe*|' 
|1 - r + tre-**]3 

(1 - r)2 - 2(1 - r)tc + t2 

(1 - r ) 2 + 2(l - r)trc + tV 

[t - c(l - r)]2 + (I - c2)(l --r)2 

[rt + c(l-r)f+(l-c2)(l--r)2 

For 0 < 1 — r < t, we drop the second term in the numerator and conclude 
that 

i w . . 1 2 . It(l-C)f ( 1 - C ) 2 

Hr,a,)\ > [t{l + c)]2 + { l _ c2)t2 - 2 ( 1 + c) . 

For / < 1 — r < l , we drop the first term in the numerator and obtain the 
inequality 

I r / \ ! 2 ^ 1 — C 1 — C 

\b(r;at)\ > -^-^ + 1 _ ^ = -y- . 
This concludes the proof of Lemma 1. 

LEMMA 2. Let S denote a closed non-radial line segment contained in D except 
for one end point at eie. Then there exists a Blaschke product that has infinitely 
many zeros on S and maps the radius terminating at eiQ onto a curve bounded 
away from the origin. 

Proof. Without loss of generality, we may suppose that 6=0. On the radius 
of D that terminates at z = 1, the function b(z\at) considered in Lemma 1 
approaches a value of modulus 1. It follows from Lemma 1 that if 

t{n + I)/t{n) ->0 

rapidly enough, then B(z; {at{n)}) has the desired property. 

LEMMA 3. Let {Çn} denote a countable subset of C, and for each n let Sn denote 
a closed segment that lies in D except for one end point at fw, and that makes a 
fixed angle 6 with the radius at fn. Then there exists a Blaschke product that has 
infinitely many zeros on each segment Sn and maps the radius at each point fn 

onto a curve which is bounded away from the origin. 
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The proof is as obvious as that of Lemma 2. 

THEOREM 1. Let {fn} be a countable subset of C. Then there exists a function f 
that belongs to every Hardy class Hp (0 < p < °o ) and has, at each point fw, the 
radial limit °° but no angular limit. 

Proof. Suppose that some function F has the radial limit <» at each point 
fn and belongs to every Hardy class Hv. If B denotes the Blaschke product 
constructed in Lemma 3, then the function/(z) = B(z) F{z) has the required 
properties. 

Now let Fn(z) = log{l/(l — fnz)} denote the branch of the corresponding 
function that vanishes at the origin, and let 

CO 

F(z)= D 2~nFn{z). 
1 

Since F\ belongs to every Hardy class Hp, and since each Fn has the form 
Fn{z) = jFiCfifnS), we see immediately that F belongs to every Hardy class. 
Moreover, the real part of Fn(z) is greater than log (1/2) for all z in D and 
tends to 00 as z tends to fn, and therefore F{z) —» 00 as z —> fn. This concludes 
the proof of Theorem 1. 

Remark. In our theorem the radial limit at fn is » . We can make the limit 
finite, provided we are willing to accept a function / that is only meromorphic 
and of bounded characteristic. Example: 

/(*) = {exp L 2~n(z + fnV(s - ?n)}/B(z), 

where B is the Blaschke product in Lemma 3. 

3. Extensions and refinements. The pathology exhibited in Theorem 1 
can be extended and intensified in a number of ways. 

First of all, the function exhibiting the pathology can be "almost" bounded 
in a more stringent sense than that of belonging to every Hardy class Hv 

(0 < p < 00). Indeed, as Professor G. Piranian has pointed out to the author, 
corresponding to each positive, non-decreasing function h defined on [0, °° ) 
and each set E of measure zero on C, there is a holomorphic function F in D 
which has the limit » at each point of E and for which 

SUP(2^ I *(l^(^)l)^:0<r < l | < ». 

A proof of this result will be given in a subsequent paper, where it will be 
used in another connection. If h increases rapidly enough, for example, if 
h(x) > ex, then F belongs to every Hardy class Hp (0 < p < °°). Thus we 
have the following extension of Theorem 1. 

THEOREM 2. Let {£n} be a countable subset of C, and let h be a positive, non-
decreasing function defined on [0, » ) . Then there exists a holomorphic function 
f in D which satisfies the growth condition 
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s u p { ^ £* K\f(reie)\) dd:0 < r < l | < » , 

and which has, at each point fw, the radial limit °° but no angular limit. 

Next, let us turn to the question of intensifying the pathology locally. Any 
continuous function in D which has the radial limit » a t a point eid will 
approach °° as z approaches eie from within a certain region containing the 
radius in question; by modifying our previous arguments , one can preclude 
the region from containing any symmetr ic tr iangular neighbourhood of eiB. 
More precisely, we have the following theorem. 

T H E O R E M 3. Suppose that f is holomorphic in D and has the radial limit °o 
at eid. Then there exists a Blaschke product B such that B (z) f(z) has the radial 
limit oo at eid and does not approach a limit as z approaches eid from within any 
triangle which contains the radius terminating at eie. 

4. Non-normal products and sums of normal functions. In their 
paper concerning normal meromorphic functions, Lehto and Vir tanen (3) 
remark t h a t the sum of a normal function and a bounded function (which is 
necessarily normal) is a normal function. In contradist inction to this, Lappan 
(2) proves the following theorem. 

T H E O R E M (Lappan) . Let f be an unbounded normal holomorphic junction 
in D. Then there exists a Blaschke product Bfand a normal holomorphic function 
g in D such that Bf(z)f(z) and f(z) + g(z) are not normal in D. 

I t is easy to see tha t , if in Lappan ' s theorem we impose on / the addi t ional 
requirement t ha t / has infinity as an asymptot ic value, then the conclusion 
can be s t rengthened: Bf(z)f(z) and f(z) + g(z) do not have the Montel 
proper ty . 

In conclusion, let us note t ha t non-normal functions, for example, 

(1 - s ) e x p { ( l + * ) / ( l - « ) } , 

may possess the Montel property. 
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